Sensitivity Analysis for a Scenario Based Reliability Prediction Model

<u>Genaína N. Rodrigues</u>, David S. Rosenblum and Sebastian Uchitel

London Software Systems University College London & Imperial College London

Imperial College London

The Reliability Prediction Approach

Annotate with component reliabilities

- Could provide messageand timeline-level reliabilities instead
- Message interpreted as invocation of functionality in message recipient C
 - Assume $P(success) = R_C$
 - Assume success not dependent on time
 - Assume failures are independent across invocations

Annotated hMSC

Annotate with *operational profile*

Implied Scenarios

- Traces exhibited by synthesised architecture but not by MSC specification
- Implied scenarios are "gaps" in the MSC specification and should be detected and validated
- Gap in the MSC specification: Positive Scenarios
- Gap in the synthesized architecture: Negative Scenarios
 - 1. Constraints built
 - 2. Compose with architecture model
 - 3. Re-calculate prediction

A Negative Scenario

- Control should never Query before
 Sensor supplies
 Pressure
- Constrain the architecture (with an LTS) to prevent the scenario from occuring

The Sensitivity Analysis

Sensitivity Analysis of the System Reliability

As a function of:

- Component reliability
- Transition probability
- Implied scenario impact
- As a function of scenario executions

Component Reliability Sensitivity I

- Identify components with greatest impact on the software reliability
- Method:
 - Vary one component reliability and fix the others
 - Transition probabilities remain unchanged

Component Reliability Sensitivity II

Component Reliability Sensitivity III

Analysis:

- Database has greatest impact on the system reliability. Why?
 - Number of requests the component processes?
 - What about Sensor?
- Higher probability of transition to a scenario has a higher influence on the components' sensitivity of the reliability

Transition Probability Sensitivity I

- Find out if scenario transitions significantly influence our prediction technique. If so, which?
- Method:
 - Take splitting transitions, vary one of them and normalize the others
 - Components reliability remain unchanged

Transition Probability Sensitivity II

Transition Probability Sensitivity III

Analysis:

- Outgoing transitions of scenario
 Terminate have higher impact on the system reliability
- Higher chances to reach *End* scenario:
 - Lower probability of returning to *Initialize*
 - Fewer chances for the system failure

Implied Scenario Impact I

- Prevent previously identified <u>negative</u> implied scenario from happening
- Analyse the impact on the previous sensitivity analysis results:
 - For the components reliability
 - For the transition probability

Implied Scenario Impact II

Implied Scenario Impact IV

- System reliability increases in both analyses, e.g.:
 - Database results shifted on average 69%
 - *TerEnd* results shifted on average 36%

System Reliability as a Function of Scenario Execution I

- Analyse the overall behaviour of the system reliability for the *architecture* model and the *constrained* model
- Based on Cheung definition for failure:

 $E = P^n(N_1;F)$

- *E* = probability of reaching Fault state
- P = stochastic matrix with all the states in the LTS
- *Pⁿ(i,j)* = probability that starting from state *i*, the chain reaches state *j* at or before the *nth* step
- System reliability (R) = 1 E

System Reliability as a Function of Scenario Execution II

Architecture versus Constrained Model

System Reliability as a Function of Scenario Execution III

- The greater the scenario executions, the greater the difference between architecture and constrained models
- Reliability in the *constrained* model stabilizes after around 70 interactions compared to 300 of the *architecture* model

Related Work

Analytical

- Mathematical Function to derive sensitivity analysis
- Cheung; and Siegrist
- Experimental
 - Results obtained through measurement
 - Yacoub et.al.

Future Work

- Further understand and investigate effects of implied scenarios
- Ongoing work:
 - Integration with Model-Driven Architecture (MDA)
 - Experimenting with PRISM probabilistic model for reliability computation
 - Validate with large case study!

Conclusion

- Reliability prediction technique based on scenarios consider:
 - Component structure exhibited in the scenarios
 - Concurrent nature of component-based systems
- Sensitivity analysis:
 - Component reliabilities and transition probabilities
 - Influence of Implied Scenarios

Questions?

Genaína N. Rodrigues, David S. Rosenblum {G.Rodrigues, D.Rosenblum}@cs.ucl.ac.uk

> Sebastian Uchitel s.uchitel@doc.ic.ac.uk

http://www.cs.ucl.ac.uk/staff/G.NunesRodrigues

