
What SOA can do for
Software Dependability

Karl M. Göschka
Karl.Goeschka@tuwien.ac.at
Vienna University of Technology



Overview

Dependability challenges 
Control loop: Adaptivity and evolution
The SOA potential



Challenges of today‘s applications

heterogeneity (SOA, GRID)
large-scale (pervasive, GRID, ultra-large-scale)
dynamic (MANET, SOA)
run continously (24*7)
time to market
cost pressure

dependability degradation



The dependability gap
(short-/long-term) changes of ...

the system itself (e.g., resource variability)
the context (environment, failure scenarios)
users’ needs and expectations

Complexity and emerging behaviour
Interactions and interdependencies prevail 
properties of a systems‘ constituents
Human maintenance and repetitive software 

development processes
error-prone and costly
slow, sometimes prohibitively
BUT: self-learning and highly adaptive ;-)



Software development

Defects in software products and services ...
may lead to failure
may provide typical access for malicious attacks

Problematic requirements
incomplete
most users are inarticulate about precise criteria
competing or contradictory (due to inconsistent 
needs)
will certainly change over time



Requirements

Requirements are the things that you should discover before 
starting to build your product. Discovering the requirements
during construction, or worse, when your client starts using
your product, is so expensive and so inefficient, that we will 
assume that no right-thinking person would do it, and will 
not mention it again.

Robertson and Robertson
Mastering the Requirements Process



Needs, expectations, and requirements

Walking on water and
developing software from a specification
are easy

– if both are frozen

Edward V. Berard
Life Cycle Approaches



Requirements do change ...
... continously!
Trade-offs change as well
Domain know-how changes
Technical know-how changes
Retrofit originally omitted requirements
Impossible to predict all changes



Answer on the process level

Design for change in highly volatile areas!
Heavy weight (CMM) light weight (ASD) 
processes
Differentiation:

development in-the-small: Component, service,...
agile development (ASD, XP), MDA, AOP, ...

development in-the-large: Procurement/discovery, 
generation, composition, deployment, ...

EAI, CBSE, (MDA), SOA, ...



Agile Development (ASD)

B - Planned 
Result

A - Start

C - Desired 
Result

Conformance to Actual (Customer Value)

“In an extreme environment, following a plan 
produces the product you intended, just not 
the product you need.”

Conformance to Plan



Model-Driven Architecture (MDA)
Platform Independent 

Model (PIM)

Platform Specific Model 
(PSM), e.g., EJB, .NET

Mapping 
information

Transformation

Mapping 
information

Transformation

Source Code, e.g., 
EJB, .NET

Developer source code, 
e.g., business logic

Compilation, Packaging

Not desired, but 
required in practice

Deployable 
Package



Dependability arguments for MDA
Verification of system properties at PIM level

Formal verification
Testing (?)

Verification of system properties at PSM level
Formal verification
Testing
Required platform specific properties

In theory no component testing at code level 
necessary

Only System Test
Documentation always up-to-date



EAI: Software Cathedral

Robust, long Lifecycle
Co-Existent of diverse 
different Technologies
dynamic, extensible
Re-usable Designs
Based on a common
Framework-Architecture



Heterogeneous Architectures

Legacy 
Systems

New
Technologies Heterogeneous Architectures

Potential

„We build software 
like cathedrals: 
First, we build, 
then we pray“



Component-based Software Engineering

Components: CBSE
and Product Lines

„Buy before build. 
Reuse before buy“

Fred Brooks 1975(!)



Product Line

Application A Application B

Components of Mercedes E class cars are 70% equal.
Components of Boeing 757 and 767 are 60% equal.

most effort is integration istead of development!

Quality,
time to market,
but complexity

re-use 



Fault tolerance techniques

persistence (databases)
transaction monitors
replication
group membership and atomic broadcast
reliable middleware with explicit control of 
quality of service properties
also addressing scale and dynamics: e.g., 
gossipping protocols



Overview

Dependability challenges
Control loop: Adaptivity and evolution
The SOA potential



Control loop approach

Short-term adaptivity to react to observed, or 
act upon expected (temporary) changes
Often termed „autonomous“, „self-*“, or 
„software agility“
Control-loop approach:

Monitoring
Diagnosis (analysis, interpretation)
Re-configuration (repair)

BUT: focus on system‘s components 
contradicts complexity theory



Adaptive Coupling

Complexity theory demands focus on structure 
and interaction rather than properties of the 
individual constituents
Relationships of differing strengths mixture 
of tightly and loosely coupled parts

overall system properties are also 
determined by the strength of coupling

inner loop provides adaptivity by controlling 
the strength of coupling



Inner loop (short-term adaptivity)

properties are balanced by negotiation 
between infrastructure and application
explicit control of coupling mechanisms, e.g., 
run-time selection and reconfiguration of 
dependability protocols



Forms of coupling



Long-term evolution

regulate emerging behaviour (policies)
evolvement of user needs and context

change the system‘s design while running!
requires run-time accessible and processable 
requirements and design-views, e.g.

constraints
models („UML virtual machine“)
(partial) architectural confgurations



Outer loop (long-term evolution)
measurement of properties (incl. history)
negotiation of needs
explicit manipulation of requirements/design: 
constraints, models („UML virtual machine“), 
(partial) architectural confgurations



Run-time software development

requires middleware support
stored in repositories
accessed via reflection
aspect-oriented programming (dynamic aspects)
protocols for meta-data exchange
convergence of software development tools 

with middleware services („re-engineering 
running software“)

new challenges: e.g., run-time testing and 
verification



Constraint management

Predicates, that stem from requirements
Lifecycle:

informal during analysis
formal during design (e.g., UML+OCL)
tangled with implementation code

Can be a problem:
checked in different places
requirements traceability and verification
design-by-contract principle (heterogeneous 
composition)
run-time control (e.g., activation/de-activation)



Distributed constraint validation
Constraint validation itself becomes subject to node 
and link failures
Possibly stale copies may be used for validation 
consistency threat
Potential inconsistencies may be accepted: Integrity is 
(temporarily) relaxed to increase availability
Negotiation: 

static (deployment or run-time)
dynamic (run-time: application call-back or user intervention)

Requires explicit management of constraints and 
consistency threats



Loosely-coupled validation
Explicit run-time constraints allow to decouple 
constraint validation from business activity

Asynchronous validation at any time (continously, 
triggered)
Check-out/check-in (e.g., in mobile systems)
Asynchronous negotiation and reconciliation
(decoupled from system health set-points)

Explicit run-time constraints allow to decouple 
constraint activation from business activity

Deactivate/revoke constraint to „heal“ the system
Introduce new constraints
Alternate constraints for different system missions



Inconsistency Management
Explicit run-time constraints decouple 
validation/activation from (degraded) business activity
Explicit constraint management supports system 
maintenance and evolution: Deploys a smooth way of 
re-design without service interruption or re-compilation
Performance impairment often acceptable
Inconsistency management (large-scale)
Constraint-in-the-small vs. constraint-in-the-large

imprecise, require negotiation
part of heterogeneous and dynamic composition
undergo continous evolution



Overview

Dependability challenges
Control loop: Adaptivity and evolution
The SOA potential



How to actually implement this?
different pace of change
complemetary approaches

share the need for
1. Reconfiguration of the architectural coupling, 

including strength of coupling
2. Measurement and negotiation of properties
3. Run-time processable requirements and design 

artifacts (meta-data) information sharing 
between application and infrastructural service

Can SOA address these needs?



SOA is an evolution, not a revolution
EAI – Enterprise Application Integration (MoM) 
(note: Was an argument for CBSE as well)
WfMS – Workflow Management Systems BPEL
CBSE – Components are not obsolete!

WS provide a virtual component model
WWW – Loose coupling: Heterogeneous, flexible, 
and dynamic orchestration
Re-use (note: Was an argument for CBSE, 
Middleware, ...)
Interface management (note: ...)
Business integration („business goals with IT“)



Related WS Standards and Concepts
WS-Coordination: Consensus, e.g. WS-
Transactions and WS-BusinessActivity
Discovery: UDDI did not work, alternative 
approaches are investigated and discussed
WS-MetaDataExchange: Important means for 
run-time adaptation
Service Oriented Middleware?

particular challenge for end-to-end properties
but natural support for vertical integration

Service Replication: The wheel need not be re-
invented



A framework for business integration



Dimensions of complexity



Summary
SOC addresses some needs for adaptive 
dependability (coordination, meta-data)
There are many complementary approaches 
(e.g., WS-Reliability,...), but none widely 
adopted yet.
In some cases, SOC is „yet another technology 
(wrapper)“ where the wheel need not be re-
invented (e.g., replication)
There are new research challenges, in 
particular SLA for end-to-end properties

future research is needed: SOM, actual 
realization of interface-“promises“



What SOA can do for
Software Dependability

Karl M. Göschka
Karl.Goeschka@tuwien.ac.at
Vienna University of Technology



System Life Cycle

Development Environment: physical world, human 
developers, development tools, production and 
test facilities development faults.
Use Environment: physical world, administrators, 
users, providers, infrastructure, intruders.
Use phase: service delivery, service outage, 
service shutdown.
Maintenance: repairs and modifications (iterative 
development process).
Design-time/run-time convergence


