
Failure Modelling - 1WADS ICSE’05

Failure Modelling in Software
Architecture Design for Safety

Weihang Wu
Tim Kelly

Presented by George Despotou

High Integrity Systems Engineering Group
Department of Computer Science

Failure Modelling - 2WADS ICSE’05

Outline
Motivation

The role of feedback in architecting dependable systems
The need for compositional and automated safety analysis
The value of CSP
The relationship between system modelling and failure
modelling

CSP Failure Modelling Approach
The process view
Architecture transformation
Failure modelling
Causal analysis
Use of CSP tools

Summary
Initial results
Ongoing work

Failure Modelling - 3WADS ICSE’05

Motivation 1
Architectural Feedback on Safety

Evaluate the impact of architectural decisions on safety (safety tactics)
How to select or identify proper scenarios for evaluation
Protection mechanisms themselves may fail

Validate existing safety requirements
Elicit new safety requirements to subsequent refinement process
Analyse safety implications on software-hardware mapping
Predict both normal and failure behaviours of the system

Software Safety Analysis of Architectures
An underlying formal model
Compositional reasoning

Compositional features of architectures must be acknowledged
Expressive power

Common failure scenarios such as sequential failures, cascading failures,
and common-cause failures

Automation support

Failure Modelling - 4WADS ICSE’05

Motivation 2
Value of CSP

Mathematical language devised to solve concurrency problems
Freedom of deadlocks and livelocks

Formal specification of systems behaviours
In terms of patterns of event sequences or component interactions
Architectural description language – Wright

Compositional reasoning is an integral part of the language
Explicit notation for specifying nondeterminism

Arise from the abstraction techniques or incomplete knowledge
Identify alternative failure flows in an unconstrained manner

Two important tools available
Animator (ProBE) and model checker (FDR2)

Recent work on timed and probabilistic extensions
System Modelling and Failure Modelling

System modelling: only normative events are observable
Failure events are implicitly seen as anti-occurrences of normative events

Failure modelling: all failure events are explicitly observable
Normative events are only modelled if necessary

System modelling languages such as CSP can be extended to model
failure behaviours

Failure Modelling - 5WADS ICSE’05

Failure Modelling Approach 1
The Process View

Establish a correspondence between failure behaviours of a system
and its underlying software architecture

Architectural building blocks
Components and connectors, safety-related architectural decisions,
architectural views

CSP building blocks
Processes, channels (events)

We treat architectural design as an iterative and incremental
development process

Architecture Definition

Architecture Architecture Revision

Architecture
Transformation

System Model Failure Model Failure Scenarios

Feedbacks

Scenario Generation Safety AnalysisFailure Modelling

Architecture
Refinement

Development activity

Development
artefact

Key

Data flow

Failure Modelling - 6WADS ICSE’05

Failure Modelling Approach 2
Architectural Transformation

TMR system example
<<Capsule>>
Controller

ports
+output : ProtSignal
+input: ProtSignal~

<<Capsule>>
Voter

ports
+result : ProtSignal
+input1: Protsignal~
+input2: Protsignal~
+input3: Protsignal~

3 1

C1 : Controller

C2 : Controller

C3 : Controller

v1 : Voter

in1

in2

in3

out1

out2

out3

output

UML-RT class diagram for TMR style

Majority Voting

UML-RT collaboration diagram for TMR system

P1

P2

P3

V1

PROCESS

C&C_VIEW

in1

in2

in3

input output

VOTER
input1

resultinput2
input3

CSP model

out1

out2

out3

output

P1 = PROCESS [[input <- in1, output <- out1]]
P2 = PROCESS [[input <- in2, output <- out2]]
P3 = PROCESS [[input <- in3, output <- out3]]

V1 = VOTER [[result <- output]]

<<Connector>>
:Vote

<<Connector>>
:Vote

<<Connector>>
:Vote

VT1

VOTEsender receiver

VT2

VT3

VT1 = VOTE [[sender <-out1, receiver <-input1]]
VT2 = VOTE [[sender <-out2, receiver <-input2]]
VT3 = VOTE [[sender <-out3, receiver <-input3]]

Majority voting

TimeoutFunctional
redundancy

Fail-stop

Failure Modelling - 7WADS ICSE’05

Failure Modelling Approach 3
CSP Failure Modelling

Identification of failure events
Identify failure modes by guidewords
such as SHARD/HAZOP
Failure model allocation/injection to
the CSP system model

Expressive power
CSP support the definition of multi-
part events by infix dot

All events must have one part
describing normal or failure
conditions such as sensor.failed,
processor.working

Failure flows can be captured by CSP
sequencing and recursion operators
Combination of failure flows can be
modelled by the introduction of
deterministic or nondeterministic
choice

Depend on the degree of
knowledge

-- Crash failure

CPU_CH = cpu.failure.omission -> CPU_CH

-- Transient timing failures

CPU_TF = cpu.failure.timing -> CPU_TF[]
cpu.ok -> CPU_TF

-- Transient value failures

CPU_VF = cpu.failure.value -> CPU_VF

[] cpu.ok -> CPU_VF

-- Corruption failures

CPU_CRT = CPU_TF [] CPU_VF

Failure Modelling - 8WADS ICSE’05

Failure Modelling Approach 4
Failure Modelling

Two basic forms of failure flows
Failure propagation

Include failure transformation and stopping by protection mechanisms
Failure generation

The cause of failure stimulus has been hidden by model view
The cause may arise from its enclosing components or its underlying
hardware platform

Interaction between these two forms
Inconsistency may arise: e.g., a timing failure arrives at the input of
component C, whilst C itself generates an value failure
Proper form of arbitration is needed

Failures of protection mechanisms
The ways to handle failures are obvious
But what if these mechanisms fail?

What happen if a watchdog timer fails?
The answer may depend on internal detailed design or implementation
Worst case assumption

Specify the occurrences of all possible failure outputs introduced by
nondeterministic choice

Failure Modelling - 9WADS ICSE’05

Failure Modelling Approach 5
Compositional Failure Modelling

CSP composition rule
Handshaking synchronisation
Processes to be composed require synchronised events

Failure implications on synchronisation
Synchronisation point represents the means to failure propagation across
component boundaries
Unsynchronised failure events are free to occur only within the component
boundary

E.g., internally generated failure events
Composition of components within one view

Define failure behaviours of elementary components
Compose all elementary processes using CSP parallel composition
operators

TMR_CCVIEW = ((P1 [|{out1|] VT1) ||| (P2 [|{|out2|}|] VT2) ||| (P3 [|{|out3|}|] VT3))
[|{|input1, input2, input3|}|] V1

Composition of views
Require synchronisation points between views

Mapping between them needs to be defined before composition
E.g., C&C view and hardware architecture view cannot be composed directly
without the allocation view

Failure Modelling - 10WADS ICSE’05

Failure Modelling Approach 6
Causal Analysis

CSP view of causality
Temporal ordering and handshaking synchronisation

Trace model
Necessary condition of causality

Conclude causal relationships based on trace models
By changing the states of event sequences

Borrowed from Philosophy domain: there is a causal connection
between A and B if and only if we can change B by changing A
Similar to the tenet of accident analysis techniques such as Why-
Because Analysis

The steps
Isolate the initiating event
Treat CSP external choice notation as logical disjunction
Treat CSP sequential notation as logical conjunction
Treat normal events as non-occurrence of failure events

<input.failure.O, a.ok, b.ok, output.ok>,

<input.failure.O, a.ok, b.fail, output.failure.V>

<input.failure.O, a,fail, b.ok, output.failure.V>

<input.failure.O, a.fail, b.fail, output.failure.V>

occur(output.failure.V) = (occur(a.ok)∧occur(b.fail)) ∨

(occur(a.fail)∧occur(b.ok))∨

(occur(a.fail) ∧ occur(b.fail))

= occur(a.fail) v occur(b.fail)

Failure Modelling - 11WADS ICSE’05

Failure Modelling Approach 7
Use of CSP Tools

ProBE
Validate intended failure behaviour

FDR2
Verify the consistency of a failure view
Refinement checking between views

E.g., allocation failure view refines the C&C view
assert TMR_CCVIEW [T= TMR_ALLOCVIEW \ ICpu

Generate failure scenarios by counterexamples
Failure scenarios of interest are the ones related to system-level
failures
Specify safety properties that exclude undesired system events
Perform trace refinement against safety properties
FDR2 provides batch interface for direct control on counterexample
generation

ISafeSys = diff(Events, {output.failure.V})

-- anything but value failures of output allowed

SAFESPEC = [] x : ISafeSys @ x -> SAFESPEC

assert SAFESPEC [T= TMR_CCVIEW

Failure Modelling - 12WADS ICSE’05

Summary
Small-Scale Examples

Architectural documentation by UML-RT
Two architectural views

C&C and allocation views
Uniprocessor hardware platform

Findings
The choice of architectural representations/descriptions is not
important to our method

Provided that the corresponding transformation rules are well defined
Architecture description is not necessarily complete
A hardware/system architecture view must be provided

This view can be derived by the allocation view or hardware architecture
design

Ongoing Work
Generating CSP codes from annotated architecture models

Architecture annotation
UML 2

CSP code generation
Probabilistic failure modelling

