
Master’s thesis

Static debloating of R applications: a case
study

Sophie Kaleba

Supervisors: Francesco Zappa Nardelli, Giuseppe Lipari
August 2019

ii

Acknowledgements
First, I would like to thank Francesco Zappa Nardelli, my advisor during this project, for
all his advice and wise words. Likewise, I would like to thank Jan Vitek for his advice
and just-as-much wise words throughout the whole project. Thanks also to Giuseppe
Lipari for his remote supervision from Lille.

The tracer would not trace as well if it was not for Aviral Goel, who relentlessly
pair-programmed with me and shared precious knowledge about R in general.

I do like just-in-time compilation, and was lucky to have a look under the hood of Ř, a
JIT compiler for R: I thank Guido Chari and Olivier Flückiger for their explanations and
their patience.

iii

Contents
Introduction 1
1 Debloating dynamic applications 3
1.1 What is bloat? . 3
1.2 How to debloat? . 4
1.3 Debloating with a call graph . 5
1.4 Building a call graph is not trivial . 6
1.4.1 Techniques for resolving virtual call targets . 7
1.4.2 One call graph per analysis . 9
1.4.3 Are we done then? . 10

2 Debloating R applications 13
2.1 Why R? . 13
2.2 The dynamic features that break the building of the call graph - contribution 1 14
2.2.1 Affecting the dynamic lookup . 16
2.2.2 Deferring evaluation using eval and with . 18

3 A study of R dynamism: tracing R applications for dynamic features 19
3.1 The existing R tracing infrastructure . 19
3.2 Adapting the tracer - contribution 2 . 20
3.2.1 Motivating example . 20
3.2.2 Description of the tracing process . 22
3.2.3 Work done . 22
3.2.4 Adapting to R . 23

3.3 Study results: assessing dynamism quantitatively and qualitatively 25
3.3.1 Set-up . 25
3.3.2 Results . 26

4 Future works 31
4.1 Plugging the call graph into the Ř compiler infrastructure 31
4.2 Statically determining dynamic usages . 32
4.3 Further adapting the call graph algorithms . 32
4.4 Less dynamism . 33
Bibliography 35

iv

Introduction

The last fifteen years have seen significant advances in our ability to pro-
vide guarantees about the behavior of code written in systems programming
languages such as C and C++. Ongoing research on debloating software
leverages binary code analysis to reduce the attack surface of that code; this
is achieved by removing unused, or rarely used, subsystems and getting rid of
layers of abstraction.

Building a call graph is a common way to address this issue: it identifies
functions that are reachable within an application, therefore identifying the
core functions that are to be part of a reduced, yet executable, application.
The executable constraint requires a certain level of soundness, easily provided
by static analysis: a static call graph can provide an over-approximation
representative of every run. However, the reduced size constraint requires
that the over-approximation should be limited. In this project, our aim is
to reduce applications which have mainly been left out of the scope of static
analysis for now, namely applications written in dynamic languages. Indeed,
statically reducing dynamic applications is challenging: how to correctly
approximate runtime values ahead of time? We will use R applications as a
starting point on this question: R is a dynamic language widely used in data
analysis. Moreover, it presents some of the most perplexing semantics, mixing
at the same time laziness, reflectivity, and functional and object-oriented
principles.

The main contributions of this report are:. The identification of R dynamic features that could compromise the
building of a debloated static call graph; two categories of features have
been identified: the ones affecting the lookup and the ones deferring
evaluation.. A study of the representation of these dynamic features in real R applica-
tions; to do so, we have first adapted an existing tracer and then traced a
thousand of R packages. The results show that some of these behaviors,
notably through the use of assign, are to be found in R packages.. The identification of hints to adapt the call graph algorithm to address

1

Introduction
the presence these dynamic features

Chapter 1 deals with the different ways of reducing applications: it notably
presents different call graph algorithms that have been designed for dynamic
applications. Chapter 2 focuses on R: we present the language and its dynamic
aspects that make static call graph building more complex. We then check in
Chapter 3 the real usage of these dynamic features by tracing their occurrences
in 1000 R applications. Hints for adapting the call graph algorithm and for
the next steps of this project are described in Chapter 4.

2

Chapter 1
Debloating dynamic applications

It is well known that, as time passes, applications get larger and larger,
affecting their overall performance and maintenance cost. Over the years
legacy code gets buried under new layers of abstractions, and it gets harder and
harder to identify what remains relevant and what is not. Most importantly,
code, used or even unused, may reference external libraries, which must be
linked in the final binary, enlarging the attack surface [25].

How to debloat binaries, e.g. identifying and removing dead code and
useless library dependencies, is thus an active area of research. In this report
I will investigate the new problems that arise when debloating techniques
are applied to applications written in dynamic languages. These feature
reflection and ad-hoc environment management, which, as we shall see, make
the problem harder than in their static languages counterpart.

1.1 What is bloat?

The term bloat covers all unused and unecessary components part of an
application and its dependencies. Xu et al. refer to it as a “general situation
where redundancy exists toward finishing a task, which could have been
achieved more efficiently” [38].

Bloat can appear dynamically: Jiang et al., in the RedDroid project [15],
distinguish between compile-time bloat and install-time bloat. The first cate-
gory refers to bloat causing extra time spent to compile unused dependencies
of an executable and the second refers to bloat resulting in redundant config-
uration files that are needed by an application to be platform-independent,
although only one will be used at install-time. Xu et al. divide bloat into
two categories; memory bloat refering to bloat that causes space inefficiencies,
and runtime bloat refering to bloat that causes the execution of unecessary
operations [38].

It is also possible to classify bloat syntactically, as follows:

Dead code. It corresponds to the operations that have been computed but
whose result is not being used in the application (e.g. the result of an addition
that is stored but not used).

3

1. Debloating dynamic applications
Unreachable code. It corresponds to the statements or instructions that
are not reachable from the main method or entry points of the application
(e.g. a defined function not being called).

Repeated code. It corresponds to statements or instructions that are being
repeated throughout the application.

Length of code. It refers to the overall number of characters being used in
the whole application (e.g. symbol names and spacing of code).

Number of generated assembly instructions. It corresponds to the total
number of assembly instructions representing the application.

The term debloating therefore means to reduce the bloat that is part of
an application, including its dependencies.

1.2 How to debloat?

A lot of debloating tools have already been developed; they either address
one specific kind of bloat or attempt at reducing several kinds of bloat at
once.

Debloating one kind of bloat. Unreachable code represents a significant
part of the bloat, therefore several debloating tools focus on pruning away the
unreachable code. Quach et al. [25] have developed a dedicated compiler and
loader on top of the LLVM framework to debloat C and C++ applications.
During the compilation phase, a call graph is built using points-to analysis (see
CFA in Section 1.4.1); it identifies the reachable functions of the application.
This graph is stored in a dedicated section of the executable file and the loader
only loads in memory the functions that are part of this call graph. Anon [2]1
produce an reduced heap snapshot of a Java application. First, they similarly
identify the reachable classes, methods and fields through points-to analysis,
and build a graph of all reachable objects (the heap snapshot) out of it. Then,
they initialize the objects and propagate the newly obtained type information
in the graph previously built. They iterate over this process until a fixpoint is
reached. The RedDroid tool has been operating in the same fashion, building
a call graph to debloat unreachable code. However, it automatically takes
reflection into account via string analysis. It also handles call-backs and
reduces install-time bloat by relying on user-provided configuration [15].

Some tools provide different approaches to tackle the other kinds of bloat.
The elimination of repeated code has been targeted by Fraser et al. in
their earlier works about code compression [9]. They identify via a suffix
tree which parts of the assembly code are being repeated over the whole
application. These repeated code instructions are then abstracted away into
subroutines if they are of significant lenght. A similar approach named

1The article is to be published

4

.............................. 1.3. Debloating with a call graph

outlining has been introduced as an optimization pass in LLVM in 20162.
Regarding minification bloat, Crockford developed JSMin, a minification tool
for Javascript applications [6]. It removes comments and white-spaces to
reduce the size of the application. The YUI compressor shrinks Javascript
application further by reducing variables names [17].

Debloating multiple bloats. Other tools combine several debloating ap-
proaches to tackle different kinds of bloat at once for a single application.

Tip et al. [35] propose Jax, an application extractor for Java. Like the
tools described before, it identifies and remove redundant components of
the application by building a call graph. However, it also performs other
debloating passes, such as merging class hierarchy and renaming symbols. It
takes a class file as input and outputs a class archive containing the reduced
application. In the same fashion, tree-shaking has been used for Lisp [3],
Java [11] and Javascript applications. It aims at reducing the size of an
application by bundling a new version of the application, stripped off its
unused components, may it be classes and class members for Java in the
R8 optimizing compiler or methods in Lisp. A similar approach has been
adopted in Javascript in the module bundlers Webpack [16] and Rollup [1].

Heo et al. [13] propose an application specializer called Chisel. It uses
reinforcement learning applied to delta debugging to debloat C and C++.
First, it divides the application into different partitions and test them against
properties given as input of the specializer. The total number of tested
partitions is reduced by using reinforcement learning. The smallest partition
passing the property test is kept as output. Similarly, Trimmer is an appli-
cation specializer proposed by Sharif et al. [30]. It takes LLVM bitcode as
input and produces a debloated executable which has been specialized for a
user-provided configuration, like in RedDroid. The debloating is performed
in three passes: first, input specialization, where user-defined configuration
is applied in the program, which specialize the required user inputs. The
second and third steps are loop unrolling and constant propagation. Once
these three passes have been performed, the program relies on the LLVM
compiler to be further optmized and reduced.

1.3 Debloating with a call graph

As we have seen in Section 1.2, unreachable code is usually identified by
building a call graph. A call graph is a directed graph where each node
represents a function of the application and each edge represents a call from
function F1 to function F2. The root(s) of the graph consist of the entry-
point(s) of the application. A call graph combines several control flow graphs
to form an interprocedural control flow graph.

Call graphs represent the major starting point for more advanced analyses:
they are used by solvers for data flow problems, flow-sensitive points-to

2http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html

5

1. Debloating dynamic applications
algorithms, security-related analyses or interprocedural constant propagation
[29], but also for replacing dynamically dispatched method calls with direct
method calls or inlining [27], [36], [26].

int dog_height() {return 55;}

void print_dog_height() {
int h = dog_height();
print(h);}

int main() {
print_dog_height();

}

main

print_dog

printdog_height

_height

Figure 1.1: A simple call graph

Figure 1.1 shows an application and its related call graph; the entry point of
the application is the main function. It calls the functions print_dog_height,
that itself calls the dog_height and print functions. In this example, the
four functions are reachable.

Call graphs are widely used to identify unreachable methods. To illustrate
this relation, we can push a bit further the simple call graph example from
Section 1.1 by adding a new function cat_height in the application. The call
graph built upon this change is depicted in Figure 1.2. The node corresponding
to the cat_height function has been added, but is not connected to any
other nodes because it is not called in the application. If we traverse the
graph starting from its entry point main, cat_height will never be reached.
Consequently, we can consider cat_height as unreachable and prune it away
from our application.

1.4 Building a call graph is not trivial

The reachable functions could be easily identified in the examples shown in
Figures 1.1 and 1.2. Let’s make the previous snippet of code more modular
and introduce virtual calls; a virtual call is a call whose target will be resolved
at run time. This kind of calls usually occurs in the presence of polymorphism:
the call target depends on the run time type of the receiver of the call and
this type is resolved via dynamic lookup in absence of optimizations.

Consider the modified snippet of code in Figure 1.3: a class structure
has been added and the previous <animal>_height functions have been
abstracted away as calls to a polymorphic height() function that applies to
any type of mammals.

6

............................1.4. Building a call graph is not trivial

int cat_height() {return 30;}

int dog_height() {return 55;}

void print_dog_height() {
int h = dog_height();
print(h);}

int main() {
print_dog_height();

}

main

print_dog

printdog_height

_height
cat_height

Figure 1.2: A call graph used to debloat: cat_height can be pruned away

void main() {
Mammal m = new Dog();
m = createAMammal();
m.height();

}

Figure 1.3: How to handle virtual calls?

Without any other information about the application, it is difficult to
determine ahead of time which height() functions are actually being called
at run time; it could be the one referring to the Mammal class, the Dog class
or another one. This example illustrates one of the challenges to handle when
building a call graph: the resolution of the virtual calls targets ahead
of time.

1.4.1 Techniques for resolving virtual call targets

Tip and Palsberg [36] have compared the existing techniques aiming at
resolving virtual calls ahead of time. They have ranked them according to
their cost and accuracy; the overall result of this comparison is available as a
diagram in Figure 1.4. The four main algorithms, RA, CHA [7], RTA [4] and
0-CFA [31] will be detailed below and applied to the dynamic snippet from
Figure 1.3.

Reachability Analysis (RA). This analysis focuses only on the name of the
virtual function being called. It means that when a virtual call target has to
be resolved, it is assumed that the target could be any of the functions of the
application bearing the same name, disregarding its signature.

7

1. Debloating dynamic applications

RA CHA RTA

FTA

MTA

XTACTA 0-CFA

cost and accuracy

Figure 1.4: Overview of different call graph algorithms, ordered according to
cost and accuracy

Class Hierarchy Analysis (CHA). This analysis relies on the class hierarchy
of the application to resolve the virtual call targets. It extends the RA
algorithm in that when identifying a call target, the type (class) of receiver
is taken into account. For instance, in the following virtual call r.m(), the
static declared type of r is considered, as well as all its subtypes as structured
in the class hierarchy. Only the functions named m() that are declared in
these classes are collected and considered reachable.

Rapid Type Analysis (RTA). This analysis is built upon CHA. It further
restricts the potential virtual call targets by adding a constraint: the class of
the receiver must have been instantiated in a reachable function. Typically,
it means that, to be considered reachable, a function must be part of the
class or subclass(es) of the receiver, like in CHA, but also that these classes
must have been instantiated in a reachable method. If this is not the case,
the function is not collected in the graph. Data flow information is not taken
into account in this algorithm, like in RA and CHA, so the order in which
the application statements are analyzed is not significant.

Several other analyses have extended RTA, mostly by adding more con-
straints to consider a target as reachable. XTA [36] takes data-flow into
account: it saves the return type of reachable functions, as well as their
parameter types, to be propagated in the analysis. Other adaptations exist,
like CTA, FTA or MTA, that add constraints about data flow in the analysis.

Control Flow Analysis (0-CFA and k-CFA). 0-CFA is a context-insensitive
analysis: if two function call bear the same name, only one of the two call sites
will be analyzed. k-CFA are context-sensitive analyses, where k represents
the number of iterations for the analysis. The higher, the more precise the
resulst are, as it relies on the results from the previous iterations. CFA relies
on pointer analysis to resolve virtual calls: given a variable, the analysis
determines the set of objects the variable may point to. This set is then used
to determine which function could be reachable.

8

............................1.4. Building a call graph is not trivial

1.4.2 One call graph per analysis

Call graphs are usually built on top of an intermediate representation of
an application; the entry point of the application (the main function, for
instance) constitutes the starting point of the analysis. Specific treatments
apply according to the nature of the program point being traversed: if a
call is met, for instance, its target is added to the list of reachable functions.
Some treatments may differ according to the chosen analysis as illustrated by
the previous Subsection.

As an example, we can build the call graph of the application described
in Figure 1.3 using the four algorithms described above. The different
call graphs obtained are available in Figure 1.6. The RA call graph
(Figure 1.6a) contains eight reachable functions; it notably refers to all
the four height() functions existing in the application, displayed in the
class hierarchy diagram in Figure 1.5. The CHA call graph (Figure
1.6b) has seven reachable functions -one less than in RA. A quick look at
the class hierarchy explains this output: the static type of m is Mammal.

Mammal Table

Cat Dog

int height();

int height();int height();

int height();

Figure 1.5: Class hierarchy

Each height() function contained
in the Mammal class and subclasses
will be collected. The functions not
part of this sub-hierarchy are ig-
nored, like Table::height(). The
RTA call graph (Figure 1.6c)
contains six reachable functions:
the Mammal::height() function has
been pruned away as well because
there is no explicit instanciation of
Mammal (e.g. new Mammal()) in the application. Finally, The CFA call
graph (Figure 1.6d) contains six reachable functions, just like RTA: as
CFA is flow-insensitive, it cannot determine whether m points to Cat or
Dog because of the static createAMammal() function (which is defined as
Cat createAMammal{ return new Cat();}).

The call graph produced can sometimes differ according to the algorithm
in use. That is why Tip and Palsberg have compared these algorithms in
terms of cost and accuracy; RA is the most naive of the four algorithms, but
also the least costly: the call graph obtained is usually over-approximated but
is quickly built. The k-CFA family, on the other hand, is supposed to give
more precise call graphs. However, it relies on a large set of data strutures to
approximate precisely the state of the program throughout the control flow
graph, which prevents this technique to scale. RTA remains a widely used
algorithm to resolve virtual call targets fastly and quite precisely [36].

9

1. Debloating dynamic applications

Dog

Cat

Mammal::
height

Dog::
height

Cat::
height

createA
Mammal

main

Table::
height

(a) : RA

Dog

Cat

Mammal::
height

Dog::
height

Cat::
height

createA
Mammal

main

Table::
height

(b) : CHA

Dog

Cat

Mammal::
height

Dog::
height

Cat::
height

createA
Mammal

main

Table::
height

(c) : RTA

Dog

Cat

Mammal::
height

Dog::
height

Cat::
height

createA
Mammal

main

Table::
height

(d) : k-CFA

Figure 1.6: Different call graphs according to the algorithm used (reachable if
green and has one edge at least)

1.4.3 Are we done then?

In Subsection 1.4.1, we have described several techniques that deal with more
or less accuracy with virtual calls resolution. Does that mean that we can
safely rely on these algorithms to build a call graph to then debloat our
application? It depends to which extent we want the debloated application
to be minimal and self-contained.

Is it possible to get a minimal call graph statically? Actually, not quite,
because of the halting problem [24]. Indeed, as it is not possible to determine
statically whether an application will terminate, it is therefore impossible
to determine exactly which methods will be called in every case. While the
call graph obtained could coincidentally be minimal, it is not possible to
have an algorithm that will produce a minimal call graph every time. As
a consequence, the call graph is a more or less accurate approximation of
the reachable functions of an application: this is what the algorithms we

10

............................1.4. Building a call graph is not trivial

described in Subsection 1.4.1 do when they attempt to approximate runtime
values. Besides virtual calls, other dynamic features need to be approximated
statically; for instance, reflective calls, as depicted in the snippet of code in
Figure 1.7.

Class c = Class.forName("Raccoon");
Constructor constr = c.getConstructor();
Object o = constr.newInstance();
o.height();

Figure 1.7: A reflective call

In this case, it is difficult to statically determine for sure which object o is
created, therefore making the virtual call resolution complex. One solution is
to perform string analysis on the reflective functions [12]. Points-to analysis
was also proposed as a solution [18]. However, in most of the debloating
literature, reflection is handled by relying on user-provided information stating
which type could be called via reflection [2], [11]. Apart from reflection,
dynamic features such as dynamic library loading or indirect pointers affect
the static analysis, for both static and dynamic applications [25].

Why aren’t we building a call graph dynamically then? Building a call
graph this way would address the problem induced by dynamic behaviors
as we would not need to approximate runtime values. However, this might
prevent the debloated application built of this graph to run, because the
dynamic call graph may potentially not be representative of every run. The
question that could arise then would be how tied debloating and call graph
accuracy are. As we shall discuss in Chapter 4, it might not be that signifi-
cant to get a very accurate call graph for debloating, as long as it allows the
debloated application to run in the general case.

Lots of debloating techniques rely on identifying which methods to keep
via the building of a call graph. However, building static call graphs over
dynamic application is complex. It would be nice to identify which approach
would suit debloating better.

11

12

Chapter 2
Debloating R applications

Building a call graph statically is not trivial, notably for dynamic languages.
To push the question further, we chose to apply this problem to R, a dynamic
language mainly used for data science. In this section, we will explain why
we chose R among other languages. We will then describe the main features
of R and focus on the ones that are hard to analyse statically.

2.1 Why R?

R is a multi-paradigm, open-source, dynamic language, initially developed
in 1993 by Ross Ihaka and Robert Gentleman. It was built on top of its
predecessor S and influenced by Scheme [33]. It is typically used in the
research and statistical data analysis fields. Its community of developers has
been pretty active and 14704 libraries (called “packages” in R) are available
on the CRAN package repository in August 20191.

R is an interpreted language which relies on an AST interpreter, although
the use of bytecode has been introduced in 2011 [34], leading to the use of both
an extra bytecode interpreter and a bytecode compiler. In R, “everything
that exists is an object, and everything that happens is a function call” [5].
R is an object-oriented programming language: GNU R features two main
implementations of the oriented-object model, called S3 and S4, that allow the
developer to code in an object-oriented fashion. S3 is the most simple system
of the two: an attribute “class” is added to an existing R object. When a
method call has to be resolved, a generic function determines which function
needs to be called according to the type of the receiver. The S4 system is
stricter: it relies on “slots” to get a unified way to create objects, classes and
methods. A slot represents a property of an object, it is roughly equivalent to
an “attribute” in Java. R is also a functional language: functions in R are
first-class citizens, in the sense that they are considered as regular objects.
As such, they can be passed as parameters, assigned to variables... just like
other objects. In addition, R is also lazy in several aspects. First, its function
arguments are lazily evaluated, which means they are evaluated only if they
are accessed. To support this behavior, function arguments are boxed into

1https://cran.uni-muenster.de/web/packages/index.html

13

2. Debloating R applications
“promises”, i.e. structures containing the expression, its environment, and the
value of this expression once it has been evaluated in this envrionment. This
last part makes promises different from “closures”: a closure does not memoize
the evaluated expression. Then, R packages are lazily loaded: a R package is
represented as a promise in memory as long as none of its components (i.e. a
function, a variable) has been evaluated. It will be fully loaded in memory
once it has been evaluated [32]. Finally, R is also reflective: it is possible
to manipulate, introspect and modify structures representing the running
process itself and its behaviour [20].

All these aspects greatly influence the dynamism of R, make it an interesting
candidate for our use case. Some of these features will be explained more in
depth in Section 2.2, illustrated by concrete examples.

2.2 The dynamic features that break the building
of the call graph - contribution 1

Upon closer investigation, it is possible to identify concrete functions or code
patterns that, if found in use in R applications, complicate static analysis, and
especially static call graph building. To fully understand how they work, we
first need to explain what are environments in R and how lookup is performed.

Environments and namespaces. In R, an environment is a hashtable that
associates symbols with their value (either a pointer or a R structure). All
environments have a parent environment, expect for the empty environment
that is the last ancestor of all environments. Every package imported in R
comes with his own environment that contains his own bindings for functions
and variables; these environments are called namespaces. In addition to these
environments, functions also come with their environments: when a function
is defined, it saves the enclosing environment in which the definition took
place, because functions in R are closures. When a function is executed,
an execution environment is created on the fly: it will hold the variables
created by the function. Finally, every function call is associated with a
calling environment, i.e. the environment from within the call was performed.
It is also possible to create environments manually: we will refer to them as
user-defined environments.

Name resolution in R. R dynamism can be easily illustrated by the way
lookup is performed in the language. R is lexically scoped, which means
that an object’s value solely depends on its lexical scope, i.e. the environment
in which the object was defined. Figure 2.1 shows an example: on the left,
the call to f1 results in an error, because x is considered unknown. This is
because x is not defined in the scope of f. In the snippet on the right, x is
defined in the same scope as f and the call resolves without error.

This said, sometimes the binding for an object does not exist in its local
environment and a chain of environments has to be traversed to find the

14

........2.2. The dynamic features that break the building of the call graph - contribution 1

f <- function() {
print(x)
}

f1 <- function() {
x <- 11
f()
}

f1()
ERROR: x unknown SUCCESS: prints 22

f <- function() {
print(x)
}

f1 <- function() {
x <- 11
f()
}
x <- 22
f1()

Figure 2.1: Example of lexical scoping

symbol. Usually [19], this lookup chain starts at the current environment,
then goes on with the enclosing environments if any. Afterwards, in R, the
search path is traversed to look for the binding. This path consists of a list of
namespaces. This path represents the hierarchy of namespaces at a given
time and is structured as follows: it starts at the workspace, i.e. the current
global namespace and ends at the base namespace [32], [37]. The other
namespaces lie in between (as well as user-defined environments sometimes,
which is not a common occurrence).

Let’s illustrate lookup with the search path with an example. In Figure
2.2, both the packages lobstr and pryr contain a function ast, which prints
the ast of the expression given as parameter. The install.packages and
library calls first download the package to the disk and then attach the
namespace to the namespaces that have already been loaded. In this example,
the pryr package is loaded, and then the lobstr one. Their respective
namespaces are thus linked in that order: first the pryr one and then the
lobstr one.

install.packages("pryr")
install.packages("lobstr")
library(pryr)
library(lobstr)

ast(3+2)

global

pryr

lobstr
ast(expr)

ast(expr)

1

2

✓

...
Figure 2.2: Traversing the search path

15

2. Debloating R applications
2.2.1 Affecting the dynamic lookup

The current environment is represented as a global namespace; it is the entry
point of the search path. As a consequence, when it is time to resolve the
ast(3+2) call, the lookup is performed as follows: first, the global namespace
is searched to see if it contains a symbol named ast. Here, it is not the case,
so we move to the next namespace in the list, the lobstr one. A symbol
named ast is found and is bound to a function, the call can be resolved and
pryr’s ast will not be called.

Dynamic behaviors like dynamic lookup make the static analysis trickier:
the analysis has to approximate values to get a proper picture of the state
of the program. In the example presented in Figure 2.2, it is not possible
to simply infer whether the ast call refers to the lobstr:ast version or the
pryr:ast one: one would need to know how scoping works and the state of
the search path. We can straightforwardly tweak the virtual call resolution
algorithms presented in Section 1.2 to make them deal with these R dynamic
calls; we would need to replace the class hierarchy part by the search path.
To do so, the state of the search path needs to be approximated, i.e. the
hierarchy of namespaces and the bindings they contain.

R, however, provides functions that dynamically modify these values, on
which the analysis relies on. First, it is possible to modify the bind-
ings of any environment2. The Figure 2.3, for instance, shows that it
is possible to rebind the mean function available in base R. The call to
modify_mean_binding turns the mean function into a sum computation, all
through the use of assign. A similar behavior is reproducible by using the
super-assign operator (<<-).

mean(c(10,3))

modify_mean_binding <- function() {
 f <- function(x) return(sum(x))
assign("mean", f, baseenv())
 }

modify_mean_binding()
mean(c(10,3))

mean(c(10,3))

modify_mean_binding <- function() {
 f <- function(x) return(sum(x))
"mean" <<- f
 }

modify_mean_binding()
mean(c(10,3))

RETURN: 6.5

RETURN: 13

RETURN: 6.5

RETURN: 13

Figure 2.3: assign and «- modify the bindings of the function mean at run time

Note that assign and «- do not behave exactly the same way. assign
will take any valid environment as a parameter and modify the binding in
this environment accordingly (The binding is created if it does not exist in
the given environment). The «- operator modifies the binding of the object
given as left parameter. The environment in which this re-binding will occur
depends on the current state of the search path; an existing definition of

2Under specific circumstances: bindings in packages are locked by default which means
they cannot be modified at run time. However, the package rlang provides a very handy
function called env_binding_unlock that allows to unlock the bindings for any namespace
given as parameter.

16

........2.2. The dynamic features that break the building of the call graph - contribution 1

the object is searched in parent environments. If it is found, the re-binding
occurs. If it is not, the binding occurs in the global environment.

R also allows the developer to modify the search path itself, as shown
in Figure 2.4. This example has the same search path as in Figure 2.2: the
lobstr package has been loaded last. A new environment e is created, in
which the ast symbol is bound to the print function. This environment is
then attached to the current search path under the name rtsbol. Before the
attach call, ast(3+2) was calling the ast from the lobstr package. Now
that our custom environment has been attached last, an ast(3+2) call will
refer to the ast from this custom environment, as it is the first on the search
path to possess this binding. The reverse operation is also possible: a call to
detach will detach an environment from the search path.

e <- new.env()
e$ast <- function(expr) print(expr)
attach(e, "rtsbol")
ast(3+2)

global

rtsbol
ast(expr)

1

2

✓

lobstr
ast(expr)

global

lobstr
ast(expr)

1

2

✓
...

...

█─`+`
├─3
└─2

5

Figure 2.4: attach modifies the search path

A function called library takes advantage of both these constructs: it is
used to load a package into the workspace, i.e it populates the namespace
with the package components (functions, variables), and it then attaches the
namespace to the search path.

These features modify permanently the bindings and search path: they
need to be considered to build an accurate call graph, because we want to
approximate the state of the search path and the current bindings to get a
precise symbol resolution statically. Their dynamic modification implies that
their approximate static states must be accordingly updated and that this
updated information must flow correctly in the analysis.

17

2. Debloating R applications
2.2.2 Deferring evaluation using eval and with

R also enables the developer to modify temporarily and dynamically the way
evaluation is performed. For instance, it features ways to defer evaluation.
It notably proposes an eval function that operates in the same fashion as in
Javascript: it evaluates its parameter, which can be an unevaluated AST or
a string yet to be parsed. Figure 2.5 depicts a simple call of ast wrapped in
an eval.
eval(parse(text="ast(3+2)"))

Figure 2.5: eval hides a call to ast

In this example, the parameter of eval hides a call to ast3, but it could
also hide a search path modification or a rebinding. Figure 2.6 shows how
eval hides the call: on a regular call to ast, the function ast would be
loaded and then evaluated, and both operations would appear explicitely as
bytecode, just like the call for parse, for instance (lfdun_ parse and then ;
parse(text=...)). In the eval case, the ast call is pushed as a string and
the combination of parse and eval handles the loading and evaluation of
this string, implicitely. As a consequence, we must determine which action
eval is performing if we want to build a precise call graph [28], [12], [14].

ldfun_ eval
; eval(parse(text = "ast(3+2)"))
 call_implicit_ [3]

[Promise (index 3)]
ldfun_ parse
; parse(text = "ast(3+2)")
 named_call_implicit_ [0] [text]
ret_

[Promise (index 3.0)]
push_ [1] "ast(3+2)"
ret_

eval(parse(text="ast(3+2)"))

eval(□) parse(□) text="ast(3+2)"

Figure 2.6: eval hides the call to ast (bytecode has been simplified)

In R, it is also possible to chose the environment in which the eval-
uation takes place by a call to the function with. This function is initially
meant to interact with databases, but it can be easily twisted to a case similar
as in Figure 2.7: in this example, the ast called in the one contained by the
environment e that is not part of the search path. If e does not contain
ast, then the search path is traversed. Knowing which ast is called implies
here to also have an approximation for e, on top of the approximation of the
search path structure and active bindings.

e <- new.env()
e$ast <- function(expr) print(expr)
with(e, ast())

Figure 2.7: Chosing the namespace in which the evaluation takes place

3note that which ast is called is a whole different problem (see 2.2.1)

18

Chapter 3
A study of R dynamism: tracing R
applications for dynamic features

In the previous chapters, we have listed several R dynamic constructs that
could make the static call graph building more complex. Before investigating
alternative ways to build call graphs that would take these constructs into
account, we want to confirm that these constructs are used in real R code.
An existing R tracing infrastructure has been previsouly developed to get
data about promises in R applications [10]: we have tuned it to get data
about these dynamic behaviours. This part deals with the adapted tracer
and the R constraints that had to be coped with. It also presents the results
of the tracing of a thousand of R packages.

3.1 The existing R tracing infrastructure

The infrastructure that we have used in this study has been developed by
Goel [10], and was built upon previous works on TraceR [23]. It comprises of
three parts:

.R-dyntrace, an instrumented R interpreter where probes have been
inserted to record the interpreter state on specific program execution
events. Notably, there are recorded events for several types of function
calls (including the S3 and S4 ones), interactions with variables (read,
write,...);.The tracer, loaded as a R package in R-dyntrace. It models the state
of the interpreter according to the information gathered by the probes.
This is the part that we have tuned to get information about the dynamic
behaviour of R;.Dynalyzer, combined with a tracing pipeline. It executes R-dyntrace
in addition with the tracer on a corpus of R applications provided by the
user. It automatically extracts the runnable code from the applications
and produces memory-efficient output tables. It is meant to scale to be
used on a very large set of R packages.

19

3. A study of R dynamism: tracing R applications for dynamic features.............
3.2 Adapting the tracer - contribution 2

The existing tracer needs to be modified to get data about the dynamic
features described in Section 2.2. We have focused as a starting point on
the use of the functions assign and «- because they seem more likely to be
used in R applications. To illustrate how the modified tracer works, we rely
on an example and explain how and why we did adapt the tracer to get the
produced results.

3.2.1 Motivating example

The snippet in Figure 3.1 illustrates different behaviors involving the use of
assign and «-. Four functions are defined:. foo and foobar, which print a given statement;. bar, which redefines foo in the global environment;. baz, which defines foobar, giving it the same definition as foo.

foo <- function() {print("Original function")}

bar <- function() {
assign("foo",
 function() {print("Modified once")},
 globalenv())
}

baz <- function() { "foobar" <<- foo}

first calls to foo and foobar
foo() #call_1
foobar() #call_2

bar()
baz()

foobar <<- function() {print("Modified twice")}
assign("foo", foobar, globalenv())

following calls to foo and foobar
foo() #call_3
foobar() #call_4

✘

Figure 3.1: assign and «- in use

The output of this application is available in Figure 3.2: the first line
corresponds to the first call to foo: it still points to the initial definition of
foo. Second call triggers an error: foobar has not yet been defined, because

20

.......................... 3.2. Adapting the tracer - contribution 2

baz has not been called yet. The last two lines of the output correspond
respectively to the second call to foo and the the second call to foobar. Both
functions have been redefined by above calls to assign and «-. Note that
the «- acts as a simple assignment when it is used directly in the global
environment. “Modified function” is never printed: the effects of the bar
and baz calls have been shadowed by the last calls to assign and «-.

> "Original function"
> Error in foobar() : could not find function "foobar"
> "Modified twice"
> "Modified twice"

Figure 3.2: Output from application in 3.1

We can use the tracer on this application. Simplified results are available
in Table 3.1. Each row of the table correponds to a dynamic function call.
The columns display :. function_name, in the form namespace_name::function_name. This

is the name of the dynamic function call that has been collected by the
tracer;. function_type, either a closure, special or builtin; This is the type of
the dynamic function;. dyn_call_count, the number of times this function has been called
dynamically in the applicatino;. redefining_symbol, 1 if this function is redefining an existing symbol,
0 otherwise;. symbol_name, the name of the symbol being (re)defined;. environment_address, the address of the environment in which the
(re)definition is taking place;. to_fresh_env, 1 if the (re)definition occurs in an environment that has
been manipulated on the current execution stack, 0 otherwise;. parent_id, the id of the function calling this specific function (the id is
a hash of the function definition and package name).

This table shows that there is one dynamic call to assign in the application,
assign being a closure part of the base environment. This assign call defines
the binding of the foo symbol in the environment located at 0x63690fd0. The
second line indicates that there is also a dynamic call to «- in the application,
«- being a special part of the base environment as well. This call defines the
binding of the foobar symbol in the environment located at 0x63690fd0.

21

3. A study of R dynamism: tracing R applications for dynamic features.............
function
_name

function
_type

dyn_
call_
count

redefining_
symbol

symbol
_name

environment_
address

to_
fresh_
env

parent_id

(base::assign) Closure 1 0 foo 0x63690fd0 0 x1gq#AL
6I+bfWuZE
HqtDzA==

(base::«-) Special 1 0 foobar 0x63690fd0 0 nDl4hy+O
37k2CojxU
IYA7w==

Table 3.1: Tracer output related to Figure 3.1

3.2.2 Description of the tracing process

To get the results obtained in Table 3.1, the tracer has to go through several
steps. Once the execution of the application has started:..1. If a call is being executed, the tracer enters one of the probes related

to function calls (closure_probe or special_probe) and inspects the
given call...2. If this is a call to assign or «-, the arguments are processed to get
the (re)defined symbol name and the caller environment address. These
information are then pushed on a assignment stack part of the current
custom tracer state.
The execution goes on...3. If an assignment is being performed, the tracer enters one of the probes
related to assignments and inspects the given assignment...4. If this assignment matches with the top of the assignment stack, the
tracer retrieves the information needed for our experiment and stores
them in the dynamic output table...5. Once the assignments and calls are resolved, the objects created for the
analysis (higher-level representations of calls, functions...) are destroyed.

3.2.3 Work done

The tracer is a small R package (less than 100 LOC) that calls a C++ library
(more than 6000 LOC): most of the modifications required for this study were
made in the C++ part.

First, to specifically track the assign and «- calls, the closure and
special-related probes were modified to filter these calls. Then, two extra
probes related to assignment in environments had to be lifted out of a previous
study to get better details about the application state without compromising
the study results. They were heavily modified to fetch information about
the calls that is used afterwards in our study output, to know for instance
whether the call is dynamic or which symbol is being redefined in which

22

.......................... 3.2. Adapting the tracer - contribution 2

environment. In correlation, the tracer has high-level representations of the
traced application components such as calls, functions or arguments; this
study required amendments to some of these representations, especially the
Call class to make them hold more information about its state. The existing
layout of the table summarizing the traced calls has been modified to hold
these data, it has been named dynamic_call_summaries.

In overall, 420 LOC were added to the C++ code of the tracer to be
used in our study. This version has been shaped by trial and error and
required multiple iterations to get relevant results. Part of the complexity
can be explained by the complexity of the R language itself: for instance,
gathering basic data about the calls, such as the value of their arguments,
was a perplexing experience due to the laziness and the related side-effects.
Besides, most operations required to have a clear understanding of R internals
to be handled properly

3.2.4 Adapting to R

As previous Subsection 3.2.3 suggests, the existing tracer had to be adapted
to be used in our study. We had to carefully identify which features of the
tool were relevant regarding our goal. In addition, the API had to be modified
to get enough data to conduct the analysis. In this subsection, we detail the
choices we made in the custom tracer that may seem intriguing at first.

Not all assigns are considered dynamic. Only two dynamic calls are being
gathered in Table 3.1, yet the application from Figure 3.1 contains two assign
calls and two «- calls. The reason is that we only focus on “very” dynamic
calls, i.e. calls that potentially interfere with outer (non-local) environments.
In the example from Figure 3.1, the calls to assign and «- that are performed
in foo and bar fit into the “very” dynamic category.

assign("foo", foobar, globalenv())

assign("foo", foobar, globalenv())

foo

}

bar <- function() {

bar()

assign()

global env

assign env

foo

bar() assign()

global env

bar env assign env

≠ =
Figure 3.3: Left assign is not dynamic, right assign is

In Figure 3.3, the assign wrapped in the bar call is “very” dynamic: every
function executes in a fresh environment and the calling environment of
assign is the bar environment. This environment is different from the one

23

3. A study of R dynamism: tracing R applications for dynamic features.............
given as third parameter of the assign call (globalenv()): the call is thus
considered dynamic. When assign and «- are only interfering with their
local environments, they behave as simple assignments that will not make
the call graph building more complex. Because we need to identify if a call
is “very” dynamic, we need to have information about the current execution
environment and the caller environment: if they differ, the call is considered
as dynamic. This is the reason why we extract specific information about
environments in the Step 2 of the tracing process described in Section 3.2.2.

Two probes for two kinds of functions. There are three types of functions
in R: closures, specials and builtins. Closures are the standard functions
in R, i.e. it is the kind of function created when the function keyword
is used. A closure object holds its arguments, its body and its enclosing
environment (the environment in which it was defined)1. Specials and builtins
are both internal functions that point to primitives’ index. Specials do not
evaluate their arguments while builtins do [33], [32]. Each of these functions
is executed differently internally (via execClosure for closures, eval and
bceval for specials and builtins, forceAndCall for builtins), which is why
we require three different probes to trace the program state at these points.

assign is a closure and «- is a special, which means that we have to rely
on two of these probes for our experiment. The special probe is reached
after the special’s arguments have been evaluated, while the arguments are
still boxed into unevaluated promises when reaching the closure probe: that
is the reason why we need to process the arguments differently in Step 2.

Two probes to get away with side-effects. We need the closure and
special related probes to respectively trace the calls to assign and «-. In
these two probes, a first processing is performed to get information about
symbols and environments (Step 2). However, most of the information
present in the final output table is not gathered within these probes, but
within the assignment probes that are potentially reached later in Step 4: the
environment_variable_define_probe and environment_variable_assign
_probe.

We rely on these two probes to avoid side-effects: we mentioned earlier that
a very dynamic call must interfere with an outer environment. This is true but
incomplete: to be considered as very dynamic in our experiment, the call must
also bind the value of the symbol to a function. Let’s consider this snippet:
assign("foo", function() print("plop"), globalenv()) . This call is
potentially “very” dynamic: it binds foo to a function printing “plop” in a
potential outer environment. In this case, identifying the second argument
as a function is straightforward. It gets more complex in this situation:
assign("foo", f, globalenv()) . In this case, f could point to any kind
of object: a lookup must be performed to figure out whether it points to a
function. However, performing the lookup through the R internal API could
trigger unwanted side-effects that could modify the state of the application

1The lexical scoping principle induces that we evaluate the expression against this
enclosing environment.

24

............. 3.3. Study results: assessing dynamism quantitatively and qualitatively

and affect the tracing results. The environment probes are reached at a
point in execution where the function arguments have been looked up: this is
the reason why we rely on these for the tracing process.

Getting qualitative insights on dynamic function usage. Our tracer gathers
data to be used for a qualitative analysis: it enables us to identify the reasons
why such dynamic calls have been executed. Once a dynamic call has been
spotted, the tracer saves the caller id (parent_id) of the dynamic function.
All function definitions are saved by the tracer in a dedicated table and we
can easily check the caller definition in this table by using the id collected
during the tracing. We use this piece of information to manually check the
dynamic call site in the source code. Relying on the caller id only allows the
analysis to scale but it sometimes requires some heavy manual analysis to
precisely identify the location of the call site. As a consequence, we have
added an option in the tracer to get the filename and line number of the
dynamic call. It takes advantage of the debug information stored by the R
interpreter. This gives more easy-to-consult results but adds a significant
overhead to the tracing process.

3.3 Study results: assessing dynamism
quantitatively and qualitatively

We want to know if the constructs using assign and «- depicted in Section
2.2 are encountered in real R applications. In this section, we present the
results obtained after tracing these behaviors and provide hints to explain
their usage.

3.3.1 Set-up

The tracing was performed on a Dell Precision with Ubuntu 18.04 LTS, a
3 Ghz processor Intel Xeon, 32 Gb 2400MHz DDR4 of RAM. We ran the
tracing pipeline over 1000 R packages available on the CRAN repository. The
R version used is 3.5.0 (2018-04-23).

The packages and their dependencies had first to be installed in the R-
dyntrace environment; they were then traced using the tracing pipeline. The
analyzer part of the pipeline extracts runnable code from the R packages, i.e.
tests, vignettes (runnable documentation) and code examples; these scripts
are then traced. Errors may arise during the installation and extraction
phases: some packages may not be available for the R version we are using,
some system libraries may be missing, preventing the package to be properly
installed, or some dependencies may not be resolved. In our experiment, 6101
extracted scripts were valid and traced.

25

3. A study of R dynamism: tracing R applications for dynamic features.............
3.3.2 Results

Quantitative results

Calls to assign and «- have been traced 2183311 times over the whole package
corpus. Among these calls, 157434 dynamic calls to assign and «- were
identified. Figure 3.4 sums up the distribution of assign and «- regarding
the total number of dynamic occurrences: there is an over-representation
of dynamic assign calls, which are more than a hundred time more called
than their «- counterpart. All the dynamic «- calls from our corpus redefine
the bindings of already existing symbols; almost 80% of the dynamic assign
calls do likewise.

assign (99,2%) <<- (0,8%)

redefines 31815

total 156250

redefines 1184

total 1184

Figure 3.4: Proportion of assign and «- over total number of dynamic calls

Qualitative results

Over our corpus, the assign calls (re)defines the bindings of twelve different
symbols: their distribution is shown in Figure 3.5. In the figure, the symbols
.Methods and .Method are separated from the rest of the group due to their
higher number of occurrences: they indeed represent 98,9% of the total
number of assign cases. A similar unbalanced distribution is observed for
the dynamic «- calls: 92% of the total number of dynamic «- cases modify
the bindings of only two symbols: pathGrob and vars. Such unbalanced
results exist because these symbols are being modified in language functions
called a lot of times.

Disregarding the distribution shape, we can focus on the reasons motivating
the need for very dynamic behaviors; in most cases, it is possible to identify
these reasons by looking at the source code of their call site.

26

............. 3.3. Study results: assessing dynamism quantitatively and qualitatively

0

40000

80000

120000

n
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

.M
et

h
o

d

.M
et

h
o

d
s

0

200

400

600

n
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

.n
ex

tM
et

h
o

d

A
N

Y

ca
llS

u
p

er

cb
in

d
.d

at
a.

fr
am

e

fo
rd

er fu
n

in
fo

m
ea

n

p
ri

n
t

rb
in

d
.d

at
a.

fr
am

e

Figure 3.5: (Re)defined symbols by assign

0

200

400

n
u

m
b

er
 o

f
o

cc
u

rr
en

ce
s

fd
ef

au
to

la
y

er

m
u

lt
ip

ro
ce

ss

p
at

h
G

ro
b

rd
_a

es
th

et
ic

s

va
rs

Figure 3.6: (Re)defined symbols by «-

Populating namespaces. This is the first cause of dynamic uses of assign.
The .Method and .Methods redefinitions are both triggered by calls to
library, which is called to load a package into the workspace (i.e popu-

27

3. A study of R dynamism: tracing R applications for dynamic features.............
lating the namespace with the package bindings) and attach the namespace
to the search path. .Method is used in the S3 object-oriented model. This
model uses generic functions to dispatch functions, that is to say the generic
function decides which function to dispatch to. For instance, add in Figure
3.7 is a generic function. Plain add corresponds to the generic function.

add <- function(x, y, ...) {
UseMethod("add", x, y)

}

add.numeric <- function(x, y, ...) return(x+y)
add.character <- function(x, y, ...) return(paste(x,y))

Figure 3.7: add as a generic S3 function

The .Method symbol is used during the dispatch phase: it stores the
function found by the dispatch, .Method lays in the environment in which
the generic function is being evaluated. A loadMethod function is defined in
.InitMethodDefinitions and contains the assign(".Method", method,

envir = envir) that triggered the tracer. The action of this loadMethod
function corresponds to the use of .Method described above.

The .Methods symbol is used in the S4 object-oriented model. It corre-
sponds to a merged methods list, that is an object formerly used to store
methods for dispatch. It is being redefined by a call to .makeGeneric that
creates a generic function: this generic function definition is the one being
assigned to .Methods.

Avoiding name clashes. Redefinition also occurs to avoid name clashes; we
have seen in Section 2.2 that symbols are easily shadowed in R depending on
the search path structure. The tracing shows several occurrences of dynamic
calls that are meant to prevent name clashes. For instance, the redefinition of
vars in the «- case (Figure 3.6) is explicitely justified as such in the comments:
To avoid namespace clash with dplyr . This comment can be found
in the ggplot2 package which provides a vars function that “takes inputs
to be evaluated in the context of dataset”. The dplyr package does provide
a vars function as well with a different behavior. When ggplot2 is loaded
in the workspace, it automatically assigns dplyr::vars to vars if the dplyr
package is required.

Assuring compatibility. Compatibility with other packages is also a con-
cern: for instance, the redefining of print from the data.table package in
Figure 3.6; this package relies on the print function defined in the ggplot2
package. However, this function has been updated in ggplot2 and now
return a non-void value: it is dynamically redefined to keep the same value
type as before, to avoid patching the whole code of the data.frame package.
cbind.data.frame and rbind.data.frame are being redefined for the same
reasons: the cbind(datatable, dataframe) function does not behave as ex-

28

............. 3.3. Study results: assessing dynamism quantitatively and qualitatively

pected. This issues could be solved using less dynamic solutions but this leads
to compatibility issues ([it] introduced compatibility issues with

package ‘IRanges‘, since ‘IRanges‘ also masks ‘cbind‘.)

Improving performance. Dynamism is also introduced to boost performance:
the data.table package binds the forder symbol to a fast order algorithm
in a temporary environment. This optimized ordering is then used in the
data table through an eval call.

29

30

Chapter 4
Future works

The tracing helped us identify the presence of reflective code constructs in
real R applications. Moreover, such behaviors have been found in package
code, some of which being widely used by R users. In this chapter, we discuss
several solutions that could be considered to deal with this dynamism in the
debloating process.

4.1 Plugging the call graph into the Ř compiler
infrastructure

Ř is a just-in-time (JIT) compiler available for R [8]. It proposes several
optimizations passes that are being performed in a SSA intermediate repre-
sentation called PIR. It notably proposes a scope resolution pass: it relies
on scope analysis to turn the loads from memory into PIR SSA variables to
boost performance.

The scope analysis that is performed is a forward data-flow analysis: each
program point computes information about the past behavior of the program
[22]. When the CFG is traversed, if a ldVar or ldFun instruction is met, its
potential bound value(s) are being approximated in regard of the current
abstract state of the application, notably the current abstract environment
hierarchy. For instance, if a ldFun plop is met, the function plop will be
searched in the abstract environments that are part of this hierarchy.

As of now, the abstract environment hierarchy is updated when a mkEnv
instruction is met: a new abstract environement is created and is linked to
its parent environment. In any case, this hierarchy will only contain local
environments that have been created in the same compilation unit; indeed,
it is assumed that all other environments could change and they are thus
not taken into account. If the symbol is not found in the hierarchy, then the
value is flagged as “tainted” and the load will not be optimized. We could
modify the way environments are taken into account; packages bindings are
locked by default, so we could assume that the package environments are not
going to change. As a consequence, we could take them into account when
the lookup is performed in the analysis.

This same approach could be used in the call graph construction to resolve

31

4. Future works.....................................
names and it may be worth considering debloating by mixing both static
analysis and values obtained dynamically, in the same fashion as [21]. Indeed,
the optimisations usually performed at runtime by the compiler could be used
as the first debloating steps of an application by eliminating dead branches
and dead stores, removing unecessary environments. Then further debloating
passes could be implemented and applied.

4.2 Statically determining dynamic usages

The call graph built upon this tweak would not be accurate, as the environment
hierarchy would be highly simplified. Call graph building approaches are
usually conservative: when a dynamic call is hard to resolve statically, its
target is preferably over-approximated, meaning the amount of potential
targets exceeds the real amount of targets. This conservative approach is
usually preferred when false-negatives have to be avoided, for instance when
performing just-in-time optimizations [24]. From the debloating perspective,
we could question whether soundness is a requirement for the call graph
building part.

Building an unsound call graph implies that it may not be representative
of every run because some potential call targets may not have been identified.
Specifically in our case, this would mean some aspects of the dynamism could
be ignored. As a consequence, the debloated application built on top of
this call graph would not contain these calls. Would this compromise the
debloated application execution?

We can consider the dynamism usages identified in Section 3.3.2. Some
of these usages could be ignored in the building without compromising
the execution, like for instance the performance-related ones: ignoring the
rebinding of forder would result in a performance drop, but would not
prevent the application from running. Similarly, sone cases of comptability-
related usages could also be ignored: for instance, if the IRanges package is
not part of the application, rebinding to keep compatibility with this package
is unnecessary.

Therefore, soundness is not to be seek at all cost for debloating R applica-
tions. However, the dynamic calls would still need to be statically analyzed to
determine their usage in the application, to decide whether their action can
be ignored or not. Finding ways to statically classify dynamic calls regarding
their usage would be an exciting, yet tricky, next step for this project. The
study of R dynamism should also be pursued to get a better picture of the
different usages that have to be considered.

4.3 Further adapting the call graph algorithms

Although some kinds of dynamic calls can be ignored, some others still need
to be taken into account to build the call graph. To do so, specific abstract
operations could be implemented: unoptimized, a call to assign is translated

32

....................................4.4. Less dynamism

to a LdFun PIR instruction. A special treatment could be applied when
a LdFun to assign is traversed: the corresponding arguments should be
analyzed to determine if the assign call is dynamic; if so, the binding in the
affected abstract environement should be updated. This would help achieve
a more accurate lookup statically. Same would apply when a call to «- is
traversed, and potentially to other dynamic calls with some variations.

These specific abstract operations would need to be inserted in the chosen
call graph building approach, which is yet to be determined. RTA and
k-CFA seem to be strong contenders: RTA because it proposes a good cost-
accurracy trade-off, k-CFA because it would help achieve a better accuracy
level. Depending on the sought level of soudness, it would also be interesting
to compare call graphs built statically and dynamically.

4.4 Less dynamism

One yet-to-explore solution could consist in finding ways to reduce the number
of dynamic occurrences in R applications. A similar approach have previously
been adopted for Javascript [14]: because eval calls obstruct static analysis,
the authors transform their occurrences to other language constructs that
go along with static analysis. For instance, when an eval is tracked with
a constant argument like eval("var x;") , it is replaced by this constant
argument. They also rely on constant propagation to turn the argument into
a constant and pruning away the call to eval. In the same way, proposing a
dynamism-aware linter could also help reducing the unwise use of dynamic
features: equivalent less dynamic constructs could be proposed to the devel-
oper. The lintr1 R package is available on CRAN: it performs static analysis
for R and provides hints for syntax error, semantic issues and adherence to
style. It could be possible to add some analysis passes to this linter that
would identify problematic dynamic patterns and propose hints for turning
them less dynamic.

1https://github.com/jimhester/lintr

33

34

Bibliography

[1] Rollup, a javascript modules bundler. https://github.com/rollup/rollup.

[2] Anon. Initialize Once, Start Fast: Application Initialization at Build
Time. page 24, 2019.

[3] G. Attardi and C. Italia. The Embeddable Common Lisp. page 12, 1995.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of c++ virtual
function calls. ACM Sigplan Notices, 31(10):324–341, 1996.

[5] J. M. Chambers. Object-Oriented Programming, Functional Program-
ming and R. Statistical Science, 29(2):167–180, May 2014. doi:10.1214/13-
STS452.

[6] D. Crockford. Jsmin, a javascript minification tool, 2001.
http://www.crockford.com/javascript/jsmin.html.

[7] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming, pages 77–101. Springer, 1995.

[8] O. Flückiger, G. Chari, J. Jecmen, M. Yee, J. Hain, and J. Vitek. R melts
brains - an IR for first-class environments and lazy effectful arguments.
CoRR, abs/1907.05118, 2019, 1907.05118. URL http://arxiv.org/
abs/1907.05118.

[9] C. W. Fraser, E. W. Myers, and A. L. Wendt. Analyzing and compressing
assembly code. In Proceedings of the 1984 SIGPLAN Symposium on
Compiler Construction, SIGPLAN ’84, pages 117–121, New York, NY,
USA, 1984. ACM. doi:10.1145/502874.502886.

[10] A. Goel and J. Vitek. On the Design, Implementation and Use of Laziness
in R. 1:27, 2019.

[11] Google. R8 source code repository, 2017.
https://r8.googlesource.com/r8/.

[12] N. Grech, G. Kastrinis, and Y. Smaragdakis. Efficient Reflection

35

http://dx.doi.org/10.1214/13-STS452
http://dx.doi.org/10.1214/13-STS452
http://arxiv.org/abs/1907.05118
http://arxiv.org/abs/1907.05118
http://arxiv.org/abs/1907.05118
http://dx.doi.org/10.1145/502874.502886

Bibliography
String Analysis via Graph Coloring. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 2018.
doi:10.4230/lipics.ecoop.2018.26.

[13] K. Heo, W. Lee, P. Pashakhanloo, and M. Naik. Effective Program
Debloating via Reinforcement Learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Secu-
rity - CCS ’18, pages 380–394, Toronto, Canada, 2018. ACM Press.
doi:10.1145/3243734.3243838.

[14] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the eval that
men do. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis - ISSTA 2012, page 34, Minneapolis, MN, USA,
2012. ACM Press. doi:10.1145/2338965.2336758.

[15] Y. Jiang, Q. Bao, S. Wang, X. Liu, and D. Wu. Reddroid: Android
application redundancy customization based on static analysis. In 2018
IEEE 29th International Symposium on Software Reliability Engineering
(ISSRE), pages 189–199. IEEE, 2018.

[16] T. Koppers, J. Ewald, S. T. Larkin, and K. Kluskens. Webpack, a
javascript modules bundler. https://github.com/webpack/webpack.

[17] J. Lecomte. Yui, a javascript compressor, 2007.
http://yui.github.io/yuicompressor/.

[18] B. Livshits, J. Whaley, and M. S. Lam. Reflection Analysis for Java.
In D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern,
J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen,
M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum, and
K. Yi, editors, Programming Languages and Systems, volume 3780,
pages 139–160. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.
doi:10.1007/11575467_11.

[19] M. Lutz. Learning python: Powerful object-oriented programming. "
O’Reilly Media, Inc.", 2013.

[20] P. Maes. Concepts and experiments in computational reflection. In Con-
ference Proceedings on Object-oriented Programming Systems, Languages
and Applications, OOPSLA ’87, pages 147–155, New York, NY, USA,
1987. ACM. doi:10.1145/38765.38821.

[21] E. Mera, P. López-García, G. Puebla, M. Carro, and M. V. Hermenegildo.
Combining static analysis and profiling for estimating execution times.
In M. Hanus, editor, Practical Aspects of Declarative Languages, pages
140–154, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[22] A. Møller and M. I. Schwartzbach. Static program analysis, Oc-
tober 2018. Department of Computer Science, Aarhus University,
http://cs.au.dk/˜amoeller/spa/.

36

http://dx.doi.org/10.4230/lipics.ecoop.2018.26
http://dx.doi.org/10.1145/3243734.3243838
http://dx.doi.org/10.1145/2338965.2336758
http://dx.doi.org/10.1007/11575467_11
http://dx.doi.org/10.1145/38765.38821

.......................................Bibliography

[23] F. Morandat, B. Hill, L. Osvald, and J. Vitek. Evaluating the design
of the r language. In J. Noble, editor, ECOOP 2012 – Object-Oriented
Programming, pages 104–131, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[24] G. C. Murphy, D. Notkin, and E. S. . Lan. An empirical study of
static call graph extractors. In Proceedings of IEEE 18th Interna-
tional Conference on Software Engineering, pages 90–99, March 1996.
doi:10.1109/ICSE.1996.493405.

[25] A. Quach, A. Prakash, and L. Yan. Debloating Software through Piece-
Wise Compilation and Loading. page 19, 2018.

[26] D. Rayside and K. Kontogiannis. Extracting java library subsets for
deployment on embedded systems. Science of Computer Programming,
45(2-3):245–270, 2002.

[27] M. Reif, M. Eichberg, B. Hermann, J. Lerch, and M. Mezini. Call
graph construction for java libraries. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 474–486, New York, NY, USA, 2016. ACM.
doi:10.1145/2950290.2950312.

[28] G. Richards, C. Hammer, B. Burg, and J. Vitek. The Eval That Men
Do. In M. Mezini, editor, ECOOP 2011 – Object-Oriented Programming,
volume 6813, pages 52–78. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. doi:10.1007/978-3-642-22655-7_4.

[29] B. Ryder. Constructing the Call Graph of a Program. IEEE
Transactions on Software Engineering, SE-5(3):216–226, May 1979.
doi:10.1109/TSE.1979.234183.

[30] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. TRIMMER: appli-
cation specialization for code debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineer-
ing - ASE 2018, pages 329–339, Montpellier, France, 2018. ACM Press.
doi:10.1145/3238147.3238160.

[31] O. Shivers. Control flow analysis in scheme. In ACM SIGPLAN Notices,
volume 23, pages 164–174. ACM, 1988.

[32] R. D. C. Team. R internals, 2019. URL https://cran.r-project.org/
doc/manuals/r-release/R-ints.html.

[33] R. D. C. Team. R Language Definition, 2019. URL https://cran.
r-project.org/doc/manuals/r-release/R-lang.html.

[34] L. Tierney. The r bytecode compiler and vm. R Implementation,
Optimization and Tooling, 2019. URL https://riotworkshop.github.
io/.

37

http://dx.doi.org/10.1109/ICSE.1996.493405
http://dx.doi.org/10.1145/2950290.2950312
http://dx.doi.org/10.1007/978-3-642-22655-7_4
http://dx.doi.org/10.1109/TSE.1979.234183
http://dx.doi.org/10.1145/3238147.3238160
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-ints.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html
https://riotworkshop.github.io/
https://riotworkshop.github.io/

Bibliography
[35] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter. Practical experience

with an application extractor for java. In Proceedings of the 14th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ’99, pages 292–305, New York, NY,
USA, 1999. ACM. doi:10.1145/320384.320414.

[36] F. Tip and J. Palsberg. Scalable propagation-based call graph construc-
tion algorithms. In Proceedings of the 15th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA ’00, pages 281–293, New York, NY, USA, 2000. ACM.
doi:10.1145/353171.353190.

[37] H. Wickham. Advanced R, 2019. URL http://adv-r.had.co.nz/.

[38] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky. Software
bloat analysis: finding, removing, and preventing performance problems
in modern large-scale object-oriented applications. In Proceedings of
the FSE/SDP workshop on Future of software engineering research -
FoSER ’10, page 421, Santa Fe, New Mexico, USA, 2010. ACM Press.
doi:10.1145/1882362.1882448.

38

http://dx.doi.org/10.1145/320384.320414
http://dx.doi.org/10.1145/353171.353190
http://adv-r.had.co.nz/
http://dx.doi.org/10.1145/1882362.1882448

	Introduction
	Debloating dynamic applications
	What is bloat?
	How to debloat?
	Debloating with a call graph
	Building a call graph is not trivial
	Techniques for resolving virtual call targets
	One call graph per analysis
	Are we done then?

	Debloating R applications
	Why R?
	The dynamic features that break the building of the call graph - contribution 1
	Affecting the dynamic lookup
	Deferring evaluation using eval and with

	A study of R dynamism: tracing R applications for dynamic features
	The existing R tracing infrastructure
	Adapting the tracer - contribution 2
	Motivating example
	Description of the tracing process
	Work done
	Adapting to R

	Study results: assessing dynamism quantitatively and qualitatively
	Set-up
	Results

	Future works
	Plugging the call graph into the R compiler infrastructure
	Statically determining dynamic usages
	Further adapting the call graph algorithms
	Less dynamism

	Bibliography

