
Software Engineering and Architecture Group
Dipartimento di Informatica

Università degli Studi dell'Aquila
I-67100 L'Aquila, Italy

Assessing dependability for mobile and ubiquitous
systems:

Is there a role for Software Architectures?

Paola Inverardi

2
SEA Group

Setting the context

» Software architecture

- gives structure to the composition mechanism

- imposes constraints to the interaction mechanism
> roles, number, interaction mode, etc.

» Mobile & Ubiquitous scenario

- location-based

- resource-aware

- content-based

- user-need-aware

3
SEA Group

Context Awareness

» (Physical) Mobility allows a user to move out of his
proper context, traveling across different contexts.

» How different? In terms of (Availability of) Resources
(connectivity, energy, software, etc.) but not only …

» When building a closed system the context is determined
and it is part of the (non-functional) requirements
(operational, social, organizational constraints)

» If contexts change, requirements change the system
needs to change evolution

4
SEA Group

When and How can the system change?

» When? Due to contexts changes while it is operating at
run time

» How? Through (Self)adaptiveness/dynamicity/evolution
Different kind of changes at different levels of granularity, from
software architecture to code line

» Here we are interested in SA changes

5
SEA Group

The Challenge for Mobile & Ubiquitous scenario

» Context Awareness : Mobility and Ubiquity

» (Self-)adaptiveness/dynamicity/evolution: define the
ability of a system to change in response of external
changes

» Dependability: focuses on QoS attributes (performance
and all ---abilities)

It impacts all the software life cycle but …

How does the SA contribute to dependability?

6
SEA Group

Dependability

» the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers
...

Dependability includes such attributes as reliability,
availability, safety, security. (see IFIP WG 10.4 on DEPENDABLE
COMPUTING AND FAULT TOLERANCE http://www.dependability.org/wg10.4/)

How do we achieve dependability? All along the
software life cycle from requirements to operation to
maintenance.

By analysing models, testing code, monitor execution

7
SEA Group

Dependability and QoS attributes

»» analysinganalysing models: models: functional and nonfunctional and non--functional, several functional, several
abstraction levels, not a unique modelabstraction levels, not a unique model

»» testingtesting code: code: various kind of testing e.g. functionalvarious kind of testing e.g. functional--
based, operationalbased, operational--based (still models behavioral and based (still models behavioral and
stochasticstochastic , respectively), respectively)

»» monitormonitor execution: execution: implies monitoring (yet another implies monitoring (yet another ……
model of) the system at run time, it impacts the model of) the system at run time, it impacts the
middlewaremiddleware

»» Focus is on modelsFocus is on models, from behavioral to stochastic

8
SEA Group

Models for SA (examples)

» System dynamic model (LTS, MSC, etc)

» Queuing Network models (+-extended) derived from the
dynamic models

» Models analysis, e.g. reacheability for deadlocks etc.

» Performance indices evaluation for QN

9
SEA Group

SOFTWARE ARCHITECTURES

» Abstractions of real systems: Design stage

» Computations => Components

» Abstraction over :

» Interactions => Connectors

» ++++ Static & Dynamic Description ++++

10
SEA Group

SOFTWARE ARCHITECTURES

» Closed Software Architectures: components + connectors

» Architectural Styles: family of similar systems. It
provides a vocabulary of components and connector
types, and a set of constraints on how they can be
combined.

» Architectural Patterns: well-established solutions to
architectural problems. It gives description of the
elements and relation type together with a set of
constraints on how they may be used.

11
SEA Group

Changes in the Software Architecture

» Structure:

- components can get in and out, new connectors i.e. new
connections and/or new interaction protocols

» Behavior:

- Components can change their functionality, connectors
can change their protocols

12
SEA Group

Variability dimensions in SA

C1 C2

C3

C1 C2

C3

K
1 2

3

C1 C2

C3

C3

C1

C3

C1

C3

C1

C1

13
SEA Group

Software Architecture and dependability

» For closed systems allows for predictive analysis: from
the SA dependability properties are deduced

» For open systems the Software Architecture may
represent the invariant with respect to the applications
changes.

» Depending on the architectural change different level of
dependability can be assured by pre-preparing the models
and the verification strategies

» Allows for implementing reusable verification strategies.

14
SEA Group

Mobile and ubiquitous systems
» Open systems accounting for

- changes in the context
- user needs

» Context
- network context conditions
- execution environment characteristics

» User needs as dependability requirements
- availability, reliability, safety, and security
- e.g., availability as performance indexes

> responsiveness, throughput, service utilization

15
SEA Group

The role of the SA in an open world
» Changes in both the context and user needs might imply architectural

configuration changes
- e.g., addition/arrival, replacement, removal/departure of components

» The closed world assumption does not hold anymore

» Dependability cannot be deduced only by composition anymore
- it can be unfeasible to fix a priori the SA and, then, deduce dependability

- the experienced dependability might be not the wished one

» The role of the SA is inverted

» Composition induced by dependability
- a priori specification of a wished dependability degree

- dynamic induction of the SA that fulfills as best as possible the specified
dependability

16
SEA Group

Composition induced by user-level dependability requirements 1/2

» Promising technologies
- service mash-up

- widget Uis
> SAMSUNG Widgets
> Win Vista, Yahoo, MAC OS Gadgets

» They shift composition from the
developer-level to the end-user-level

- to ease the consideration of user-level
dependability requirements

» However, they are still conceived to be used with the closed-world
assumption in mind

17
SEA Group

Composition induced by user-level dependability requirements 2/2

» While keeping a high-level composition mechanism, suitable
technologies should

- allow the user to specify dependability requirements

- propose the architectural configuration enabling the
composition that fulfills dependability

- dependability should be kept despite of possible context
changes
> dynamic induction and evolution of the system SA

18
SEA Group

Widget UIs in e-learning

» Two possible scenarios illustrating

(a) how, in an open world, a SA fixed a priori can imply, a
possibly, unexpected dependability

(b) how, instead, dependability specified a priori can
imply the “best possible” SA

19
SEA Group

e-Learning scenario (a)

GPR
S

GPR
S

WiFi

20
SEA Group

e-Learning scenario (b)

GPR
S

GPR
S

WiFi

COS
T

Features

High Full
Low Limited

21
SEA Group

A completely open scenario: CONNECT

» Ubiquitous systems: components travel around willing to
communicate with only their own knowledge

» Exploit the process: discover-learn-mediate-communicate

» No global SA assumed

» The SA in terms of components and connectors results from the
completion of the process

» and dependability … ? It is built in the composition e.g. embedded
in the connectors (ref. Synthesis, de Lemos08).

22
SEA Group

CONNECT scenario

23
SEA Group

CONNECT process

24
SEA Group

CONNECT
Emergent Connectors for Eternal Software

Intensive Networked Systems
FET ICT Forever yours

7FP-Call 3 - ICT-2007

Coordinated by Valerie Issarny INRIA

http://connect-forever.eu/

25
SEA Group

Introduction
» Challenge 3

- the automated synthesis of CONNECTors according to the
interaction behaviors of networked systems seeking to
communicate.

Main Objectives:

» to devise automated and compositional approaches to the run-
time synthesis of connectors that serve as mediators of the
networked applications’ interaction at both application- and
middleware-layer

- synthesis of application-layer conversation protocols

- synthesis of middleware-layer protocols

- model-driven synthesis tools
25

26
SEA Group

Synthesis of application-layer conversation protocols

» To support the automated construction of application-layer
connector models

- 1: identifying the conditions on the networked applications
interaction and composition that enable run-time connector
synthesis
> SA and connector patterns

- 2: the synthesis process is seen as a behavioral model
unification process
> ontologies
> modeling notations
> unifying know and unknown information

» The challenge

- compositionality and evolution 26

27
SEA Group

synthesis process steps

27

ontology
desc.

ontology
desc.

ontology
desc.

ontology
desc.

Env
model

Env
model

Env
model

Env
model

connector model

28
SEA Group

synthesis process steps

28

ontology
desc.

ontology
desc.

ontology
desc.

ontology
desc.

connector model

29
SEA Group

synthesis of application-layer conversation protocols

» To support the automated construction of application-layer
connector models

- 1: identifying the conditions on the networked applications
interaction and composition that enable run-time connector
synthesis
> SA and connector patterns

- 2: the synthesis process is seen as a behavioral model
unification process
> ontologies
> modeling notations
> unifying know and unknown information

» The challenge

- compositionality and evolution 29

30
SEA Group

synthesis of middleware-layer protocols

» Developing protocol translators

- to make heterogeneous middleware interoperate

- w.r.t. required non-functional properties

» The challenges

- interoperability of both data transfer protocols and
interaction schemes

- ensuring, at run-time, end-to-end properties
> availability, reliability, security, timeliness

30

31
SEA Group

A Formalization of Mediating Connectors:
Towards on the fly Interoperability

R. Spalazzese (romina.spalazzese@di.univaq.it)

P. Inverardi (paola.inverardi@di.univaq.it)

V. Issarny (valerie.issarny@inria.fr)

Wicsa 2009

32
SEA Group

Mediating connectors (aka Mediators)

» In modern networked systems many heterogeneity dimensions arise
and need to be mediated

- mediation of data structures
> data level mediators
> ontologies

- mediation of functionalities
> functional mediators
> logic-based formalism

- mediation of business logics
> application-layer protocol mediators
> process algebras, finite state machines, LTSs

- mediation of message exchange protocols
> middleware-layer protocol mediators
> composition of basic mediation patterns32

33
SEA Group

Foundations for the automated mediation of heterogeneous protocols

» Modeling notation used to abstract the behavior of the protocols to be
bridged

- finite state machines

» Matching relationship between the protocol models
- necessary (but non-sufficient) conditions for protocol

interoperability
> e.g., “sharing the same intent”

- data and functional mediations are assumed to be provided

» Mapping algorithm for the matching protocol models
- sufficient (and “most permissive”) conditions for protocol

interoperability
> e.g., “talking, at least partly, a common language”

- a concrete mediator as final output
33

34
SEA Group

The instant messaging example

34

do they “share the same
intent"?

35
SEA Group

The instant messaging example

35

do they have similarities
in the structure of their
protocol models?

• branch states
• entry cycle states
• convergence states
• rich states
• successive rich states

36
SEA Group

Common language structure

36

Ontology

37
SEA Group

Abstract mediator model

37

Indeed:
• the concrete mediator also provides the needed complementary
behaviors to let the two protocols evolve;

• the concrete mediator “simulates” also the actions that should be
exchanged with third parties;

• the concrete mediator takes into account also portions of complementary
protocols for the part of their structure that is not the common language
structures.

38
SEA Group

Refinement of the abstract mediator model

38

Ontology:
“ABC” <- -> “X”
“D” <- -> “Y”

39
SEA Group

Conclusion

» first formalization of mediating connectors in the
direction of the on the fly interoperability

» The approach partially covers the existing mismatches

» Assumptions:

- partial structural similarities

- data is not considered

39

40
SEA Group

Future work
» Automation

» Compositionality

» Model-driven techniques for the synthesis of the mediator
actual code

» Evolution

» Non-functional characteristics of the protocol behavior

» Dependability assurances

40

41
SEA Group

References
Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee: Software
Engineering for Self-Adaptive Systems [outcome of a Dagstuhl Seminar] Springer 2009

Patrizio Pelliccione, Paola Inverardi, Henry Muccini: CHARMY: A Framework for Designing
and Verifying Architectural Specifications. IEEE Trans. Software Eng. 35(3): 325-346 (2009)

Paola Inverardi, Massimo Tivoli: The Future of Software: Adaptation and Dependability.
ISSSE 2008: 1-31

Massimo Tivoli, Paola Inverardi: Failure-free coordinators synthesis for component-based
architectures. Sci. Comput. Program. 71(3): 181-212 (2008)

Marco Autili, Paola Inverardi, Alfredo Navarra, Massimo Tivoli: SYNTHESIS: A Tool for
Automatically Assembling Correct and Distributed Component-Based Systems. ICSE 2007:
784-787

Mauro Caporuscio, Antinisca Di Marco, Paola Inverardi Model-Based System
Reconfiguration for Dynamic Performance Management, Elsevier Journal of Systems and
Software JSS, 80(4): 455-473 (2007).

» Patrick H. S. Brito, Rogério de Lemos, Cecília M. F. Rubira: Development of Fault-Tolerant
Software Systems Based on Architectural Abstractions. ECSA 2008: 131-147

