
WADS 2009

On the Design of 
Adaptive-and-dependable Systems

Lessons learned and experiences
at the University of Antwerp

Vincenzo De Florio

http://www.pats.ua.ac.be/vincenzo.deflorio



29 June 2009 Vincenzo De Florio, WADS '09 2

Agenda

• Adaptive-and-Dependable Software Systems
Where
What, Why, How

• How: @ UA
Memory-based metaphor

• Conclusions



29 June 2009 Vincenzo De Florio, WADS '09 3

Introduction – ADSS: Where

• UA, University of Antwerp, Belgium
Approximately 10.000 
students, third largest
in Flanders

• Quite young university
2003, merge of three 
smaller universities 
roots go back to 1852

• Seven Faculties, including Sciences
Dept. of Computer Science and Mathematics



29 June 2009 Vincenzo De Florio, WADS '09 4

UA ⇒ PATS

www.pats.ua.ac.be



29 June 2009 Vincenzo De Florio, WADS '09 5

UA ⇒ PATS ⇒ ADSS



29 June 2009 Vincenzo De Florio, WADS '09 6

ADSS: What?

• OK, but what are « Adaptive-and-dependable
sw systems »?

• Let me answer by recalling first 
what Real-Time Software (RTS) is:

“Real-time software is software that interacts 
with the world on the world’s schedule, not the 
software's.
It senses the world and responds to changes in 
the world when those changes occur.”



29 June 2009 Vincenzo De Florio, WADS '09 7

ADSS: What?

• RTS = an entity that executes in a «virtual
world,» but monitors and synchronizes with
the physical world – what time is concerned

• RTS = organized and built so as to keep track
of the timing of physical world’s events and do 
as much as possible to avoid timing failures

• An ADSS is something similar



29 June 2009 Vincenzo De Florio, WADS '09 8

ADSS: What?

• ADSS may be considered as a generalisation
of RTS:

• It is organized and built so as to keep track of 
(the timing of) physical world’s events and do 
as much as possible to avoid (timing) failures

QoS failures, QoE failures
• Both RTS and ADSS: Open world assumption



29 June 2009 Vincenzo De Florio, WADS '09 9

ADSS: What

• Thus ADSS is “software that is built so as to 
sustain an agreed-upon quality-of-service and 
quality-of-experience despite the occurrence 
of potentially significant and sudden changes 
or failures in their infrastructure and 
surrounding environments.”



29 June 2009 Vincenzo De Florio, WADS '09 10

• ADSS: Why



29 June 2009 Vincenzo De Florio, WADS '09 11

ADSS: Why?

• Worst-case analyses do not pay off anymore!
• Truly effective approaches forbid upper bounds; 

instead, they require a precise characterization of 
the allocation of resources over time

• Unwanted emergent behaviors can only be 
avoided if the systems are built with “a finer-grain 
control of the redundancy degree” (Esposito and 
Cotroneo, 2009)
and of the other available resources



29 June 2009 Vincenzo De Florio, WADS '09 12

ADSS: Why?

• Worst-case analyses do not pay off anymore
(cont.’ed)

• WCA = no optimal way to choose the amount of 
redundancy
• « What is the minimal redundancy matching

the current environmental conditions (threats / 
disturbances…)? »

→ Close world solutions are inefficient



29 June 2009 Vincenzo De Florio, WADS '09 13

ADSS: Why?

• Hidden intelligence syndrome!
• A dependable system is built atop several

assumptions or hypotheses
• Explicit or implicit ones

• Those are «contracts» that must not be ignored, 
lest dependencies turn into failures



29 June 2009 Vincenzo De Florio, WADS '09 14

ADSS: Why?

• Hidden intelligence syndrome (cont.’ed)
• A few examples

• «HW includes a MMU» ⇒ memory errors may be
detected

• «Memory technology is SDRAM» ⇒ memory fails
through single-event effects (instead of bitflips)

• «The platform includes hardware interlocks» ⇒ any
malfunction shuts down the system 

• «Reasonable amount of redundancy is 3 replicas» ⇒
single failure assumption



29 June 2009 Vincenzo De Florio, WADS '09 15

ADSS: Why?

• Hidden intelligence syndrome (cont.’ed)
• HIS calls for ways to express & evaluate

assumptions such as those
• The fault model, the system model, the platform

dependencies should be expressable and 
verifiable

• Software reuse, porting, re-deployment, 
call for re-evaluation and re-organization

→ Necessary services of any truly dependable
architecture: ADSS!



29 June 2009 Vincenzo De Florio, WADS '09 16Seminars on Computer Networks 
- Lecture 1

16

ADSS: Why?

Computer architecture



29 June 2009 Vincenzo De Florio, WADS '09 17

ADSS: Why?

• Indeed we’re living in «highly fluid environments»!
“Large, networked and evolving systems either fixed or 
mobile, with demanding requirements driven by their 
application domain”
“Complex, ever changing, ubiquitous and pervasive 
systems” (Simoncini, 2009)

• Those are the systems that suffer most from the 
Horning syndrome

“What is the most often overlooked risk in software
engineering? 
That the environment will do something the designer 
never anticipated” [J. Horning]



29 June 2009 Vincenzo De Florio, WADS '09 18

ADSS: Why?

• Ultra large-scale systems!
A shift from “small, monolithic and vertical 
architectures [..] toward large highly modular, 
autonomous, heterogeneous and integrated 
systems of systems” (Esposito & Cotroneo, 
2009)
• Large scale Complex Critical Infrastructures : based 

on best-effort WANs, though both reliable and timely!
→ Require adaptive-and-dependable sw

architectures



29 June 2009 Vincenzo De Florio, WADS '09 19

ADSS: Why

• The only possible assumption is the open-world one
• “The assumption that the system software 

architecture is known and fixed at an early stage of 
system development does not apply anymore. On 
the contrary the ubiquitous scenario promotes the 
view that systems can be dynamically composed 
out of available components”

• “In this setting the software architecture can only be 
dynamically induced” (Inverardi, today!)



29 June 2009 Vincenzo De Florio, WADS '09 20

• ADSS: How



29 June 2009 Vincenzo De Florio, WADS '09 21

ADSS: How?

• Not a single research direction
• ADSS@UA/PATS : 

ACCADA, A Continuous Context-Aware 
Deployment and Adaptation framework on top of 
OSGi (Ning Gui)
SoA+AOP framework (OSGi/Equinox) (Hong Sun)
Apache Muse/Axis2 framework (Jonas Buys)
Reflective C

• Adaptive data structures…



29 June 2009 Vincenzo De Florio, WADS '09 22

Reflective C

• Reflective & refractive variables (RR vars)
• Redundant variables
• Meta variables



29 June 2009 Vincenzo De Florio, WADS '09 23

RR vars

• Main idea: memory accesses as a metaphor 
for detecting changes and reacting from 
changes

• An abstraction to realize open-world software
• RR vars = volatile variables whose identifier 

links them with an external device, e.g. a 
sensor, or an RFID, or an actuator



29 June 2009 Vincenzo De Florio, WADS '09 24

RR vars

• Reflective variables: memory cells get 
asynchronously updated by probes

Probes: service threads interfacing external 
devices

• Refractive variables: Write accesses trigger a 
request to perform some action

E.g. set frame dropping policy of a media player 
or amount of redundancy to be employed
Write accesses refract (that is, get redirected) 
onto corresponding external devices



29 June 2009 Vincenzo De Florio, WADS '09 25

RR vars

• An hello world application can be built via 
program crearr

• This creates a “hello world” code that uses 
reflective variable cpu:

crearr -o example -rr cpu



29 June 2009 Vincenzo De Florio, WADS '09 26

crearr -o example -rr cpu



29 June 2009 Vincenzo De Florio, WADS '09 27rrparse(«cpu>0);», 
PrintCpu);

PrintCpu() { 
printf(«cpu==%d\n»,cpu);



29 June 2009 Vincenzo De Florio, WADS '09 28
t



29 June 2009 Vincenzo De Florio, WADS '09 29

RR vars

• Callbacks through function rrparse.
• When a guard is evaluated as true, the 

callback is executed
• Default guard is trivial: amount of CPU > 0
• Default callback: print current amount of CPU

“Similar” behavior:

while (1) { if (cpu > 0) Callback(); }.
• Another example:



29 June 2009 Vincenzo De Florio, WADS '09 30

crearr -o example -rr cpu
mplayer cpu varies,

mplayer stays 0
t



29 June 2009 Vincenzo De Florio, WADS '09 31

mplayer […] clip.mp4

…sending 4, Starting
playback



29 June 2009 Vincenzo De Florio, WADS '09 32

…sending 4, Starting
playback



29 June 2009 Vincenzo De Florio, WADS '09 33

mplayer == 4

if (verified) Callback()

Mplayer server: from 127.0.0.1 […]: 
4
Mplayer server: mplayer started



29 June 2009 Vincenzo De Florio, WADS '09 34

int mplayer == 4

if (verified) Callback()

int mplayer == 5

if (verified) Callback()



29 June 2009 Vincenzo De Florio, WADS '09 35

t

…System is too
slow…
- Maybe a slow CPU?



29 June 2009 Vincenzo De Florio, WADS '09 36

Performance failure avoidance

void SystemIsSlow(void) {
printf("Mplayer reports 'System too slow to 
play clip’ and CPU is above threshold:\n");
// drop frames more easily
mplayer = HARDFRAMEDROP; }

...
rrparse("(cpu>98)&&(mplayer==2);", 

SystemIsSlow);



29 June 2009 Vincenzo De Florio, WADS '09 37

Other RR vars

• int watchdog
Watchdog states if negative, and the amount of received 
heartbeats otherwise

• int bandwidth
Estimated bandwidth available b/w two TCP endpoints

• int linkbeacons[«MAC address»]
Number of beacons received during the current
observation period in an ad hoc network

• int linkrates[«MAC address»]
Estimated bandwidth available between two nodes in an 
ad hoc network



29 June 2009 Vincenzo De Florio, WADS '09 38

Redundant variables

• « Worst case analysis do not pay off 
anymore… »

Common approach to choosing how much 
redundancy to employ: close-world assumption: 
“Fixed, reasonable choice, dependent on the 
context” ⇒
1.overshooting: over-dimensioning the design with 

respect to the actual threat being experienced
2.undershooting: underestimating the threat in view of an 

economy of resources



29 June 2009 Vincenzo De Florio, WADS '09 39

Redundant variables

• Adaptively redundant data structures
Variables whose contents get replicated several 
times so as to protect them from memory faults

• Writing to a redundant variable = writing to n replicas, 
located somewhere and according to some strategy

• Reading from a redundant variable = reading the n
cells, performing majority voting

The result of this process is monitored by a RR 
var probe, which measures the amount of votes 
that differ from the majority

• A measure of the disturbance in the surrounding 
environment



29 June 2009 Vincenzo De Florio, WADS '09 40

Redundant variables

• n is n(t)
• Under normal situation, n=3

The system triplicates the memory cells of redundant 
variables
This corresponds to tolerating up to one memory fault

• Under more critical situations, the amount of 
redundancy is adjusted

• The adjustment logic should tune in the ideal degree 
of redundancy with respect to the current 
disturbances



29 June 2009 Vincenzo De Florio, WADS '09 41

Redundant variables

t

R
ed

un
da

nc
y



29 June 2009 Vincenzo De Florio, WADS '09 42

Meta RR vars

• As already explained, RR vars have:
public side, where the adaptation and error 
recovery logics are specified by the user in a 
familiar form
private side, separated but not hidden, where the 
probing and actuation logics are defined.

• The logic in the private side can be indeed 
monitored and controlled by means of 
meta RR vars, i.e., variables reflecting / 
refracting on the state of the RR var system



29 June 2009 Vincenzo De Florio, WADS '09 43

Meta RR vars

• Information produced by error detectors is not 
discarded but fed into a fault identification 
mechanism (α-count)

• The current value of this mechanism is 
available to the user in the form of 
meta RR var alphacount[i]

i identifies the error detector



29 June 2009 Vincenzo De Florio, WADS '09 44

Meta RR vars

• This allows to set up assertions on the validity of the 
fault model, e.g.

void AssumptionMismatch(void) {
printf("Wrong fault model assumption 

caught\n");
}
...
rrparse("(alphacount[1]>3.0);",

AssumptionMismatch); 
// 3.0 = Alpha-count threshold



29 June 2009 Vincenzo De Florio, WADS '09 45

Meta RR vars

• A scenario involving a watchdog (left-hand window) 
and a watched task (right-hand). 

• The watched task is repeatedly interrupted and 
restarted, so as to emulate the effect of some 
permanent fault. 

• As a consequence, the watchdog “fires” and 
updates an α-count variable. 

• The value of the α-count variable increases until it 
reaches a threshold (3.0)

→ Fault is labeled as permanent-or-intermittent.



29 June 2009 Vincenzo De Florio, WADS '09 46

Meta RR vars

^C



29 June 2009 Vincenzo De Florio, WADS '09 47

In conclusion…

• Worst-case analyses do not pay off anymore
→ Redundant vars as optimal way to choose the 

amount of redundancy
• Horning syndrome

→ RR vars to express and realize open-world 
systems

• Hidden intelligence syndrome
→ Meta RR vars to set up assertions on the validity 

of the fault / system models and platform



29 June 2009 Vincenzo De Florio, WADS '09 48

In conclusion…

• An excerpt of our current research directions 
in Antwerp

• Future steps: other mechanisms to allow
more systematically the design time 
hypotheses about system and environment to 
be expressed and asserted

• Ultimate challenge: intelligent management of 
the dependability strategies



29 June 2009 Vincenzo De Florio, WADS '09 49

Thank you
for your attention!
Questions?
vincenzo.deflorio@ua.ac.be



29 June 2009 Vincenzo De Florio, WADS '09 50

References

• C. Esposito and D. Cotroneo, “Resilient and 
Timely Event Dissemination in 
Publish/Subscribe Middleware”, to appear in 
IJARAS #1, Oct. 2009

• L. Simoncini, “Technological and Educational 
Challenges of Resilient Computing”, to appear 
in IJARAS #1, Oct. 2009

• J. Horning, “ACM Fellow Profile --- James Jay 
(Jim) Horning”, ACM Software Engineering 
Notes vol.23 no.4, 1998.



29 June 2009 Vincenzo De Florio, WADS '09 51

IJARAS

http://www.igi-global.com/journals/details.asp?id=34265


