Architectural Runtime Configuration Management (WADS ’05)

John Georgas, André van der Hoek, and Richard Taylor

Institute for Software Research
University of California, Irvine

May 17, 2005

http://www.isr.uci.edu/
Background: Self-Adaptive Systems

- Systems which autonomously adapt.

Adaptation Management
Decision-making processes driving self-adaptive behavior.

Architectural Runtime Configuration Management
Change visibility and recovery operations enhancing dependability.

Architectural Model

Evolution Management
Consistent runtime evolution based on architectural model modifications.
Background: Fundamental Assumptions

- Explicit architectural models:
 - Evolution and adaptation through these models.

- Out of scope:
 - Decision-making processes guiding adaptations.
 - State restoration and/or transfer.
 - Quiescence before modifications.
 - Architectural invariants throughout adaptation.
Motivation

- Low visibility and independent nature of self-adaptive systems *diminish* trust in the adaptation process.
 - Opaque adaptation processes.
 - Behavioral changes only adaptation indicators.
- Dynamic self-adaptive systems can change in unpredictable ways.
 - Dynamic policy-based systems.
- Perceived dependability of the adaptation process.
Approach

- **Architectural Runtime Configuration Management (ARCM)**

- **Key Features:**
 - Runtime *monitoring* of architecture-based self-adaptive systems.
 - Maintaining a *runtime configuration* version graph.
 - Graphical *visualization* of version information.
 - *Operations* for user-driven fault *recovery*.
Research Vision: Increasing Visibility

- Configuration version graph indicating adaptations.
 - Cycles, but no loops.
 - Single edge between configurations; anti-parallel.
- Links to policies which cause adaptation.
Research Vision: Increasing Visibility, continued

- Adaptation awareness:
 - Explicit recording of any adaptations in a configuration graph.
 - Generated at runtime, as changes take place.
 - Adaptation history throughout system lifetime.

- Graphical visualization of the configuration graph:
 - Intuitive and easy to understand artifact.

- Enhanced visibility:
 - Reduces the opaque nature of adaptation process.
 - Allows additional questions about systems.
 - Increases trust in the adaptation process.
Research Vision: Recovery Operations

- Potentially undesirable adaptations necessitate recovery facilities.
 - Desirability determined by architect.

- Recovery Operations:
 - **Rollforward**
 - Transition in the direction of a graph edge.
 - **Rollback**
 - Transition against the direction of a graph edge.
 - **Out-** and **in-degree** > 1 require user selection.

- These operations provide for user intervention into the self-adaptive process.
 - Leveraging architect expertise.
Prototype Tool Support: ARCM Driver

- Integrated into the ArchStudio development environment.
- Observes and monitors systems for runtime adaptations.
- Builds configuration version graph:
 - Records pre- and post-adaptation configuration.
 - Stores bi-directional *diff* files.
- Provides graphical visualization of the version graph.
- Recovery operations:
 - Merges graph’s *diff* information for operation enactment.
 - *Diffing* and merging facilities already present.
 - System architecture is evolved by AEM.
Prototype Tool Support: ARCM Driver Screen Capture
Prototype Tool Support: Under Development

- Refined implementation:
 - Transition to xADL schema for graph data (XML-based).
 - Enhanced graphs with support for multiple branching.
 - Identification of duplicate nodes.
 - Architectural configuration hashing.
 - Arbitrary graph transitions.
 - Allows for multi-step recovery operations.
 - Diff composition.

- Better visualizations:
 - Integration with Archipelago, the ArchStudio visual editor.
 - Graph layout with DOT.
Prototype Tool Support: Just in...
Future Research Directions

- Further graph annotations:
 - Rejected configurations with counts.
 - Time spent in each configuration.
- Explore automated detection of desirability:
 - Architectural configuration patterns.
- Closer integration with adaptation process:
 - Use recovery operations as an active reflection layer.
 - Include recovery operations into adaptation management decision-making for automated invocation.
 - Leverage graph information in decision-making processes.
Conclusion

- **ARCM:**
 - Maintains a record of adaptation history.
 - Enhances the visibility of adaptations.
 - Provides user-driven fault-recovery facilities.

- Increases in perceived dependability through increased visibility and transparency of the adaptation process.

- Fully decoupled from specific adaptation management and enactment methods.

- Under active development; a new, fully-featured version is expected to be released soon.