
Architectural
Conformance in Message-
Based Systems

Daniel Popescu

Nenad Medvidovic

Motivation

• Dependability properties analyzed at architectural level

• Mismatches between architectural and implementation abstractions

• Configuration of components and connectors vs. objects and packages

• Ad-hoc implementation causes architectural drift

Analysis based on prescriptive architectural models cannot be assured

• Techniques ensuring static prescriptive architectures with static implementation match

• E.g., Reflexion models or architectural implementation frameworks

• Behavioral conformance required for assurance of dependability properties

• How can we assess whether sequences of events exchanged among implemented concurrent
components comply to prescribed sequences of events?

Checking Behavioral Conformance

• Prescriptive Sequence of Events

• Recorded Message Trace

Renamed Events

Position in the Trace

Concurrent Communication

Related Non-Prescribed Messages

Implementation Platform

• Studied systems implemented using architectural event-based implementation
frameworks (Prism-MW and c2.fw)

• Support architectural abstractions (components, connectors, configurations, ports, …)

• Support concurrent architectural components

• Architectural communication helps reduce the trace size explosion problem

Trace Extraction

• Software architect executes scenario

• Software probes

• At the communication ports of each component

• Extract architectural communication events

• Extract event causalities via heuristic

• E.g., event A causes a component to emit event B and event C

• Message Recorder Component records trace

Conformance Checking Approach Overview

Filtering

• Reduce trace size

• Traces usually substantially larger than prescriptive sequences

E.g., stock ticker scenario caused over 1000 events

• Try to minimize information loss

Causality Filtering

Causality Filtering

• Concurrency trace containing intertwined sequences

• Causality filtering helps untangle intertwined sequences

• Causality filtering

• Uses the heuristically extracted causality relationships

• Identifies causally connected sequences

• Removes events of other concurrent use cases

• Optimizes order of event sequences

Causality Tree Split and Reordered Trace

Trace Filtering

• Relabeling

• E.g., changing names of token event instances to generic “token” event

• Loop Detection

• Prescriptive sequence do not contain loops

• Excerpt Detection and alignment

• Trigger messages help identify relevant trace excerpt

Sequence Matching

• After filtering: noise messages and errors may still exist in the trace

• Implementation-level decisions can affect the trace

Exact string matching would almost always cause a failed matching

We use approximate pattern matching algorithm based on Levenshtein distance

• Final output

• Levenshtein distance

• Prescriptive-to-length ratio

• Prescriptive sequence and the trace aligned to each other

Conclusion and Future Work

• Contributions

• Error-tolerant conformance technique for architectural behavioral descriptions

• Reduction of trace size explosion problem

• Focus on the architectural communication

• Causality Filtering

• Future Work

• More thorough experiments

• Expansion to more complex prescriptive event sequence modeling constructs

• Different implementation technologies and frameworks

• Interaction protocols

• Synchronous implementation frameworks

