
Architecting Dependable Systems Using
Virtualization

DSN Workshop on Architecting Dependable Systems
June 27, 2007

HariGovind Ramasamy
hvr@zurich.ibm.com

IBM Zurich Research Laboratory

Joint work with
Matthias Schunter

mts@zurich.ibm.com
IBM Zurich Research Laboratory

Background: Virtualization

• Abstracts away the real hardware configuration
• Allows hosting of multiple virtual machines (VMs) on a physical machine

Physical Hardware

Management
of security,

devices,
VMs, and I/O

Dom0

GuestOS

User
Software

DomU 1

GuestOS

User
Software

DomU 2

Virtual Machine Monitor (VMM)

Type-1 Hypervisor (e.g., Xen)

Physical Hardware

User
Software

VMM

User
Software

VM 1

Host OS

Type-2 Hypervisor (e.g., VMware)

Guest OS

VMM

User
Software
Guest OS

VM 2

Contributions

• How can virtualization improve system dependability?
– leverage VM flexibility characteristics to build around OS problems

• When does virtualization really help?
– Quantifying the impact of virtualization on system reliability

Related Work

• Introduce enhancements at the VMM level transparent to OS/apps
– e.g., checkpointing-recovery at the granularity of VMs,

ensuring determinism at the VM level [Bressoud-Schneider’96],
VM logging-replay [Dunlap et al. ‘02]

• Instrument OS/middleware/apps with them being aware of running on
VMs as opposed to physical machines

– e.g., checkpointing a Java application state at the VM-level or byte-
code level (as opposed to native code) [Agbaria-Friedman’02]

Patch Application for High-Availability Services

• Motivation
– patch application typically involves system restart;

negatively affecting service availability

• Mechanism
– service is hosted on a VM instead of a physical machine
– instantiate copy of VM, apply patch on copy instead of original VM
– restart copy VM, while original VM continues to run
– original VM gracefully shut down
– copy VM takes over
– Stateful service?

• VM checkpointing +
VM live migration
[Clark et al. ‘05]

Original
VM

Copy
VM

Apply patch

Enforcing Fail-Safe Behavior

• Motivation
– Latency between publicizing vulnerability exploit & patch availability

• avg. of 4.5 months for Windows security problems [2005]
– Can’t shut down many services until patch becomes available!
– Compromise: run service as long as possible

• Observation: Publicizing a flaw is accompanied by
– details of attack signature
– symptoms of exploited flaw

• Mechanism
– service is hosted on a VM instead of a physical machine
– develop a monitor external to service VM to detect symptoms of

exploited flaw on service VM
– monitor signals VMM to crash service VM upon flaw detection
– e.g., in Xen, monitor can be in Dom0 and service VM can be DomU

Physical Hardware

Monitor

Dom0 DomU

VMM

Service VM

Boundary Conditions for Virtualization to Yield Reliability
Benefits on a Single Physical Node

Non-Virtualized Service
Architecture

Combinatorial Model

System Reliability

RN V
sys = RH ¤ RM

n-Replicated Service
Architecture

Combinatorial Model

System Reliability

Rn
sys = RH ¤ RV ¤ [1 ¡

Q n
i = 0(1 ¡ RM i)]

Boundary Conditions for Virtualized Node to have Better
Reliability

RV ¤ [1 ¡ (1 ¡ RM)n] > RM

• For n=1, inequality (A) doesn’t hold.
• Hypervisor has to be more reliable than VM.
• Hypervisor has to be more reliable when deploying fewer VMs (fixed RM).
• There exists a min. n value below which (A) doesn’t hold (fixed RV and RM).

A

Boundary Conditions:
Moving Functionality out of the VMs into Hypervisor

Distributed
configuration

Consolidated
configuration

Boundary Conditions:
Moving Functionality out of the VMs into Hypervisor

• Retaining a poorly reliable f in the VM is better than moving it into hypervisor.

B

Conclusion

• Ample opportunities for leveraging virtualization for dependability

• General trend to move services out of guest OS into VMM should be
treated with caution

– our results show that unless some boundary conditions are met,
virtualization may, in fact, lower system reliability

• Rigorous modeling, analysis of dependability attributes in the
context of virtualization is important

Proactive Software Rejuvenation

• Proactively rejuvenate guest OS and services inside a guest VM
– by hooks introduced into the VMM layer
– in a performance- and availability-preserving way

• Mechanism
– Reincarnation VM booted from a clean VM image, while service is

operational in another VM
– original VM gracefully shut down
– reincarnation VM takes over

• Stateful service?
– VM checkpointing + VM live migration
– possible to tune the amount of resources devoted to

booting/initializing the reincarnation VM by adjusting time for
reboot

Reliability Analysis

• Redundant FT designs involving virtualization on a single node
– Model: n-replicated service

• multiple VMs run concurrently on the node
• VMs offer identical service

• Baseline for comparison: non-virtualized, single-OS node

Non-Virtualized Service, Single Physical Node

Hardware H

Operating System (OS)
+ Application

M

• Assumptions
– M, H fail independently

• General Observation
– Since assumption is unlikely to hold in

practice, Rsys gives upper bound on
system reliability

RN V
sys = RH ¤ RM

n-Replicated Service, Single Physical Node

• Assumptions
– M1,..Mn, V, H fail independently
– M1,... Mn operate concurrently and

provide service
– No need for synchronization between

M1,…Mn

Hardware (H)

Virtual Machine
Monitor (V)

Virtual
Machine

= Guest OS
+ Appl.

M1

Virtual
Machine

= Guest OS
+ Appl.

Mn

……

RV n
sys = RH ¤ RV ¤ [1 ¡

Q n
i = 0(1 ¡ RM i)]

