Generating a Family of Byzantine-
Fault-Tolerant Protocol
Implementations Using a Meta-

Model Architecture

Graham Kirby, Alan Dearle & Stuart Norcross

School of Computer Science, University of St Andrews

A Finite State Machine

receive X

receive X

receive Y

WADS 2007

Problem

* Apply a FSM formulation to an algorithm whose
generality precludes its expression as a single state
machine

— algorithm is characterised as a family of related state
machines

* each corresponding to particular values of some parameters to
the general algorithm

* Family members:

— differ in their individual states and transitions

— share a common structure dictated by the general
algorithm

WADS 2007

Motivating Example

* Distributed update algorithm

— each data item replicated on a set of
n servers (4 for basic Byzantine-fault-tolerance)

— servers agree global ordering of updates
* potentially concurrent

* symmetric algorithm: no server is special

WADS 2007

Approach

* Designed single generic algorithm
— quorum-based
* ‘enough’ servers must agree to each update

— parameterised by replication factor n

— about 500 lines pseudo-code

* Developed FSM model for selected
replication factor (n=4)
— 33 states

* 5 boolean variables, 2 integers ranging I..n

WADS 2007

FSM for Replication Factor 4

AGrore o) 2o T)

[Szeriio)

E—

<-putinat free]

<-wove[mat fres]

«<-put{fene] -3 vote, ~> commit, wie froe
«-commin/set free

[Freed -vere. unser free’
[free])-=vote, unset free

0
[2rvioiiTr) <o ; [sroTa)« 5\
’1

Tree] -z vote, > Comamit, unset free

£ NS - VODR, <> EO MM

< vaile] <> st

< -COMMA/ - CommE / l

* R

[free)s-o-vote, waset free

<-gamms

21 1)
5 | BT

«-putlires]/-nvore, unses iree

—put{fres] 1-> vate, wnset free

< -t -5 vote, ~> Lammit //
-upbe/ - x Eomemit

o IYTTTYTR T |

<-comatinot freed_ oror 0 1o

i I [l <-commit/sat free

—

<-put{nat] <-putirat]

| | Teetisvote, - ommit,

|

<-putfree] |-+ vete, - cammit, wnset free

<-gommi->vote, -> tommit

=

<—tammit/ s vate, —> camat

$335E NUMBENNG: TECEvEd Va1eS] SERT WO0ES TECENED Commits | SEnt commits
T On timegus, bransiion to ‘tmeout’ stane = no other action required.
T On A .

<-commit]->comm, st free
<= OMMI] = voTe, => ComaNT

¥
< ~CEmmiL - > vate, - > commit

“Iree’ i per -GUID saade. rue if 2 PID is currentdy in voled oo pending state
Intuitively we have vated for something and can't vt vots for anything alis.

Local server commils when 3t least two external commits have bee
a1 beast one of them m gesuing, by Byzanting assumption
¥

Viate far 3 P anly when can be confident that client has made publ) reguedt - sithir receive dinect requect from
the client, or get evidence via majoricy of other servers,

Hawe st svidence mhem sy of lolowing conditions haldy
1) receive <—put and currenty free

2) receme 3 exernal votes. regardiess of whesher fr

55 rackbon 2 exaiamal rommis. regantiess of Whethir free
7

<=L = VDT, =3> LR

[labelied in blue oecur wrhout|
he need fior receips of external messages.
v

WADS 2007

Did the FSM Help?

* No strong correlation between code and
state machine
— algorithm is generic
— FSM is specific to replication factor

* states in FSM correspond to message counts

* so can’t construct single FSM for algorithm

* Wish to unify FSM and algorithm

— solution: define meta-model

WADS 2007

Generation Scheme

Meta Model

problem parameters - - - % generate

v

State Machine

generate
Textual State Source-Level .
o . . Documentation
Description Diagram Implementation

WADS 2007

State Transitions

increment
message counts

phase
transition

WADS 2007

FSM Generation: All States

start -~
state

finish
state

FSM Generation: Transitions

states

finish
state

WADS 2007

Pruning Unreachable States

states

start
state

finish
state

Combining Equivalent States

states

finish
state

Final FSM Representation

finish
state

Example Generated State

state: T/2/F/0/F/F/F

Have received i1nitial “put® from client. Have not voted since another update has
already been voted for. Have received 2 votes and no commits. Have not sent a
“‘commit’ since neither the vote threshold (3) nor the external commit
threshold (2) has been reached. May not choose since another ongoing update
has been voted for. Have not chosen this update since another ongoing update
has been chosen. Waiting for 1 further vote (including local vote 1If any)
before sending “commit’. Waiting for 2 further external commits to finish.

Transitions:

message: VOTE
action: send vote message
action: send commit message
transition to: T/3/T/0/T/F/F

message: COMMIT
transition to: T/2/F/1/F/F/F

message: FREE
action: send vote message
action: send commit message
action: send not free message
transition to: T/2/T/0/T/T/T

WADS 2007

2
V)
Ll
LY,
),
)
(4]
| G
)
-
)
O

Example

WADS 2007

Example Generated Code

void receiveVote() { ‘ ’
handler for ‘vote’ message

switch (getState()) {

case (F-0-F-0-F-F-F) : { switch on current state
setState(F-1-F-0-F-F-F);
¥

case (F=0-F-0-F-F-T) : [variable representing state
setState(F-1-F-0-F-F-F);
+

sendCommit();

setState(T-2-T-1-T-T-T);

}
. state transition

WADS 2007

Conclusions

Generative meta-model approach

— allows closer coupling of generic algorithm and specific
FSMs

— lead to discovery of several errors in original algorithm

— may be applicable to other protocols for critical
infrastructure

Links
— ASA project

e asa.cs.st-andrews.ac.uk/

— Algorithm details
* asa.cs.st-andrews.ac.uk/metamodel/

WADS 2007

Meta-Model

generateTransitionOnVote(State s) {
initialise state variables from s
increment votes received
iIf total votes >= threshold(r):
iIf 'vote sent:
1T could choose:
set has_chosen
record action:
send not free message
record action: send vote message
set vote_sent
unset could_choose,
iIT commit _sent:
record action: send commit message
set commit_sent
derive new state sl from state variables
record transition s->sl1 iIn data structure

WADS 2007

Generation Times

initial generation
states states time (s)
0.10
0.12

0.38
8 | 25 | 20000 | 901 | 2.2
19.1

