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Problem

* Apply a FSM formulation to an algorithm whose
generality precludes its expression as a single state
machine

— algorithm is characterised as a family of related state
machines

* each corresponding to particular values of some parameters to
the general algorithm

* Family members:

— differ in their individual states and transitions

— share a common structure dictated by the general
algorithm
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Motivating Example

* Distributed update algorithm

— each data item replicated on a set of
n servers (4 for basic Byzantine-fault-tolerance)

— servers agree global ordering of updates
* potentially concurrent

* symmetric algorithm: no server is special
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Approach

* Designed single generic algorithm
— quorum-based
* ‘enough’ servers must agree to each update

— parameterised by replication factor n

— about 500 lines pseudo-code

* Developed FSM model for selected
replication factor (n=4)
— 33 states

* 5 boolean variables, 2 integers ranging I..n
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FSM for Replication Factor 4
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Did the FSM Help?

* No strong correlation between code and
state machine
— algorithm is generic
— FSM is specific to replication factor

* states in FSM correspond to message counts

* so can’t construct single FSM for algorithm

* Wish to unify FSM and algorithm

— solution: define meta-model
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Generation Scheme
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State Transitions
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FSM Generation: All States
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FSM Generation: Transitions
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Pruning Unreachable States
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Combining Equivalent States
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Final FSM Representation
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Example Generated State

state: T/2/F/0/F/F/F

Have received i1nitial “put® from client. Have not voted since another update has
already been voted for. Have received 2 votes and no commits. Have not sent a
“‘commit’ since neither the vote threshold (3) nor the external commit
threshold (2) has been reached. May not choose since another ongoing update
has been voted for. Have not chosen this update since another ongoing update
has been chosen. Waiting for 1 further vote (including local vote 1If any)
before sending “commit’. Waiting for 2 further external commits to finish.

Transitions:

message: VOTE
action: send vote message
action: send commit message
transition to: T/3/T/0/T/F/F

message: COMMIT
transition to: T/2/F/1/F/F/F

message: FREE
action: send vote message
action: send commit message
action: send not free message
transition to: T/2/T/0/T/T/T
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Example Generated Code

void receiveVote() { ‘ ’
handler for ‘vote’ message

switch (getState()) {

case (F-0-F-0-F-F-F) : { switch on current state
setState(F-1-F-0-F-F-F);
¥

case (F=0-F-0-F-F-T) : [ variable representing state
setState(F-1-F-0-F-F-F);
+

sendCommit();

setState(T-2-T-1-T-T-T);

}
. state transition

WADS 2007




Conclusions

Generative meta-model approach

— allows closer coupling of generic algorithm and specific
FSMs

— lead to discovery of several errors in original algorithm

— may be applicable to other protocols for critical
infrastructure

Links
— ASA project

e asa.cs.st-andrews.ac.uk/

— Algorithm details
* asa.cs.st-andrews.ac.uk/metamodel/
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Meta-Model

generateTransitionOnVote(State s) {
initialise state variables from s
increment votes received
iIf total votes >= threshold(r):
iIf 'vote sent:
1T could choose:
set has_chosen
record action:
send not free message
record action: send vote message
set vote_sent
unset could_choose,
iIT commit _sent:
record action: send commit message
set commit_sent
derive new state sl from state variables
record transition s->sl1 iIn data structure
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Generation Times

initial generation
states states time (s)
0.10
0.12

0.38
8 | 25 | 20000 | 901 | 2.2
19.1




