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The Quest

How can we build
dependable applications
and systems in a
distributed environment?

Two themes:
• What’s the reality?
• How can we structure our

thinking to address the
complexity?
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Why should we care?

Our SocietyOur Society

Social Infrastructure Information SystemSocial Infrastructure Information System
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Characteristics
• Large number of networked machines.

• Spectrum of network types and technologies: wired,
optical, wireless, ….

• Spectrum of distances: personal-area, local-area, metro-
area, wide-area,….

• Spectrum of devices: from sensors to mobile units to high
end machines and clusters.

• Spectrum of applications.

• Dynamic execution conditions and resource demands.

• Multiple administrative domains.

Significant technical challenges across a
number of areas and at a number of
levels.
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Long history shrouded in
the mists of time.
• Since computers were first

connected, e.g., Grapevine
at Xerox PARC and its
extensive use of replication.

Ancient search with a
mythical (mystical?) goal.
• Sed quis custodiet ipsos

Custodes?

So why Dependability in Distributed
Systems a Quest?
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Are SOAs Sir Galahad?

Hero of Arthurian legend. He was the
son of Launcelot and Elaine, the
daughter of King Pelles. Because
he was the noblest and purest of
the knights of Christendom, he
alone, according to Sir Thomas
Malory, achieved the Holy Grail.

          The Columbia Encyclopedia, 6th ed., 2001-07
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“Service Oriented Architectures (SOAs) structure software
functionality in a distributed system as collections of interacting
services. The services include both infrastructure services, such as
directory services, monitoring, and resource allocation services, as
well as application services that implement some application
specific functions.”

So what is a SOA?



Page 9

Fundamental characteristics?
• Dynamic
• Distributed
• Time aware
•  Composable
• Heterogeneous
• Multiple administrative domains
• Trustworthiness
• Published interface
• Evolving over time
• Migration
• Extensible
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Now on to Reality
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Reality: SOAs

Many definitions.
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AT&T Definition of SOA

To support SOA:
 A foundation of middleware,

taxonomy and naming standards
must be put in place, along with
repository / management tools
and governance.

 Target architects & lead engineers
must functionally decompose their
applications & enterprise domains
into a set of highly reusable target
services, which solution designers
can reference in their designs and
build out over time.

Target

Design

Governance

SOA

A common misconception is to
equate SOA with Web Services or

integration technologies like ESBs.

“SOA” is an approach to
architecture & solution
design which:
• Decomposes a domain or

application into a set of
abstract, highly reusable
target functional interfaces
(called target ‘services’).

• Brings governance to the
design and selection of
services as projects flow
thru the development cycle,
encouraging both reuse
and build-out of target.

SOA is an overloaded term which
requires definition and alignment.
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Service Oriented Architecture (SOA) is a software architecture
where functionality is grouped around business processes and
packaged as interoperable services. SOA also describes IT
infrastructure which allows different applications to exchange data
with one another as they participate in business processes. The aim
is a loose coupling of services with operating systems,
programming languages and other technologies which underly
applications.[Wikipedia]

A service-oriented architecture is essentially a collection of services.
These services communicate with each other. The communication
can involve either simple data passing or it could involve two or
more services coordinating some activity. Some means of
connecting services to each other is needed. [service-
architecture.com]



Page 14

SOA Service Oriented Architecture. Depending upon the context, the
meaning changes:- a technical architecture supported by standard
protocols and data formats- an approach to designing information
systems that exposes enterprise assets as configurable actors
within a dynamic business process- a new business paradigm that
synchronizes the goals of the board room (execs) and server room
(IT) [soamatters.com]

SOA (Service-Oriented Architecture): SOA is an architecture, the aim
of which is to achieve a loose connection between integrated
systems. From a common public Danish perspective, the
integration of IT systems across public and private organisations is
part of the vision of digital administration. [capevo.com]

Service Orientated Architecture (SOA) - a software design that
integrates business functions.  Users are able to decide the
information which is to be shared between the functions.  SOA is
therefore more flexible and more loosely coupled than ERP and
generally more suitable for service rather than manufacturing
companies. [bpic.co.uk]
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Service Oriented Architecture (SoA). A Service-oriented Architecture
defines how two or more entities interact in such a way as to enable
one entity to perform a unit of work on behalf of another entity. The
unit of work is referred to as a service, and the service interactions
are defined using a well-defined description language. Each
interaction is self-contained and loosely coupled, so that each
interaction remains independent of any other interaction. While
SOAP-enabled Web Services are the most common implementation
of SoA, Web Services are not necessarily required to define a SoA.
The protocol independence of SoA means that different consumers
can use services by communicating with the service in different ways.
Service Orientation is a method of architecting systems of
autonomous services. Services are built to last, with good availability
and reliability, and systems are built to change, with new service
topologies evolving over time. [Dunelm]
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Service-Oriented Architecture，面向服务架构，
SOA是一种 架构模型，它可以根据需求通过网络
对松散耦合的粗粒度应用组件进行分布式部署、
组合和使用。服务层是SOA的基础，可以直接被
应用调用，从而有效控制系统 中与软件代理交互
的人为依赖性。SOA的几个关键特性：一种粗粒
度、松耦合服务架构，服务之间通过简单、精确
定义接口进行通讯，不涉及底层编程接口和通讯
模型。
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Reality: +

Real business value
  Interface management
  Reuse
  Standardized processes, etc.
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Over the years, many enterprises have developed
‘accidental architectures’ made up of the gradual
accretion of systems and applications interconnected
with diverse middleware.

BEFORE – The Accidental Architecture

AFTER – Service Oriented Architecture

The ‘accidental architecture’ misses the primary aim
of architecture, which is to break down a complicated
problem into simple pieces and drive out complexity
to make construction and maintenance easy.

New Product

SOA partitions and encapsulates existing capabilities
behind a well thought out set of target services.

Solution teams reuse and extend this portfolio
services, instead of redeveloping functionality to their
specific preferences.  Reuse of services cuts cost
and speeds time to market.

Once encapsulated, internal infrastructure can be
consolidated, enhanced and/or retired.

Complexity Reduction & Consolidation
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SOA Case Study
By 2005 AT&T had documented over $40 million in savings
from SOA, as in this example of a system that accrued $2.6
million in 2 years by reusing one service across 5 clients.

Highlights:
• Reuse of a single service

saved 50%-85% of the cost
of building custom interfaces.

• Savings will continue to
accumulate as more clients
are added.

• Maintenance costs will be
lower (not shown) because
fewer interfaces need to be
versioned and maintained.

• Operational efficiencies
will be higher (not shown)
because of increased
consistency across SOA
customer/client interfaces.
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Projected Cumulative SOA ROI
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SOA Value to AT&T
The SOA benefit model was recast and zeroed out in 2005.
It projects additional savings in excess of $100M by 2009.

Key Assumptions:
 Constant annual development budget spend at 2005 levels.
 Rate of re-use of existing services is approximately 3 times per service during a 10 year period.
−Note: The system on the previous slide provided 5 instances of reuse within 2 years

 SOA adoption rate grows from 25% of projects in 2006 to 90% of projects by 2009.
 Average overhead to create SOA services for the first time is 10% over the current costs.
 Cost of a new interface is $(att proprietary) on average.

SOA Benefit Model:

• Service reuse contributes
an average 50% reduction
in integration cost.

• Includes engineering
efficiencies from use of
standards, models and
repositories.

• Includes development
efficiencies from use of
standard integration toolkits

• Without SOA costs and
complexity continue to
increase.

$ Represent Cum Net Savings
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SOA Business Value Summary

Business can dictate when &
where to rationalize assets

Breaks the direct link between users
and legacy assets

Easier systems
consolidation

Process centric solutions;
more time for business logic

Solutions are delivered by orche-
strating a library of existing services

Increased solution
assembly

Greater responsiveness to
competitive pressures

Reuse and complexity reduction cuts
time required to deliver new features

Accelerated time to
market

Higher quality features;
reduced fallout

Complexity reduction leads to easier
design and testing

Reduced effort in
design & testing

Ongoing cost savings beyond
development

Fewer interfaces, versions and
middlewares to maintain

Reduced mainte-
nance costs

Teams see SOA services; not
legacy systems and technology

Encapsulates complexity behind
simple service interfaces

Reduced
complexity

20% reduction in development
cost; 50% savings per reuse

Reuse & less reinvention of
functionality across projects

Reduced develop-
ment costs

Reduced re-keying & input
errors

Process tasks leverage a growing
library of SOA services

More integrated &
agile processes

BenefitsDescriptionDriver

With the correct execution strategy, SOA will deliver
significant benefits across the enterprise.
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Reality: -
More static and predefined than pure model.

Complexity of applications/services!
• Lots of technologies
• Scale
• Interface version management

Trust

And …
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The SOA Reuse Challenge
Reuse requires a repository of existing & target interfaces,
plus governance or minimally buy-in from app owners.

Reusable interfaces are
difficult to think up in the
fire of project urgency.  If
they were, reuse would be

widespread today.

Typically, 1/3 of development is spent
on interfaces, many of which are project-

specific and not easily reused.  API
functionality is reinvented by parallel

teams sometimes in the same release.

Reuse of existing interfaces saves
40-80% over building new.  Where
new interfaces must be built, they

should be built for reuse.

Benefit

Recognize

Understand

Implement

Reuse will require: 1) analyzing &
specifying reusable interfaces

outside the fire of project
delivery; 2) applying that target to

projects during development.

A good target is agreed by
architects, engineers and

developers: reps should be
appointed for each app
and/or functional area.

If they buy into their target,
then even without governance
oversight, app engineers will

propose & advocate the target.

Savings: development (reuse),
maintenance, ops & design
(simplicity). Costs: target

definition, tools & governance.

There are no simple guidelines for
generating a reusable target--it’s doing
good design: layering, modularizing,

data flows/models, use cases, strategy
for dynamic elements... But an online
handbook will help the community.
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Reality: Execution Infrastructure

No longer as simple as server +
OS.

Layers upon layers of software.

Dynamic shared environments.

Cloud computing and utility
computing.

VMs
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Reality: Global Networks (AT&T)
Around 10 Petabytes of Traffic Average Business Day

MPLS-based Services in 127 countries at 1500+ service nodes
112,000+ MPLS customer ports
30 data centers on 4 continents
Over 525,000 route miles
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Reality: IP Networks

PoP: Point-of-Presence
P: Backbone (core) Router
PE: Provider Edge Router
CE: Customer Edge Router

Rough stats:
100s of offices
100s of Ps, 1000s of PEs, 10000s of
CEs
100,000s of transport facilities
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• IP/Optical integration
• ISP/LEC coordination
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Reality: Access Networks

MSP

AT&T Local Network

H
ig

he
st

Multi-Services
Platform (MSP)

Metro WDM

MSP

DSL

C
ab

le
P

la
nt

LEC
Colo

LE
C

 L
oo

p

Cable Modem

Cable
Head End

AT&T Local
Node

Line of Sight Wireless
(Microwave)

AT&T
Local
Node

WDM

WiFi

AT&T Core
Network

VSAT
Systems

AT&T
Core
Pop

MPLS
Network /

VoIP

PSTN

per Customer LowestHighest Bandwidth

LEC loop
Most Prevalent

LECLEC
LSOLSO

Lo
w

es
t AT&T

Core
Pop

VSAT
Head End

WiFi Access Pt.

Cellular Voice &
Data

Non-Line of
Sight

Fixed Wireless
via WiMax

W
ire

le
ss

W
ire

lin
e



Page 28 Copyright © 2006 AT&T. All rights Reserved.

Dealing with Dependability
Challenges
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Dependability

Definition: The ability of a system to avoid
service failures that are more frequent or
more severe than is acceptable. (Avizienis, et al.,
Basic Concepts and Taxonomy of Dependable and Secure Computing, IEEE
Transactions on Dependable and Secure Computing, Volume 1, Number 1,
Jan-Mar 2004.)

Includes many properties and attributes
• Reliability
• Availability
• Safety
• Security
• Timeliness

Non-functional or Quality of Service (QoS)
attributes

• Focus is not on what gets done, but rather how well.
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Immensely challenging to build SOAs with
these attributes!
• Failures, intrusions….
• Concurrent and non-deterministic execution
• Heterogeneous systems and networks
• Resource constraints
• Multiple administrative domains
• Scale
• Dynamic shared execution infrastructure
• Dynamic application

How are these different than generic
distributed applications/systems?

• Emphasis/degree: some clearly more relevant in SOAs

How to deal with this complexity?
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Handle in the Application

Why?
• Traditional approach: treat infrastructure as a

black box (or at least as a simple virtual
platform)

• Much of the existing work has been in this
space.

The value of system abstractions

Customization and adaptability

Example: Customizable durability service
state attribute (EDCC06).
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Customizable State Durability
(with X. Zhang, M. Hiltunen, K. Marzullo)

In SOAs, unavailability of a service can result in the
unavailability of a large number of other services.

Issue: maintaining service state across failures.

One common approach – use a back-end database.

Service Database

Stateless Service state
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Abstraction is stable storage – a database in one
implementation with certain tradeoffs.

Goal: Provide an integrated and transparent way to use
different techniques for protecting service state in the
context of SOAs.

Solution: State durability as an explicit service state attribute
 The likelihood that the state can survive failures.

Use different techniques with different tradeoffs:
• Local disk
• Database
• State replication across a set of servers
• State reconstruction after a failure
• ……
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Transparent Customizable Durability

Architecture:

• Service state is stored in one or more state objects (resources).

• Different resources of the same service may have different durability.

• Web services implemented using Java.

Assumptions:

• Machine and web service container crashes

• Failure detection and service/resource restart handled at next higher
level

Web Service

State object 1 State object 2

Method calls Method calls
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Goal: Web service + state objects with customized tradeoffs
based on desired durability.

Challenges:
• Internal transparency: no manual modification of the web

service code.
• External transparency: no change to external behavior of the

web service.
• State update and restoration: handling different techniques

for state update coherently.
• Atomicity wrt failures: ensuring all or nothing semantics in

the event of failure (including ensuring correct semantics
when part of a WS-Transaction).
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Approach – Key Concepts

Durability proxies
• Implement a durability mechanism in a generic, service

independent, manner.

Durability mapping
• Specify which durability mechanism to use and object-specific

information.

Durability compiler
• Generate proxies, modified web service, and resources based

on mapping and original code.

Web service
 code

Durability 
mapping

Durability 
Compiler

Modified 
Code

+
Durability

Proxies
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Ideas

Focus on abstraction (stable storage) rather than
implementation

Durability as an explicit state attribute  control
over inherent tradeoffs

Many challenges  focus here on transparent
incorporation of different techniques.
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Handle in the Infrastructure

Idea: Provide as much dependability
functionality in the infrastructure

Why?
• Simplify applications.
• Hierarchy of dependability abstractions.
• Good if you don’t have access to applications.

Example: Automatically generating
adaptation policies (ICAC08).
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Adaptive Systems
Dynamically changing system behavior.

Examples:
• Networking: Changing

video frame rate in
response to
congestion.

• Mobile systems:
Implementing location-
specific services.

• Fault tolerance:
Reconfiguring software
to deal with a host
failure.

• Survivability: To
impose addition
barriers to counteract
an intruder.

Adaptation Control System

Monitor 1

. . .
Monitor n

Action 1
. . .

Action m
Alerts

Monitoring 
info

Commands

Training
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Challenges

Fundamental issue ⇒ each phase of the feedback
control loop is complex in large networked
systems.

Analyze and decide ⇒ policies

– Determining actual system state from monitoring results.

– Developing policies ⇒ automatic generation
• Predicting impact of changes ⇒ system tomography
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Performance 
Adaptation

Distributed System

Failures
Workload changes

Resource changes

Automatic
Recovery

System 
Tomography

Cholla Adaptation Architecture 


Policies 
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Generating Adaptation Policies
     (with G. Jung, , K. Joshi, M. Hiltunen, C. Pu)

Problem: Deciding how to continuously configure systems to adapt to
changing conditions.

Technologies: Stochastic models, reinforcement learning, control
theory

Typical approach:
• Construct a parametric model of the target system

• Fix some parameters through experiments or learning

• Devise strategy for optimizing rest of parameters using runtime state as input

• Implement strategy as an online controller

• Use output of controller to configure system

Disadvantages: lack transparency and predictability, performance can
be an issue, etc.

 Have developed a hybrid approach:
– Offline optimization and model solution to generate optimal configurations.

– Use generated rule sets at runtime (policies).

– Context: Server consolidation, with focus on multi-tier enterprise applications
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Runtime Resource Management

Shared Resource Pool
with Applications

Decide

Monitor.Act/Adapt

Monitor:
• resource utilization,
• response times,
• failure alarms.

Actions:
• Start/stop processes (e.g., adjust

replication degree of a component).
• Migrate processes
• Adjust CPU allocation (e.g., virtual

machine technology).
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Current approach

Shared Resource Pool
with Applications

Decide

Monitor
Act/Adapt

Significant and obvious limitations of
manual approach
• Slow reaction time (10s of minutes).

• Difficult to consider all factors in a
complex system.

• Human errors.

• Cost of 24/7 operations.

Solution: Replace operator with a
rule-based management system.

Challenge: Developing rules.

Use stochastic models as the basic
technology.

Inline vs offline
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Our Approach

Application 2
Application 1

modeling

Model solver
(LQNS)

Optimizer

Rule
constructor

workload
optimal feasible
configuration

response time,
utilization

workload,
configuration

rules

request rate actions
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Specifics

Given:

• A set of computing resources R

• A set of applications A:
• each consists of a set of components/tiers
• each component has a set of possible replication degrees
• may support multiple transaction types.

• For each transaction type,
• a transaction graph describes how the transaction uses

application components
• each component’s service time

• For each application, an SLA that, for each transaction
type, specifies the desired (mean) response time and the
reward/penalty for meeting/missing this time
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Measured at runtime:
• Each application’s workload for each transaction type

Goal:
• Configure the set of applications A on the resources R so

that the reward with current workload is maximized

• Configuration:
1. Degree of replication for each component (of each app)
2. Virtual machine parameters for a VM running the

component (CPU fraction)
3. Placement of VMs on the physical machines R
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Optimization

Start from optimal configuration, search
paths that reduce resource utilization
while minimally reducing utility.

Observations:
• Utility decreases when response time

increases.
• Response time increases when number of

replicas is reduced.
• Response time increases when CPU fraction

is reduced.

Use bin-packing algorithm.

For a given workload, find the
configuration with the maximum utility.

Huge parameter space to explore, NP-
Complete problem.

Model 
solver

Optimizer
response time,

utilization
workload,

configuration
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Optimality of the generated policies
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Ideas

Summary:
• Dynamic resource management crucial for server

consolidation
• Development of adaptation policy rules  a challenging

problem
• Propose a hybrid approach based on offline modeling for

rule generation

What about applying same approach to generate
policies for automatic recovery?
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Multi-step Look-ahead Exploration

Action that minimizes “subsequent recovery cost” is chosen at
each step

Current
Diagnosis Min

Tree
Level 0 

Srv1.restartAction
Considered 

++

Srv2.restart

Fault(Srv2)

Actual
Failure State

+ ++ +

Fault(Srv1)
Fault(Srv2)

Fault(Srv1)

Vp(π)
π={P[fh]}
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Monitor
Observation

Next
Diagnosis
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Page 52

Application+ Infrastructure: The One
True Grail?

Vertical integration, with (controlled)
sharing of information and control.

Translucent abstractions (services):
• Explicitly exposes useful information about

internal operation.

• Useful, for e.g., for TCP operation over wireless
links.

Example: Accrual failure detectors
• Provide an estimate of the probability that a host

has failed rather than just a binary indication
[Hayashibara, Défago, Katayama]
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Larger Scale

e-science and Lambda networking
• Vertical integration of application and

control plane of optical networks.

GLIF (www.glif.is): Global Lambda
Integrated Facility
• “GLIF is interested in developing "application-

empowered" networks, in which the networks
themselves are schedulable Grid resources. These
application-empowered deterministic networks, or
"LambdaGrids", complement the conventional networks,
which provide a general infrastructure….”
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Current GLIF Testbed
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What about SOAs?
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