
An Architectural Pattern for Non-
functional Dependability 
Requirements

Lihua Xu
Hadar Ziv

Debra Richardson
Thomas Alspaugh

Donald Bren School of Information and Computer Sciences,
University of California, Irvine



Outline

Research Agenda
Our approach

Extend the distinction between functional versus 
nonfunctional requirements
Propose an architectural pattern, model 
dependability requirements in software 
architectures directly and explicitly

Example
Conclusions



Research Agenda
Motivation:

The intersection of three areas of research:
Requirements Engineering:

Goal Refinement [Lamsweerde et al]
The NFR Framework [Mylopoulos et al]

NFRs specified during Requirements Engineering are often verified after implementation
Software Architecture:

Original requirements not always visible, traceable
Non Functional Requirements (NFRs) are especially underrepresented

Aspects:
Aspects have the potential to seamlessly model and integrate NFRs through architectures to 
implementations

Need development methodology from NFRs through architectures to AOP solutions
Need corresponding analysis and testing of the artifacts of such methodology

Additional Objectives:
separation of cross-cutting functional and nonfunctional concerns at the architecture level
architectural analysis against NFRs early in the software lifecycle 
establishing confidence of properly chosen architecture style and designed architecture before the 
architecture is implemented.



Our Approach

Model NFRs in software architectures directly and explicitly
Rely on the “design decision” made for each NFR

Three types of Requirements
Functional 
Operationalizable Nonfunctional
Checkable Nonfunctional

Types of Architectural Components
Core Components
Aspectual Components
Monitoring Components

Connectors
XML Binder



Requirements Classification

NFRs:
Operationalizable: 
Upon decomposition to “design decision”, the chosen strategy can be realized by functional 
components in the software architecture

Checkable:
The chosen strategy is to monitor functional behavior to check and verify that desirable quality 
properties are met



Requirements & Architectures

Checkable
NFR

Checkable
NFR

Operationalized
NFR

Operationalized
NFR

FRFR

Architecture 

Monitoring
Component

Monitoring
Component

Aspectual
Component

Aspectual
Component

XML Binder

XML Binder

Classified Requirements Modeled Architecture with NFRsMapping

CNFRs

ONFRs



XML Binder



XML Binder II



Architectural Pattern

Binder_1 Binder_2 Binder_3

Aspectual Components

Confidentiality
ONFR

Monitoring Components

Binder_4

Core Functional Components

Other 
ArchitecturesKLAX 

C2 Architecture

… …Performance 
CNFR



Differences from Previous Work

NFRs as first class requirements elements that will be mapped 
into architectural design elements

Provide clear means and guidance to identify the related core 
components for each NFR, and to integrate the several types 
of components

Generality: Can be used in conjunction with existing 
architectural styles or other approaches to modeling and 
mapping of NFRs



Conclusions

An architectural pattern to support multiple views 
of software architecture design:
Traditional architectural design
Impose constraints for making the architecture designed 
correspond and “implement” those NFRs
Many to many relationships

A step toward a broader set of objectives:
“Seamless” synthesis from NFRs through architectures to 
aspect-oriented solutions 
Analysis and testing of development artifacts
Traceability of development artifacts


