Availability Simulation of Peer-to-Peer Architectural Styles

Simon Giesecke, Timo Warns, Wilhelm Hasselbring

Referee: Timo Warns
Motivation

- Evaluation of availability of P2P services
- Specifics of P2P context impacting availability
 - Failure distribution of peers
 - Means of handling failures
 - Dynamic architecture / topology
- How to integrate these aspects?
 - Focus: Architectural Style
Conceptual framework

- P2P styles
- P2P architectures
- P2P systems

Evaluation by simulation

- “most real-world systems are too complex to allow realistic models to be evaluated analytically”
 Law and Kelton, 2000
- Flexible
Peer-to-Peer Styles

Classification scheme
- Type of decentralization
 - Decentralized, hybrid, super-peer
- Type of communication
 - Direct, Indirect, Mediated
- Structural Characteristics
 - Ring, Tree, Small-World Network

Rules for evolution
- Joining / leaving of peers
- No formalisation yet
Graph-based formalism $A = (N, C, \nu, \lambda, \tau)$

- N, C – Sets of nodes and connections
- $\nu: C \rightarrow \{\{n_1, n_2\} | n_1 \neq n_2 \text{ and } n_1, n_2 \text{ in } N\}$ – Node function
- $\lambda: N \rightarrow L$ – Labelling function
 - L is a set of node labels (e.g., “Peer”, “Server”, ...)
- $\tau: T \rightarrow NC_T$ – Time mapping

τ describes evolution over time

- E.g., peer p participates at system from t_n to t_m
 $\Rightarrow p$ is in image of τ for t in $[t_n, t_m]$
Example Description Model

- \(N = \{p_1, ..., p_4\} \)
- \(C = \{c_1, ..., c_5\} \)
- \(\lambda(n) = \text{Peer} \) for all \(n \) in \(N \)
- \(V: \)
<table>
<thead>
<tr>
<th>(c)</th>
<th>(v(c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1)</td>
<td>({p_1, p_3})</td>
</tr>
<tr>
<td>(c_2)</td>
<td>({p_1, p_2})</td>
</tr>
<tr>
<td>(c_3)</td>
<td>({p_2, p_3})</td>
</tr>
<tr>
<td>(c_4)</td>
<td>({p_3, p_4})</td>
</tr>
<tr>
<td>(c_5)</td>
<td>({p_1, p_4})</td>
</tr>
</tbody>
</table>
- \(T: \)
 | \(T \) | \(NC_\tau \) |
 | [\(t_0 \), \(t_1 \)] | \(p_1, ..., p_3, c_1, ..., c_3 \) |
 | [\(t_1 \), \(t_2 \)] | \(p_1, ..., p_4, c_1, ..., c_4 \) |
 | [\(t_2 \), \(t_3 \)] | \(p_1, ..., p_4, c_1, ..., c_5 \) |
Prototype of simulator
- Based on graph formalism
Peer model
- Derived from real-world system
- Enhanced by classic replication strategies
Evaluation of availability of replicated resources
Conclusions

- Conceptual framework
 - Evaluation of availability of P2P services
 - Architectural styles, architectures, systems
- Classification scheme for architectural styles
- Description model for P2P architectures
- Simulator prototype
Future Work

- Formalisation of architectural styles
 - Graph grammars?
 - Benefit: Automated creation of architectures
- Formalisation of peer model
 - Add peer model to input for simulation
 - UML?
- Development of improved simulator
 - Prototype used manually created architectures and one fixed peer model