An Evaluation of Fault-
Tolerant TCP-Splice Based
Web Server Architectures

Manish Marwah Jacob Delgado Shivakant Mishra Christof Fetzer

Department of Computer Science Department of Computer Science
University of Colorado, Campus Box 0430 Dresden University of Technology
Boulder, cO 80309 Dresden, Germany D-01062

IEEE International Conference on Dependable Systems and
Networks (DSN) 2006, Philadelphia, June 25 — 28, 2006

Outline

- Introduction

* Enhancements to TCP Splice

- Our Web Server Architecture
- Simulation Results

- Conclusions

Web Proxies

 Proxies used for
- Content aware (layer 7) routing
Security policies
Caching
Network management

Usage accounting @

Video Servers

- Drawbacks
- performance issues @

* kernel <-> user data copying
- Context switches

- Single point of failure

» Even with a backup, connection
is broken and would need to be

re-established Arale Gapvons

TCP Splice (1)

Introduced to enhance the performance of web
proxies

Proxy relays data between client and server by

manipulating TCP segment headers

Advantages
Done entirely in the kernel

Latency and computational cost at proxy only a few times
more than IP forwarding

End-to-end semantics of the client-server TCP
connection preserved

No buffering at the proxy

TCP Splice (2)

T Tl User Space
[Socket APT| P

Kernel Space

e

TCP Connection

Server

-
]

TCP Splice (3)

User Space

Kernel Space

a9
- el S
% TCP Connection SEYEE

send_seq_num = (recv_seq_num - init_recv_seq_num) + init_send_seq_num

-— 000 v

offset

Enhancements to TCP Splice

Recently, we proposed the
following generic enhancements

to TCP splice to address
- Fault folerance
- Scalability

Replicated and Parallel Splice

- Same connection can be spliced Proxies
through different machines One TCP connection

Split-Splice
- Traffic in the two different
directions of the same connection

can be spliced at different
machines

Proxies

Our Web Server Architecture

Stateless

Load Balancer

Stage 1: Proxies

Stage 2: Backend Servers

Logical View

Load Balancer

» IP level load balancer (LB)

* No modifications to the packets

* No connection state information is kept
+ Completely stateless -> fault folerance

trivial

- Has service IP address

* Right now round-robin algorithm

- Heartbeat mechanism between LB and

proxies
- For failure detection
- For communicating proxy workload (in future)

* Can be combined with router or proxies

Sequence of Steps involved in
Handling a Request

receive client request

L7 routing
'ﬂ_\\\\-‘_\k-

Splice

@ hash —> reject

e
Proxies

Web Server Configuration 1 (1)

+ Separate Proxy and backend server
machines

» Traffic in both directions passes through
the proxies

* No OS changes required on the backend
servers

Web Server Configuration 1 (2)

Backend

Server

Backend
Server

— Data Path One TCP connection

DSN 06

Web Server Configuration 2 (1)

» Co-located Proxy and backend server
machines

» Separate proxy machines not required
+ Saves HW

» OS changes required on the servers

Web Server Configuration 2 (2)

Proxy/
Backend
server

Proxy/
Backend

SETYET

—— Data Path One TCP connection

DSN 06

Web Server Configuration 3 (1)

* Mixed configuration: OS changes are
required on some machines

* Backend servers where OS can be changed
do split-splice

Web Server Configuration 3 (2)

—— Data Path Two TCP connections

DSN 06

Simulations

- A discrete event simulator was written to
simulate the architectures

 Goal of the simulations is to show
scalability

- Connections simulated are assumed to be
already established and spliced

+ Some simulation parameters

- Splicing Cost: 25 p sec

- Client - Proxy link delay: 25 ms
- Proxy - Server link delay: 0.7 ms
- TCP buffer: 256kB

- Packeft size: 1460 B

- Q processing Rate: 1 Gbps

Separate proxy and back-end server (1)
(Web Server Configuration 1)

» Goal: show scalability of architecture
+ Client

- data is generated from 30 Mbps to 990 Mbps in
intervals of 60 Mbps

- B0 MB is transferred at each data rate

* Proxies
- Varied from 1 to 13

- 1 Backend server used

Separate proxy and back-end server (2)

Separate proxy and backend serwver

Ideal ca=se
1 proxy
proxies
proxies
proxies
proxies
proxies
proxies
proxies
proxies
proxies
proxies
proxies
proxies

WO 00 O e DD O

~
n
v
v
=
e
o
L]
=
L1
-
=
0
m
4+
=
v
=
fan]
=
[u]
1
i
-

406 EEE
Client data rate (Mbhpsi

Separate proxy and back-end server (3)

ed C(Mhbps?

=
L
]
=
i}
m
+
3
o
=
pan]
=
n}
[
i
—

Co-located proxy and back-end server
(Web Server Configuration 2)

* The same experiments were repeated for
this scenario

* Proxy - Backend server link delay was made
zero

» Almost identical to separate proxy and
backend server scenario since link delay
was already small

Split Splice (1)

* Same experiments were repeated for split
splice

* Data generated at a backend server,
spliced and sent directly to client

Split-Splice

Split splice configuration

—~
n
[*3

i)

=

_.-'

o
L
=
L}

-

i
L}
m

+
3
o

i
fal]
.}
[}
L

=

-

1 !
4HH 215 [5]
Client data rate (Mbps?

Splicing cost: 25 p sec Splicing cost: 2 p sec

Conclusions and Future Work

- Presented web server architectures based on
enhanced TCP splice

- Used simulations to evaluate these
architectures

» In particular, simulated three different
configurations

- Scale well
- Connections preserved even on proxy failure
- Proxy not a bottleneck

» Linux prototype implementation paper to be
presented at SRDS '06

» In future, make architecture tolerate backend
server failures while preserving client
connection

Backup Slides

Proxies

» Perform TCP splicing

» Before a connection is spliced, all packets
of a particular connection are received by
the same proxy through use of hashing and
multicast groups (details in SRDS ‘06
paper)

* Proxy establishing splice distributes
splicing state info to other proxies

- Once a connection is spliced, a packet of
that connection can be spliced at any proxy

