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ABSTRACT
In the context of the classification task of data mining or
machine learning, hierarchical feature selection methods ex-
ploit hierarchical relationships among features in order to
select a subset of features without hierarchical redundancy.
Hierarchical feature selection is a new research area in clas-
sification research, since nearly all feature selection methods
ignore hierarchical relationships among features. This paper
proposes two methods for constructing a network of features
to be used by a Bayesian Network Augmented Näıve Bayes
(BAN) classifier, in datasets of aging-related genes where
Gene Ontology (GO) terms are used as hierarchically re-
lated predictive features. One of the BAN network construc-
tion method relies on a hierarchical feature selection method
to detect and remove hierarchical redundancies among fea-
tures (GO terms); whilst the other BAN network construc-
tion method simply uses a conventional, flat feature selection
method to select features, without removing the hierarchical
redundancies associated with the GO. Both BAN network
construction methods may create new edges among nodes
(features) in the BAN network that did not exist in the orig-
inal GO DAG (Directed Acyclic Graph), in order to preserve
the generalization-specialization (ancestor-descendant) rela-
tionship among selected features. Experiments comparing
these two BAN network construction methods, when using
two different hierarchical feature selection methods and one
flat feature selection method, have shown that the best re-
sults are obtained by the BAN network construction method
using one type of hierarchical feature selection method, i.e.,
select Hierarchical Information-Preserving features (HIP).

Categories and Subject Descriptors
[Computing methodologies]: Machine learning—Machine
learning algorithms, Machine learning approaches, Learning
in probabilistic graphical models, Bayesian network models
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1. INTRODUCTION
This work addresses the classification task of data mining
or machine learning, where the set of instances to be clas-
sified represents aging-related genes, the predictive features
describing those genes are Gene Ontology terms (describing
functions or properties of genes) [15] and the binary class
variable (whose value is to be predicted) indicates if an in-
stance is a “pro-longevity” or “anti-longevity” gene. Pro-
longevity genes are defined as those genes whose decreased
expression (due to knock-out, mutations or RNA interfer-
ence) reduces lifespan, and/or those whose over-expression
extends lifespan; vice versa, anti-longevity genes are defined
as the genes whose decreased expression extends lifespan,
and/or those whose over-expression decreases it [17].

Feature selection methods aim at improving the predictive
accuracy of a classification algorithm by removing redundant
or irrelevant features (attributes) [12]. We focus on feature
selection methods executed in a data pre-processing phase,
before building the classification model that will be used to
classify new instances (in the actual classification phase).
Pre-processing feature selection methods can be categorized
into filter and wrapper methods. Filter methods evaluate
the quality of feature subsets by using an evaluation func-
tion that is independent from the classification algorithm to
be used in the classification phase. By contrast, wrapper
methods evaluate the quality of feature subsets by using an
evaluation function which is specifically based on the predic-
tive performance of the classification algorithm to be used
in the classification phase. In this work we focus on the fil-
ter approach, since it is much more efficient (faster) than
the wrapper approach – because in the wrapper approach
the classification algorithm has to be run a large number of
times, once for each candidate feature subset being evalu-
ated, which is very time-consuming.

There are a large number of pre-processing feature selection
methods proposed in the literature, but nearly all of them
are flat methods in the sense that they implicitly assume



that there is no hierarchical relationship among the set of
features. By contrast, in this work we focus on a new type
of feature selection methods, here called hierarchical fea-
ture selection methods, which take into account hierarchical
generalization-specialization relationships among features in
order to perform a more effective feature selection process by
detecting and removing hierarchical redundancies (a term to
be precisely defined later) among features.

To the best of our knowledge, our previous works [16, 17]
seem to be the first two papers proposing hierarchical fea-
ture selection methods for the classification task. Most of
those hierarchical feature selection methods work with the
well-known and simple Näıve Bayes classification algorithm,
which assumes that features are independent from each other
given the class value. However, one of the methods pro-
posed in [16] was a more sophisticated Bayesian network
augmented Näıve Bayes (BAN) algorithm, which allows each
feature (represented as a node in the network) to depend on
one or more features (represented as parent nodes in the
network). In that algorithm, the network topology was di-
rectly defined by the hierarchical relationships among the
Gene Ontology (GO) terms used as predictive features, i.e.,
there was an edge in the BAN network for each edge in the
GO graph, as will be explained in more detail later. We re-
fer to this type of algorithm as “GO-hierarchy-aware BAN”
(GO–BAN).

The contribution of this current work is to propose a new ap-
proach for constructing the feature (GO term) network used
by the GO–BAN algorithm. The basic idea of this approach
consists of two steps. First, we use a feature selection algo-
rithm to select features. Second, we construct the GO–BAN
network by using new artificially created edges that directly
connect features (nodes) which are hierarchically related but
are distant (separated by more than one edges) in the GO
graph. That is, we create a new edge that directly connects
each selected feature (node) to its nearest selected ancestor,
even though that ancestor might be more than one edges
away in the original graph. We report the results of exper-
iments evaluating this new approach for constructing the
GO–BAN network when using the two most successful hier-
archical feature selection methods proposed in [17]; as well
as when using a well-known flat feature selection method,
Correlation-based Feature Selection (CFS) [9], used here as
a baseline method.

It is worth mentioning that the Gene Ontology is a popu-
lar resource for protein or gene function annotation, using
a unified and standardized vocabulary to describe the func-
tions of genes [15]. In terms of using GO terms as features
on aging-related research, Freitas et al. [7] used GO terms
and protein-protein interaction information as features to
classify DNA repair genes into aging-related or non-aging
related categories; whilst Fang et al. [6] used GO terms
and protein-protein interaction information to classify aging-
related genes into DNA repair or non-DNA repair genes.
Note, however, that these works treated GO terms as flat
features, rather than directly exploiting the GO terms’ hi-
erarchical generalization-specialization relationships to per-
form more effective feature selection, as is the case in this
current work.
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Figure 1: Example of A Small DAG of Features

This paper is organized as follows. Section 2 briefly re-
views the Gene Ontology and its hierarchical structure, Gene
Ontology-based Bayesian Network Augmented Näıve Bayes
(GO–BAN), eager learning and lazy learning, flat and hier-
archical feature selection methods. Section 3 describes the
newly proposed methods to construct the feature network
used by the GO–BAN classifier. Section 4 presents the ex-
perimental methods and computational results, followed by
discussion in Section 5. Finally, a conclusion and future
research directions are presented in Section 6.

2. BACKGROUND
2.1 The Hierarchical Structure of the Gene

Ontology
The Gene Ontology (GO) is a major and very popular bioin-
formatics resource that uses structured and unified vocab-
ularies to describe gene functions [15]. The GO consists of
three types of GO terms: biological process, molecular func-
tion and cellular component terms. Majority of GO terms
are structured by an “is-a” relationship, represented by a Di-
rected Acyclic Graph (DAG). Each GO term is represented
by a node in a DAG, and an edge from node A to node
B indicates that A is a parent of (more generic than) B,
or conversely, B is a specific case of the more generic A.
For instance, in the DAG of biological process GO terms,
term GO:0008150 (biological process) is the root term and
parent of term GO:0008152 (metabolic process), which is in
turn the parent of term GO:0006807 (nitrogen compound
metabolic process).

In this work, we use GO terms as binary features which take
values “1” or “0”, indicating whether or not (respectively)
each GO term is annotated for an individual aging-related
gene. The type of “is-a” hierarchical relationship among the
GO terms leads to some redundancies in hierarchically re-
lated feature values. More precisely, for each instance, if the
value of a given feature is “1” in that instance, this implies
that the values of all its ancestor features (in the GO DAG)
are also “1” in that instance. Conversely, if the value of a
given feature is “0” in an instance, this implies that the val-
ues of all its descendent features are also“0” in that instance.
For example, consider Figure (1), an example DAG of hier-
archically organized features where the figures on the left
side of nodes denote the relevance values (discussed later)
and the figures on the right side of nodes denote the current
instance’s values. Since node E has value “1”, both its an-
cestor nodes B and A also have value “1”; and since node D



has value “0”, both its descendant nodes G and H also have
value “0”.

2.2 Gene Ontology–based Bayesian Network
Augmented Naïve Bayes (GO–BAN)

Bayesian Network Augmented Näıve Bayes (BAN) is a type
of semi-Näıve Bayesian classification algorithm that allows
features to be dependent on other features. In a BAN for
the classification task of data mining, each node in the net-
work represents a feature (a GO term in our case) and each
edge pointing from a node A to another node B represents
that feature B depends on its parent feature A [8, 16]. In
addition, the class variable is a parent of all the other nodes
(all features) in the network. In order to classify a new in-
stance, BAN uses Equation (1) to compute the probability
of each class value y given the values of the features in the
instance, and assign to the instance the class value with the
highest probability.

P (y|x1, x2, ..., xn) ∝ P (y)

n∏
i=1

P (xi|Par(xi), y) (1)

In Equation (1), the probability of a class value y given all
feature values x1, ..., xn of an instance is estimated by cal-
culating the product of the prior probability of class value y
times the probability of each feature value xi given its par-
ent feature(s) Par(xi) and y.

As proposed in [16], in the original Gene Ontology-based
Bayesian Network Augmented Näıve Bayes (GO–BAN), the
edges connecting features in the BAN network are exactly
the edges pre-defined in the GO DAG. That is, for each node
(feature) xi in the BAN network, the parents of that node
in that network are the GO terms which are parents of the
GO term corresponding to xi in the GO DAG, plus the class
variable (which is a parent of all nodes in a BAN).

2.3 Eager Learning and Lazy Learning
Eager learning methods build a classifier in the training
phase, before observing any testing instance to be classified.
Then, the built classifier is used for classifying all testing in-
stances. In contrast, lazy learning methods build a classifier
only in the testing phase, when a new testing instance to be
classified is observed [1,14]. Hence, an individual classifier is
built for each testing instance. Lazy learning methods are in
general slower than eager learning methods, but lazy meth-
ods have the advantage of building a classifier specifically
adapted to the feature values in each testing instance.

2.4 Flat and Hierarchical Feature Selection
Methods

Conventional feature selection methods are“flat”in the sense
that they ignore the hierarchical dependencies among the
features. In this work, for the purpose of comparison with hi-
erarchical feature selection methods, we use one well-known
flat feature selection named Correlation-based Feature Selec-
tion (CFS), which is based on the eager learning approach
and on the principle of selecting the feature subset whose
features have strong correlations with the class variable but
weak correlations among each other [9]. Hence, CFS tries
to minimize feature redundancy by favouring the selection
of a feature subset with low correlation among the selected

features, but that correlation is measured across the entire
training set – using a conventional eager learning approach.
This kind of feature redundancy is different from the kind
of hierarchical feature redundancy considered by hierarchi-
cal feature selection methods (see below), which refers to
feature values in a specific testing instance being classified.

Unlike flat feature selection methods like CFS, hierarchical
feature selection methods exploit hierarchical dependencies
among feature values in each testing instance in order to
remove hierarchical redundancy. In this work, hierarchical
feature redundancy is defined as the case where two features
are located in the same path from a root to a leaf node in
the DAG and have the same value in the current testing
instance being classified. For example, in Figure (1), feature
B is redundant with respect to feature A, because feature A
is the parent of B, and both of them have the value “1”.

There are few papers in the area of hierarchical feature se-
lection, mainly focusing on tasks other than the classifica-
tion task addressed in this work. For example, Alexa et
al. [2] exploits the generalization-specialization relationship
among GO terms to select “enriched” GO terms, i.e., terms
that occur significantly more often than expected. In addi-
tion, other works have proposed hierarchical feature selec-
tion methods for the task of linear regression [11,13,18,19],
where the variable to be predicted is continuous. In the con-
text of the classification task, our previous papers [16, 17]
proposed three hierarchical feature selection methods that
were used to select features for the Näıve Bayes classifier,
namely: Selecting Hierarchical Information Preserved Fea-
tures (HIP), Selecting Most Relevant Features (MR) and the
Hybrid of HIP and MR (HIP–MR).

All these three methods are based on the lazy learning ap-
proach, and the first two methods have shown the best pre-
dictive performance. Hence, here we briefly discuss only
HIP and MR. The HIP method selects only the core fea-
tures whose values in the current instance logically imply
the values of all other features in that instance, due to the
“is-a” relationship explained earlier. For example, the core
features for the example DAG shown in Figure (1) are D, E,
F, I and J. In terms of feature D, its value “0” in the current
instance logically implies that its descendant features G and
H also have value “0” in that instance. Analogously, feature
E’s value “1” implies that its ancestor features B and A also
have value “1”.

Unlike HIP, MR considers not only the “is-a” relationship
among features, but also a measure of the relevance (predic-
tive power) of features. For each path from a root node to
a leaf node in the feature DAG, MR divides the features in
that path into two sets, the set of features with value“1”and
the set of features with value “0”; and then it selects only
the maximum relevance feature in each set. For the example
DAG shown in Figure (1), MR selects features B, C, G, H,
I and J. Feature B has the maximum relevance value among
two sets of features with value “1”: (A, B, E) and (A, B, F).
Analogously, features G and H have the maximum relevance
value among the sets of features with value “0” – (D, G) and
(D, H), respectively.

3. PROPOSED METHODS



In this paper, we evaluate the predictive performance of four
different versions of the Gene Ontology-based Bayesian Net-
work Augmented Näıve Bayes (GO–BAN) method, namely:
(a) the original GO–BAN method proposed in [16], where
the BAN network directly uses the GO DAG induced by the
input features and no feature selection method is used; (b)
GO–BAN where the BAN network is constructed based on
the result of the hierarchical feature selection method HIP;
(c) GO–BAN where the BAN network is constructed based
on the result of the hierarchical feature selection method
MR; (d) GO–BAN where the BAN network is constructed
based on the result of the flat feature selection method CFS.

Note that in the approaches (b), (c), (d), the construction of
the BAN network is not trivial, because the feature selection
methods can select features that are hierarchically related
(one is the ancestor or descendant of the other) by are not
directly connected by an edge in the GO DAG. For instance,
in Figure (1), a method could select features A and D. In
such cases, if the BAN network contained only edges occur-
ring in the GO DAG, there would be no edge connecting A
and D in the BAN, suggesting these features are indepen-
dent, which would be misleading, given their hierarchical
dependency. Therefore, it is necessary to create artificial
edges, not present in the GO DAG, which are nonetheless
based on hierarchical dependencies represented in the GO
DAG, so that these artificial edges can be used in the BAN
network. Hence, we propose two methods for construct-
ing the BAN network based on the features selected in a
pre-processing phase and on the structure of the GO DAG.
The first BAN network construction method was designed
for the case where features have been selected by an eager
feature selection method (CFS in this work, but other meth-
ods could be used). The second BAN network construction
method was designed for the case where features have been
selected by a lazy feature selection method (HIP and MR in
this work).

3.1 Correlation-based Feature Selection with
Gene Ontology-based Bayesian Network
Augmented Naïve Bayes (CFS+GO–BAN)

Correlation-based Feature Selection (CFS), as an eager met-
hod, selects a single subset of features for classifying all test-
ing instances. To construct the feature network of the GO–
BAN algorithm from the set of features selected by CFS in
a pre-processing phase, we propose the method described in
Algorithm (1).

In the first phase of Algorithm (1), in lines (1)–(3), the fea-
ture DAG, training dataset and testing dataset will be ini-
tialized. The initial feature DAG simply contains one node
for each GO term (feature) in the dataset and all the edges
in the GO DAG where both GO terms connected by the edge
are used as features in the dataset. Next, in line (4), CFS
conducts flat feature selection; then the set of selected fea-
tures XCFS will be used to re-create the training and testing
datasets, in lines (5)–(6).

The second phase (lines (7)–(11)) of CFS+GO–BAN (Al-
gorithm (1)) re-constructs the edges between selected fea-
tures according to the pre-defined hierarchical relationships
in the DAG created in line (1). In details, for each feature xs
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Figure 2: Nodes Selected by CFS and Corresponding Re-
constructed Edges According to Gene Ontology Hierarchy
(CFS+GO–BAN)

selected by CFS, the algorithm considers all paths leading
from a root node of the DAG to xs. As shown in lines (8)–
(10), for each of those paths, the algorithm finds the closest
ancestor of xs in that path that was also selected by CFS, de-
noted (Closest Selected Ancestor) CloSelAnc(xs), and adds
CloSelAnc(xs) to the set of parents of xs in the GO–BAN
network; i.e., it adds an edge pointing from CloSelAnc(xs) to
xs on the GO–BAN network. In the third and last phase of
Algorithm (1), lines (12)–(14), each testing instance is clas-
sified using the previously constructed GO–BAN network.

Algorithm 1 Correlation-based Feature Selection with
Gene Ontology-based Bayesian Network Augmented Näıve
Bayes (CFS+GO–BAN)

1: Initialize DAG with all features in Dataset;
2: Initialize TrainSet;
3: Initialize TestSet;
4: XCFS = CFS(TrainSet);
5: Create TrainSet CFS with features XCFS ;
6: Create TestSet CFS with features XCFS ;
7: for each xs ∈ XCFS do
8: for each path k in DAG from root to xs do
9: Par(xs)← Par(xs) ∪ CloSelAnc(xs);

10: end for
11: end for
12: for each Inst CFS<w> ∈ TestSet CFS do
13: Classify(Par(XCFS), TrainSet CFS,

Inst CFS<w>);
14: end for

To further explain how Algorithm (1) works, Figure (2)
shows an example DAG where the selected nodes (features)
are shown in black and the edges represent generalization-
specialization relationships among GO terms (features) in
the GO DAG. The dashed edges are the edges that are in-
cluded in the GO DAG but are not included in the con-
structed GO–BAN network. The solid edges are the edges
included in the constructed GO–BAN network; some of these
solid edges represent parent-child relationships between se-
lected features in the GO DAG, whilst other solid edges rep-
resent new edges which were artificially created to represent
a directed connection between two selected features, some of
them are separated by two or more edges in a given path of



the GO DAG. Note that a selected node can have more than
one selected ancestor nodes in an individual path, e.g., node
G has two selected ancestors, B and A. In this case only its
closest selected ancestor node (B) – in the path A-B-D-G
– will be assigned to the set of parent nodes of G in lines
(8)–(10) of Algorithm (1). Analogously, only the closest se-
lected ancestor of node I in the path A-B-E-I, namely node
B, will be added to the set of parents of node I. Furthermore,
node F is assigned two parent nodes, namely B, which is F’s
closest selected ancestor in path A-B-F, and A, which is F’s
only selected ancestor in path A-C-F.

Note that, CFS being an eager and flat feature selection
method, cannot guarantee the elimination of hierarchical re-
dundancies (a concept discussed in Section 2.4) between fea-
tures. Therefore, CFS can select features that have the same
value (either “1” or “0”) in an instance and are located in the
same path in the GO DAG. In the example DAG in Figure
(2), CFS has selected features A and B, which is a case of
hierarchical redundancy (the value “1” of B in an instance
implies the value “1” of A in that instance). Such hierarchi-
cal redundancies in the GO–BAN network are avoided by
using hierarchical feature selection algorithms, as discussed
in the next Section.

3.2 Hierarchical Feature Selection with Gene
Ontology-based Bayesian Network Augm-
ented Naïve Bayes (HFS+GO–BAN)

Recall that the Hierarchical Feature Selection (HFS) meth-
ods used in this work perform lazy learning, i.e., they select
a set of features specific for each testing instance. We evalu-
ate the predictive performance of GO–BAN when using two
lazy HFS methods in a pre-processing phase, i.e., HIP and
MR (as reviewed on Section 2.4). Hence, in this Section we
propose another method to construct the GO–BAN network
from the set of features selected by HIP or MR. Note that
the proposed method is generic enough to be used with any
other lazy HFS method.

Algorithm (2) works in a way analogous to Algorithm (1).
The core part of both algorithms consists of finding the clos-
est selected ancestor of each selected feature xs in each path
of the GO DAG and adding that ancestor to the set of par-
ents of feature xs. The main difference between these two
algorithms is as follows. Since Algorithm (1) uses an ea-
ger feature selection algorithm, its core part (the loop in
lines (7)–(11)) is performed before processing the testing in-
stances in lines (12)–(14). By contrast, since Algorithm (2)
uses a lazy feature selection method, both the use of a HFS
method in line (5) and the algorithm’s core part (the loop in
lines (8)–(12)) are performed within a loop over all testing
instances. Another difference is that line (9) of Algorithm
(1) involves finding the closest selected ancestor of selected
feature xs in path k; whilst the corresponding line (10) of
Algorithm (2) is somewhat simpler; it is not necessary to
select the closest ancestor of xs among several ancestors,
simply because xs will have at most one selected ancestor
feature. This is due to the fact that the HFS method ex-
ecuted in line (5) (i.e., HIP or MR) eliminates hierarchical
redundancies among features.
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Figure 3: Nodes Selected by HIP and Corresponding Re-
constructed Network According to Gene Ontology Hierarchy
(HIP+GO–BAN)

The initialization phase of HFS+GO–BAN (lines (1)–(3) in
Algorithm (2)) is the same as the initialization phase of Al-
gorithm (1). Then, for each testing instance (Inst<w>), a
lazy learning HFS method (either HIP or MR) will be run
(line (5) in Algorithm (2)). Next, the set of hierarchically
selected features XHFS is used to re-create the new train-
ing dataset TrainSet HSF and the current testing instance
Inst HSF<w>. In lines (8)–(12), the GO–BAN network is
constructed. For each selected feature xs in XHSF , for each
path in the DAG from a root node to xs, the only selected
ancestor of xs (if such ancestor exists) is added to the set of
parents of xs in the GO–BAN network in line (10).

Algorithm 2 Hierarchical Feature Selection with Gene
Ontology-based Bayesian Network Augmented Näıve Bayes
(HFS+GO–BAN)

1: Initialize DAG with all features in Dataset;
2: Initialize TrainSet;
3: Initialize TestSet;
4: for each Inst<w> ∈ TestSet do
5: XHFS = HFS(DAG, TrainSet, Inst<w>);
6: Create TrainSet HFS with features XHFS ;
7: Create Inst HFS<w> with features XHFS ;
8: for each xs ∈ XHFS do
9: for each path k in DAG from root to xs do

10: Par(xs)← Par(xs) ∪ SelAnc(xs);
11: end for
12: end for
13: Classify(Par(XHFS), TrainSet HFS,

Inst HFS<w>);
14: end for

To further explain how Algorithm (2) works when HIP is
used, consider the example DAG in Figure (3), where the
nodes selected by HIP are marked in black (nodes D, E, I,
F and J). Each of these nodes has at most one selected an-
cestor node in each path from the root to that node. Hence,
Algorithm (2) assigns node E as the parent of node I in path
A-B-E-I; node E as the parent of node J in path A-B-E-J;
node F as the parent of node J in paths A-B-F-J and A-C-
F-J. Node D is not assigned any parent, since none of its
ancestor nodes in the DAG were selected by HIP.



A

B C

D E F

G H I J

1

1 1

0 1 1

0 0 0 0

0.55

0.63 0.67

0.35 0.42 0.45

0.48 0.39 0.35 0.35

Figure 4: Nodes Selected by MR and Corresponding Re-
constructed Network According to Gene Ontology Hierarchy
(MR+GO–BAN)

To further explain how Algorithm (2) works when MR is
used, consider the DAG in Figure (4), where again the se-
lected nodes are marked in black (nodes B, G, H, C, I and
J). Again, each selected node has at most one selected an-
cestor node in each path from the root to that node. Hence,
Algorithm (2) assigns node B as the parent of node G in
path A-B-D-G; node B as parent of node H in paths A-B-D-
H and A-B-H; node B as parent of node I in path A-B-E-I;
node B as parent of node J in paths A-B-E-J and A-B-F-J;
node C as parent of node J in path A-C-F-J.

4. COMPUTATIONAL EXPERIMENTS
4.1 Aging-related Datasets
We create the datasets by integrating aging-related genes
information about four model organisms, i.e., Caenorhab-
ditis elegans, Drosophila melanogaster, Mus musculus and
Saccharomyces cerevisiae, from the Human Ageing Genomic
Resources (HAGR) GenAge database (Build 16) [3] and the
Gene Ontology (GO) database (version: 2013-08-07) [15].
The detailed methods for creating the datasets are described
in [16,17], where only biological process GO terms were used
as predictive features. In this paper, the datasets have been
extended, and consist of all three types of GO terms, i.e.,
biological process (BP), molecular function (MF), cellular
component (CC), as well as different combinations of them,
i.e., BP and MF terms, BP and CC terms, MF and CC
terms, and finally using all BP, MF and CC terms as pre-
dictive features. More detailed characteristics about all the
created datasets is shown in Table (1), where # F, # E, and
# I denote the number of input features, edges in the GO
DAG, and instances, respectively. Note that the root terms
for the DAGs of BP (GO:0008150), MF (GO:0003674), and
CC (GO:0005575) GO terms have been removed from the
corresponding datasets, since they have no predictive power.

4.2 Experimental Methodology
There are 4 methods being compared, namely: GO–BAN
without feature selection (as a baseline method), GO–BAN
based on features selected by the HIP method, GO–BAN
based on features selected by the MR method, and GO–BAN
based on features selected by the CFS method. We used a
well-known 10-fold cross validation procedure to evaluate
the performance of classifiers as measured by their GMean
value, which is calculated by the square root of the product
of Sen. and Spe., i.e., GMean =

√
Sen.× Spe.. Sen. de-

notes proportion of positive (pro-longevity) instances that

Table 1: Characteristics about the Aging-related Datasets

Caenorhabditis elegans (Worm)
BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

# F 830 218 143 1048 973 361 1191
# E 1437 259 217 1696 1654 476 1913
# I 528 279 254 553 557 432 572

Drosophila melanogaster (Fly)
BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

# F 698 130 75 828 773 205 903
# E 1190 151 101 1341 1291 252 1442
# I 127 102 90 130 128 123 130

Mus musculus (Mouse)
BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

# F 1039 182 117 1221 1156 299 1338
# E 1836 205 160 2041 1996 365 2201
# I 102 98 100 102 102 102 102

Saccharomyces cerevisiae (Yeast)
BP MF CC BP+MF BP+CC MF+CC BP+MF+CC

# F 679 175 107 854 786 282 961
# E 1223 209 168 1432 1391 377 1600
# I 215 157 147 222 234 226 238

are correctly classified as positive; while Spe. denotes the
proportion of negative (anti-longevity) instances that are
correctly classified as negative. The GMean measure is suit-
able to evaluate classifiers applied to datasets where there
is a significantly imbalanced distribution of classes, which is
the case in some of our datasets. In such imbalanced class
datasets, maximizing GMean is challenging because there is
a trade-off between Sen. and Spe.

4.3 Experimental Results
Table (2) compares the predictive performance of three fea-
ture selection methods working with GO–BAN and GO–
BAN without feature selection. In general, HIP+GO–BAN
shows the best performance among all 4 methods, being
ranked as the best method 23 (out of 28) times (GMean
values in boldface). In terms of the average ranks for those
methods, HIP obtains the best rank of 1.2 on average over
the 28 datasets, which is better than the average rank of
MR(2.2), CFS(2.8) and no feature selection (3.8).

We performed a significance test on the predictive accuracies
of different feature selection methods by adopting the Fried-
man test and Holm post-hoc method. The Friedman test is
a non-parametric statistical test based on the ranks of each
classifier’s predictive performance on each dataset [5, 10],
and the Holm post-hoc method is used for coping with the
multiple-comparison problem that arises when applying sig-
nificance tests to multiple pairwise method comparisons [4].
We used HIP+GO–BAN as the control (best) feature se-
lection method to be compared with the other methods.
The detailed results are shown in Table (3), where column
2 shows the average rank of each method (recall that the
lower the rank, the better the predictive performance); col-
umn 3 shows the calculated p-value; column 4 shows the
adjusted significance level (α). In column 3, a boldfaced
value indicates that the p-value is lower than the corre-
sponding adjusted significance level, which means the dif-
ference of GMean values between HIP+GO–BAN and the
corresponding method is statistically significant. The out-
comes of the significant tests show that HIP+GO–BAN sig-
nificantly outperforms MR+GO–BAN, CFS+GO–BAN and
GO–BAN without feature selection.



Table 2: Predictive Accuracy for GO–BAN with Hierarchical HIP, MR, and Flat CFS Method

Feature GO–BAN without
Hier. HIP + GO–BAN Hier. MR + GO–BAN Flat CFS + GO–BAN

Types Feature Selection

Caenorhabditis elegans (Worm) Datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 28.7 ± 2.2 86.5 ± 1.8 49.8 54.5 ± 3.2 73.4 ± 2.7 63.2 52.2 ± 3.1 74.0 ± 2.2 62.2 45.0 ± 2.6 80.9 ± 2.5 60.3

MF 34.7 ± 4.5 66.5 ± 4.5 48.0 43.8 ± 4.5 52.5 ± 5.2 48.0 35.5 ± 3.0 63.3 ± 3.4 47.4 31.4 ± 6.6 70.9 ± 6.0 47.2

CC 33.7 ± 4.5 81.4 ± 2.2 52.4 55.1 ± 5.0 63.5 ± 4.0 59.2 40.8 ± 4.3 73.1 ± 2.6 54.6 35.7 ± 4.3 74.4 ± 3.9 51.5

BP+MF 30.0 ± 2.7 84.7 ± 1.7 50.4 55.9 ± 3.2 74.1 ± 2.5 64.4 63.8 ± 2.2 73.2 ± 2.1 68.3 52.1 ± 3.7 77.6 ± 2.2 63.6

BP+CC 29.1 ± 2.1 86.6 ± 1.7 50.2 58.7 ± 3.6 72.7 ± 2.5 65.3 54.0 ± 2.8 74.7 ± 2.3 63.5 47.4 ± 2.7 79.1 ± 1.5 61.2

MF+CC 35.3 ± 2.9 80.2 ± 3.2 53.2 55.9 ± 3.1 64.5 ± 3.6 60.0 47.1 ± 3.4 70.2 ± 3.9 57.5 46.5 ± 4.1 72.1 ± 4.0 57.9

BP+MF+CC 31.2 ± 2.9 85.2 ± 1.5 51.6 58.1 ± 3.8 73.4 ± 2.6 65.3 55.3 ± 4.0 72.0 ± 2.6 63.1 50.7 ± 4.1 75.4 ± 2.1 61.8

Drosophila melanogaster (Fly) Datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 100.0 ± 0.0 0.0 ± 0.0 0.0 75.8 ± 4.4 52.8 ± 8.6 63.3 80.2 ± 3.5 44.4 ± 10.2 59.7 78.0 ± 4.1 25.0 ± 7.8 44.2

MF 91.2 ± 3.3 26.5 ± 3.4 49.2 64.7 ± 7.2 50.0 ± 10.0 56.9 80.9 ± 5.2 47.1 ± 9.1 61.7 85.3 ± 4.3 32.4 ± 7.1 52.6

CC 93.5 ± 2.6 28.6 ± 11.1 51.7 79.0 ± 6.6 46.4 ± 11.4 60.5 85.5 ± 4.6 42.9 ± 10.2 60.6 88.7 ± 3.5 46.4 ± 11.4 64.2

BP+MF 97.8 ± 1.5 0.0 ± 0.0 0.0 72.8 ± 3.9 63.2 ± 9.3 67.8 80.4 ± 3.7 44.7 ± 8.2 59.9 83.7 ± 3.5 28.9 ± 6.2 49.2

BP+CC 98.9 ± 1.1 0.0 ± 0.0 0.0 73.6 ± 4.7 62.2 ± 8.4 67.7 80.2 ± 4.1 51.4 ± 10.9 64.2 82.4 ± 4.4 40.5 ± 10.2 57.8

MF+CC 95.3 ± 1.9 31.6 ± 5.3 54.9 80.0 ± 6.2 60.5 ± 7.6 69.6 83.5 ± 4.9 55.3 ± 8.2 68.0 90.6 ± 3.0 52.6 ± 4.5 69.0

BP+MF+CC 98.9 ± 1.1 2.6 ± 2.5 16.0 73.9 ± 4.7 68.4 ± 5.3 71.1 81.5 ± 3.7 63.2 ± 7.7 71.8 88.0 ± 2.6 44.7 ± 8.2 62.7

Mus musculus (Mouse) Datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 98.5 ± 1.4 26.5 ± 5.0 51.1 75.0 ± 5.1 70.6 ± 5.1 72.8 88.2 ± 4.7 44.1 ± 7.7 62.4 85.3 ± 4.3 44.1 ± 5.9 61.3

MF 90.8 ± 3.3 27.3 ± 10.0 49.8 84.6 ± 3.0 45.5 ± 12.2 62.0 87.7 ± 3.0 39.4 ± 10.6 58.8 87.7 ± 2.9 30.3 ± 9.6 51.5

CC 86.4 ± 3.3 35.3 ± 11.2 55.2 80.3 ± 3.0 50.0 ± 10.1 63.4 78.8 ± 3.8 44.1 ± 11.1 58.9 78.8 ± 3.3 38.2 ± 12.6 54.9

BP+MF 98.5 ± 1.4 29.4 ± 6.4 53.8 69.1 ± 5.8 70.6 ± 8.1 69.8 86.8 ± 4.0 41.2 ± 9.6 59.8 89.7 ± 2.2 41.2 ± 8.0 60.8

BP+CC 98.5 ± 1.4 29.4 ± 6.4 53.8 66.2 ± 6.0 76.5 ± 8.0 71.2 77.9 ± 5.3 52.9 ± 9.6 64.2 82.4 ± 5.6 47.1 ± 11.7 62.3

MF+CC 91.2 ± 3.2 26.5 ± 8.8 49.2 79.4 ± 4.2 61.8 ± 12.5 70.0 83.8 ± 5.0 58.8 ± 13.1 70.2 79.4 ± 4.8 44.1 ± 9.6 59.2

BP+MF+CC 98.5 ± 1.4 26.5 ± 10.5 51.1 70.6 ± 6.0 76.5 ± 8.8 73.5 86.8 ± 4.0 50.0 ± 6.9 65.9 83.8 ± 3.3 52.9 ± 8.4 66.6

Saccharomyces cerevisiae (Yeast) Datasets

Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM Sen. Spe. GM

BP 0.0 ± 0.0 100.0 ± 0.0 0.0 63.3 ± 6.0 76.8 ± 3.1 69.7 33.3 ± 8.6 89.7 ± 2.5 54.7 20.0 ± 5.4 94.6 ± 1.9 43.5

MF 0.0 ± 0.0 99.2 ± 0.8 0.0 23.1 ± 6.7 80.2 ± 3.9 43.0 0.0 ± 0.0 90.8 ± 3.0 0.0 0.0 ± 0.0 94.7 ± 1.6 0.0

CC 12.5 ± 6.1 99.2 ± 0.8 35.2 29.2 ± 10.2 83.7 ± 4.1 49.4 20.8 ± 6.9 93.5 ± 2.7 44.1 20.8 ± 7.5 93.5 ± 1.6 44.1

BP+MF 0.0 ± 0.0 100.0 ± 0.0 0.0 73.3 ± 6.7 71.9 ± 3.0 72.6 23.3 ± 7.1 89.6 ± 2.6 45.7 26.7 ± 8.3 96.4 ± 1.1 50.7

BP+CC 0.0 ± 0.0 100.0 ± 0.0 0.0 63.3 ± 10.5 78.4 ± 2.9 70.4 40.0 ± 8.3 87.3 ± 2.5 59.1 26.7 ± 6.7 96.6 ± 1.1 50.8

MF+CC 0.0 ± 0.0 100.0 ± 0.0 0.0 41.4 ± 8.3 80.7 ± 3.0 57.8 13.8 ± 6.3 88.8 ± 2.3 35.0 13.8 ± 6.3 93.4 ± 1.5 35.9

BP+MF+CC 0.0 ± 0.0 100.0 ± 0.0 0.0 76.7 ± 7.1 73.6 ± 2.8 75.1 33.3 ± 5.0 87.0 ± 2.5 53.8 23.3 ± 8.7 94.2 ± 1.6 46.8



Table 3: Statistical Test Results of the Algorithms’ GMean
Values According to the Non-parametric Friedman Test with
the Holm Post-hoc Test at the α = 0.05 Significance Level

Algorithms Ave. Rank P-value Adjusted α

HIP+GO–BAN (ctrl) 1.2 – –

MR+GO–BAN 2.2 3.74 E-03 0.050

CFS+GO–BAN 2.8 3.52 E-06 0.025

No FS+GO–BAN 3.8 4.85 E-14 0.017

5. DISCUSSION
Table (4) reports a number of statistics about the size of the
constructed GO–BAN’s DAGs, when using different feature
selection methods. More precisely, the columns referring to
GO–BAN without feature selection report the original num-
ber of features (F) and edges (E) in the feature DAG for
each dataset, and the average dimensionality of a conditional
probability table (CPT) in that DAG, denoted D(CPT ). To
calculate D(CPT ), note that each node is associated with
a number of variables given by its number of parent feature
nodes plus two – accounting for one class variable (which is
a parent of all feature nodes) and the feature represented by
the node itself. Since all (feature and class) variables can
take two values, the dimensionality of each CPT is given by
Equation (2), where #Par is the number of parent features.
The table columns referring to GO–BAN using HIP and MR
as feature selection methods report the average number of
selected features (AvF), the average number of edges in
the constructed DAG (AvE), and the average CPT dimen-
sionality in the DAG for the corresponding feature selection
method, where each average is computed over the DAGs con-
structed for all testing instances (since HIP and MR select
a specific feature set for each testing instance) across all 10
cross-validation interactions. Finally, in the table columns
referring to GO–BAN using the feature selection method
CFS, the average is computed over the 10 cross-validation
iterations only, since in each iteration CFS selects the same
set of features to classify all available testing instances.

D(CPT ) = 2(#Par+2) (2)

In general, the three feature selection methods selected sub-
stantially fewer features and so constructed GO–BAN DAGs
with substantially fewer edges, compared with the origi-
nal DAGs (without performing feature selection). More
precisely, among the three feature selection methods, CFS
selected the smallest number of features in 27 out of the
28 datasets (the only exception is the dataset for S. cere-
visiae with MF features). MR selected the largest num-
ber of features in all 28 datasets; and the number of fea-
tures selected by HIP is in general an intermediate value be-
tween the numbers selected by the other two methods. How-
ever, HIP+GO–BAN constructed DAGs having in general
fewer edges than the DAGs constructed by MR+GO–BAN
and CFS+GO–BAN. Figure (5) shows the average CPT di-
mensionality (D(CPT )) in the DAGs constructed by each
method, where the average was computed over all the 28
datasets. As shown in this figure, despite CFS selecting a
smaller feature set than HIP and MR, the CFS+GO–BAN
method constructs DAGs with the largest average CPT di-
mensionality (D(CPT )) value of 5.65, among the three fea-

ture selection methods – although this value is still much
smaller than the value for GO–BAN without feature selec-
tion (14.6). This D(CPT ) value of 5.65 for CFS+GO–BAN
is substantially higher than the D(CPT ) values obtained by
MR+GO–BAN (4.78) and by HIP+GO–BAN (4.26). This
indicates that, although CFS selected the smallest number
of features, on average the features selected by CFS have
a higher number of parent nodes in the constructed DAGs,
leading to the highest D(CPT ) values for CFS among fea-
ture selection methods.

These results are consistent with the discussion in Section
3.1, i.e., the features selected by CFS can have more than
one ancestor features that have the same values and are also
located in the same path in the DAG, constituting a case of
hierarchical redundancy (defined in Section 2.4), a type of
redundancy that is not eliminated by CFS; and this leads to
a higher number of parents per node and so a substantially
higher D(CPT ) value for CFS.

Unlike CFS, both HIP and MR remove the hierarchical re-
dundancy between features, which means there will exist
at most two nodes being selected and at most one depen-
dency being constructed for individual path; and this leads
to substantially lower D(CPT ) values for HIP+GO–BAN
and MR+GO–BAN, by comparison with CFS+GO–BAN.
The reason for HIP+GO–BAN having a smaller D(CPT )
value than MR+GO–BAN is that HIP selected in general
substantially fewer features than MR (as shown in Table
4), which led to substantially smaller numbers of edges and
parent features per node. In particular, the lowest D(CPT )
value of 4.26 obtained by HIP+GO–BAN suggests that most
nodes in the constructed DAG have no parent feature (like
the case of the Näıve Bayes classifier, where each feature is
independent to all other non-class features), since a D(CPT )
value of 4 means a CPT has only four probability values,
arising from the four combinations of two values of the cur-
rent feature and two values of the class variable. The small
size of the CPTs constructed by HIP+GO–BAN suggests
that this method is the one that most mitigates the problem
of over-fitting associated with large CPTs; because the larger
the average dimensionality of CPTs in a constructed DAG,
the larger the number of “parameters” (probability values)
to be estimated from the training data, and the larger the
risk of over-fitting.
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Figure 5: Average D(CPT ) Values for Different Feature
Selection Methods Working with GO–BAN over 28 Datasets



Table 4: Information about Number of Features, Edges and Dimensionalities of CPT Tables

for the Constructed GO–BAN Classifier

Feature GO–BAN Hier. HIP Hier. MR Flat CFS

Types without FS + GO–BAN + GO–BAN + GO–BAN

Caenorhabditis elegans (Worm) Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 830 1437 17.66 69.27 2.19 4.13 145.67 32.21 4.95 42.1 8.5 4.83

MF 218 259 10.32 29.81 2.91 4.40 50.52 9.02 4.73 27.8 6.3 4.91

CC 143 217 14.03 29.73 2.09 4.31 54.98 7.84 4.61 23.3 2.9 4.50

BP+MF 1049 1696 16.13 91.88 4.43 4.20 195.41 31.89 4.69 54.4 10.0 4.74

BP+CC 974 1654 17.12 90.01 3.11 4.15 189.84 32.43 4.73 53.9 11.4 4.88

MF+CC 362 476 11.79 51.85 3.89 4.31 102.00 14.57 4.60 40.0 7.5 4.75

BP+MF+CC 1193 1913 15.88 112.96 5.33 4.19 244.66 38.32 4.66 60.9 10.8 4.72

Drosophila melanogaster (Fly) Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 698 1190 17.28 82.53 3.94 4.21 141.74 19.83 4.66 31.2 5.4 4.77

MF 130 151 10.29 22.87 2.65 4.49 31.76 5.99 4.80 13.3 2.7 4.81

CC 75 101 12.05 20.73 1.58 4.31 27.60 8.39 5.33 14.6 4.6 5.37

BP+MF 829 1341 16.17 120.99 6.39 4.26 172.68 27.38 4.73 31.8 6.4 4.93

BP+CC 774 1291 16.76 100.38 5.02 4.21 167.14 29.84 4.83 33.5 6.6 4.84

MF+CC 206 252 10.94 40.65 3.77 4.38 58.59 10.07 4.73 21.3 5.5 5.07

BP+MF+CC 905 1442 15.83 121.34 7.48 4.22 201.47 31.71 4.97 33.6 7.9 5.08

Mus musculus (Mouse) Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 1039 1836 17.18 128.60 7.48 4.25 197.48 28.37 4.64 36.6 6.5 4.79

MF 182 205 9.68 44.06 4.39 4.41 50.37 10.95 4.92 25.3 8.5 5.47

CC 117 160 12.37 36.68 2.87 4.33 38.75 11.85 5.50 15.7 2.4 4.64

BP+MF 1222 2041 16.06 171.32 11.70 4.29 245.42 38.58 4.69 43.7 10.2 5.04

BP+CC 1157 1996 16.69 164.83 10.29 4.27 234.87 40.58 4.77 40.2 8.4 4.94

MF+CC 300 365 10.74 78.96 7.03 4.37 90.04 19.76 4.99 27.5 7.8 5.24

BP+MF+CC 1340 2201 15.73 207.56 14.51 4.29 286.44 49.50 4.77 46.3 8.9 4.84

Saccharomyces cerevisiae (Yeast) Datasets

F E D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT ) AvF AvE D(CPT )

BP 679 1223 18.85 54.58 1.97 4.15 107.24 13.51 4.55 31.4 19.0 7.68

MF 175 209 10.43 24.59 1.78 4.30 40.98 5.90 4.58 35.6 8.4 4.96

CC 107 168 14.56 28.56 1.14 4.16 35.34 9.51 5.15 20.7 18.0 7.98

BP+MF 855 1432 17.12 76.54 3.41 4.19 150.73 17.36 4.51 31.1 18.6 7.69

BP+CC 787 1391 18.26 77.91 2.63 4.14 144.09 21.46 4.65 34.5 33.3 10.57

MF+CC 283 377 12.00 48.11 2.28 4.19 84.59 11.81 4.58 29.8 18.3 7.07

BP+MF+CC 963 1600 16.83 99.96 4.03 4.17 191.24 25.35 4.57 34.9 28.4 9.21



6. CONCLUSION
We proposed two methods for constructing a feature DAG
(network) to be used by a Bayesian Network Augmented
Näıve Bayes (GO–BAN) classifier, in datasets of aging-related
genes where Gene Ontology (GO) terms are used as hier-
archically related predictive features. One BAN network
construction method relies on a hierarchical feature selec-
tion method to detect and remove hierarchical redundan-
cies among features (GO terms); whilst the other BAN net-
work construction method simply uses a conventional, “flat”
feature selection method to select features, without remov-
ing the hierarchical redundancies associated with the GO.
Both BAN network construction methods may create new
edges among nodes (features) in the BAN network that did
not exist in the original GO DAG, in order to preserve
the generalization-specialization (ancestor-descendant) rela-
tionship among selected features. Our experimental results
showed that the first BAN network construction method,
when using either HIP or MR as a hierarchical feature se-
lection method, obtained in general higher predictive accu-
racies across the 28 aging-related datasets than the second
BAN network construction method, when the latter used
CFS as a flat feature selection method. The experiments
also indicated that the BAN network construction method
using HIP obtained a statistically significantly better pre-
dictive accuracy than the accuracy obtained by the BAN
network construction method using MR, the BAN network
construction method using CFS, and the baseline approach
of using a BAN network directly given by the GO DAG with-
out performing feature selection. An advantage of HIP, in
this context, is that it selected substantially fewer features
than MR or CFS, which led to substantially smaller condi-
tional probability tables in the BAN network. As a result,
the BAN networks constructed based on the features se-
lected by HIP were less prone to over-fitting, since they had
fewer parameters (probability values) to be estimated from
the training dataset than the BAN networks constructed
based on the features selected by MR or CFS. Future re-
search could involve more experiments with the proposed
BAN network construction methods, using other types of hi-
erarchical and flat feature selection methods and using other
types of classification datasets with hierarchical features.
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