
DSN 06

An Evaluation of Fault-
Tolerant TCP-Splice Based
Web Server Architectures

Manish Marwah Jacob Delgado Shivakant Mishra Christof Fetzer

IEEE International Conference on Dependable Systems and
Networks (DSN) 2006, Philadelphia, June 25 – 28, 2006

Department of Computer Science
Dresden University of Technology

Dresden, Germany D-01062

Department of Computer Science
University of Colorado, Campus Box 0430

Boulder, CO 80309

2DSN 06

Outline

• Introduction

• Enhancements to TCP Splice

• Our Web Server Architecture

• Simulation Results

• Conclusions

3DSN 06

Web Proxies
• Proxies used for

– Content aware (layer 7) routing
– Security policies
– Caching
– Network management
– Usage accounting

• Drawbacks
– performance issues

• kernel <-> user data copying
• Context switches

– Single point of failure
• Even with a backup, connection

is broken and would need to be
re-established

C P

P

S

S

C

S

S

S

S

S
S

Video Servers

Audio Servers

Backup

4DSN 06

TCP Splice (1)
• Introduced to enhance the performance of web

proxies

• Proxy relays data between client and server by
manipulating TCP segment headers

• Advantages
– Done entirely in the kernel

– Latency and computational cost at proxy only a few times
more than IP forwarding

– End-to-end semantics of the client-server TCP
connection preserved

– No buffering at the proxy

5DSN 06

TCP Splice (2)

6DSN 06

TCP Splice (3)

send_seq_num = (recv_seq_num – init_recv_seq_num) + init_send_seq_num

offset

7DSN 06

Enhancements to TCP Splice
• Recently, we proposed the

following generic enhancements
to TCP splice to address
– Fault tolerance
– Scalability

• Replicated and Parallel Splice
– Same connection can be spliced

through different machines
• Split-Splice

– Traffic in the two different
directions of the same connection
can be spliced at different
machines

C SLB

Proxies

One TCP connection

C LB S

Proxies

8DSN 06

Our Web Server Architecture

Logical View

9DSN 06

Load Balancer
• IP level load balancer (LB)
• No modifications to the packets
• No connection state information is kept
• Completely stateless -> fault tolerance

trivial
• Has service IP address
• Right now round-robin algorithm
• Heartbeat mechanism between LB and

proxies
– For failure detection
– For communicating proxy workload (in future)

• Can be combined with router or proxies

10DSN 06

Sequence of Steps involved in
Handling a Request

11DSN 06

Web Server Configuration 1 (1)
• Separate Proxy and backend server

machines
• Traffic in both directions passes through

the proxies
• No OS changes required on the backend

servers

12DSN 06

Web Server Configuration 1 (2)

One TCP connectionData Path

13DSN 06

Web Server Configuration 2 (1)
• Co-located Proxy and backend server

machines
• Separate proxy machines not required
• Saves HW
• OS changes required on the servers

14DSN 06

Web Server Configuration 2 (2)

One TCP connectionData Path

15DSN 06

Web Server Configuration 3 (1)
• Mixed configuration: OS changes are

required on some machines
• Backend servers where OS can be changed

do split-splice

16DSN 06

Web Server Configuration 3 (2)

Two TCP connectionsData Path

17DSN 06

Simulations
• A discrete event simulator was written to

simulate the architectures
• Goal of the simulations is to show

scalability
• Connections simulated are assumed to be

already established and spliced
• Some simulation parameters

– Splicing Cost: 25 µ sec
– Client – Proxy link delay: 25 ms
– Proxy – Server link delay: 0.7 ms
– TCP buffer: 256kB
– Packet size: 1460 B
– Q processing Rate: 1 Gbps

18DSN 06

Separate proxy and back-end server (1)
(Web Server Configuration 1)

• Goal: show scalability of architecture
• Client

– data is generated from 30 Mbps to 990 Mbps in
intervals of 60 Mbps

– 50 MB is transferred at each data rate
• Proxies

– Varied from 1 to 13
• 1 Backend server used

19DSN 06

Separate proxy and back-end server (2)

20DSN 06

Separate proxy and back-end server (3)

21DSN 06

Co-located proxy and back-end server
(Web Server Configuration 2)

• The same experiments were repeated for
this scenario

• Proxy – Backend server link delay was made
zero

• Almost identical to separate proxy and
backend server scenario since link delay
was already small

22DSN 06

Split Splice (1)
• Same experiments were repeated for split

splice
• Data generated at a backend server,

spliced and sent directly to client

23DSN 06

Split-Splice (2)

Splicing cost: 2 µ sec Splicing cost: 25 µ sec

24DSN 06

Conclusions and Future Work
• Presented web server architectures based on

enhanced TCP splice
• Used simulations to evaluate these

architectures
• In particular, simulated three different

configurations
– Scale well
– Connections preserved even on proxy failure
– Proxy not a bottleneck

• Linux prototype implementation paper to be
presented at SRDS ‘06

• In future, make architecture tolerate backend
server failures while preserving client
connection

25DSN 06

Backup Slides

26DSN 06

Proxies
• Perform TCP splicing
• Before a connection is spliced, all packets

of a particular connection are received by
the same proxy through use of hashing and
multicast groups (details in SRDS ’06
paper)

• Proxy establishing splice distributes
splicing state info to other proxies

• Once a connection is spliced, a packet of
that connection can be spliced at any proxy

