Toward Architecture-based Reliability Estimation

Roshanak Roshandel, Nenad Medvidovic

Computer Science Department
University of Southern California
roshande@usc.edu

ICSE Workshop on Architecting Dependable System (WADS'04),
May 25, 2004
Motivation

• Software reliability: probability that the system performs its intended functionality without failure
• Software reliability techniques aim at reducing or eliminating failure of software systems
• Complimentary to testing, rely on implementation
• How one goes about building reliable systems? And how to measure early reliability?
Software Architecture

• High-level abstractions describing
 – Structure, Behavior, Constraints
• Coarse-grain building blocks, promote separation of concerns, reuse
 – Components, Connectors, Interfaces, Configurations
• Architectural decisions directly affect aspects of software dependability
 – Reliability
• ADLs, Formal modeling notations, related analysis
 – Often lack quantification and measurement
Architectural Reliability

• Lightly explored
• Require availability of implementation to:
 – Build behavioral model of the software system
 – Obtain individual component’s reliability
• Software architecture offers compositional approaches to modeling, and analysis
• The challenge is quantifying these results
 – Presence of uncertainty
 • Unknown operational profile
 • Improper behavior
Architecture

- Local Reliability
 - Markov Model
- Global Reliability
 - Markov Model

Component
- Static Behaviors
 - Interface
 - Dynamic Behaviors
- Protocols
 - "The Quartet"

Interface

Protocols

Dynamic Behaviors

"The Quartet"
Component Reliability

Analysis → Defects → Quantification

Classification → Cost framework

Domain Knowledge OR Random → Model Extractor

Model Extractor → State-based Markov model, Training data, ITP

Hidden Markov Modeling

Reliability Estimator

Baum-Welch Algorithm

Comp Reliability, Transition Probabilities

Legend:
- Artifacts
- Major steps of the approach
- Iterative process
- Initial transition probabilities
- Numerical values
The Quartet

1. *Interface* models specify the points by which a component interacts with other components in a system.
2. *Static behavior* models describe the functionality of a component discretely, i.e., at particular “snapshots” during the system’s execution.
3. *Dynamic behavior* models provide a continuous view of how a component arrives at different states throughout its execution.
4. *Interaction protocol* models provide an external view of the component and how it may legally interact with other components in the system.
Cruise Control

PROV gas(val:SpeedType):SpeedType;
PROV brake(val:SpeedType):SpeedType;
PROV cruise(speed:SpeedType);Boolean;

STATE-VAR:
curSpeed:SpeedType;isCruising:Boolean;

INVARIANT:
0 ≤ curSpeed ≤ MAX;

OPERATIONS:
gas. preCond (val > 0);
gas. postCond (¬curSpeed = curSpeed + val);
brake. preCond (val < 0);
brake. postCond (¬curSpeed = curSpeed + val
AND isCruising = false);
cruise. preCond (speed > 0);
cruise. postCond (¬curSpeed = speed
AND isCruising = true);
Component Reliability

Architectural Models

Defects

Quantification

Classification

Cost framework

G(θ(t), f)

State Reliability

Domain Knowledge

OR

Random

Hidden Markov Modeling

Model Extractor

State-based Markov model

Training data

Reliability Estimator

Baum-Welch Algorithm

Comp Reliability

Transition Probabilities

Legend

Artifacts

Major steps of the approach

Iterative process

Numerical values

Initial transition probabilities

Component Reliability

Numerical values

Iterative process

Initial transition probabilities

Artifacts

Major steps of the approach

Iterative process

Numerical values

Initial transition probabilities
Component Reliability

Architectural Models → Analysis → Defects → State Reliability

Domain Knowledge

Model Extractor

- State-based Markov model
- Training data
- ITP

Hidden Markov Modeling

Reliability Estimator

- Baum-Welch Algorithm
- Transition Probabilities
- Comp Reliability

Legend

- Artifacts
- Numerical values
- Major steps of the approach
- Iterative process
- Initial transition probabilities
- ITP
Defect Quantification

• Architectural defects could affect system Reliability
• Different defects affect the Reliability differently
 – e.g., interface mismatch vs. protocol mismatch
• The cost of mitigation of defects varies based on the defect type
• Other (domain specific) factors may affect the quantification
• Classification + Cost framework
Classification + Cost Framework

- Pluggable/Adaptable
- Identify the important factors within a domain
- For a defect class t
 \[c_t = G(\vec{\theta}(t), f), \text{ where} \]
 \[\vec{\theta}(t) = [\theta_1(t), \theta_2(t), ..., \theta_n(t)] \]
- f: Frequency of occurrence
- And $\vec{\theta}(t)$ vector of all relevant factors
- Result will be used in reliability estimation
Component Reliability

Architectural Models

Analysis

Defects

Quantification

Classification

Cost framework

$G(\hat{\theta}(t), f)$

Domain Knowledge

OR

Random

Comp Reliability

Transition Probabilities

Numerical values

Iterative process

Legend

Artifacts

Major steps of the approach

Initial transition probabilities

ITP

Initial transition probabilities

Component Reliability
Reliability Techniques

• Non-Homogenous Poisson Processes, Binomial Models, Software Reliability Growth Models, …

• Markovian Models
 – Suited to architectural approaches
 – Considers system’s structure, compositional
 – Stochastic processes
 – Informally, a finite state machine extended with transition probabilities
Our Reliability Model

- Built based on the dynamic behavioral model
- Assume Markov property (Discrete Time Markov Chains)
- Transition probabilities maybe unknown
- Complex behavior results in lack of a correspondence between events and states
- Event/action pairs to describe components’ interaction

Augmented Hidden Markov Models (AHMM)
Evaluation

• Uncertainty analysis
 – Operational profile
 – Incorrect behavior
• Sensitivity analysis
 – Traditional Markov-based sensitivity analysis combined with the defect quantification
• Complexity
• Scalability
Conclusion and Future Work

- Step toward closing the gap between architectural specification and its effect on system’s reliability
- Handles two types of uncertainties associated with early reliability estimation
- Preliminary results are promising
- Need further evaluation
- Build compositional models to estimate system reliability based on estimated component reliabilities
Questions?