
LEGAL-Tree: A Lexicographic Multi-objective Genetic
Algorithm for Decision Tree Induction

Márcio P. Basgalupp1, Rodrigo C. Barros2, André C.P.L.F. de Carvalho1, Alex A. Freitas3 and
Duncan D. Ruiz2

1University of São Paulo
Av. Trabalhador São Carlense 400

P.O. Box 668, São Carlos – SP, Brazil
+55 16 3373.9646

{marciopb, andre}@icmc.usp.br

2Pontifical Catholic University of RS
Av. Ipiranga 6681, Porto Alegre – RS,

Brazil
+55 51 3320.3611

{rodrigo.barros, duncan}@pucrs.br

3University of Kent
Canterbury, Kent, CT2 7NF,

United Kingdom
+44 1227 827220

A.A.Freitas@kent.ac.uk

ABSTRACT
Decision trees are widely disseminated as an effective solution for
classification tasks. Decision tree induction algorithms have some
limitations though, due to the typical strategy they implement:
recursive top-down partitioning through a greedy split evaluation.
This strategy is limiting in the sense that there is quality loss while
the partitioning process occurs, creating statistically insignificant
rules. In order to prevent the greedy strategy and to avoid
converging to local optima, we present a novel Genetic Algorithm
for decision tree induction based on a lexicographic multi-
objective approach, and we compare it with the most well-known
algorithm for decision tree induction, J48, over distinct public
datasets. The results show the feasibility of using this technique as
a means to avoid the previously described problems, reporting not
only a comparable accuracy but also, importantly, a significantly
simpler classification model in the employed datasets.

Categories and Subject Descriptors
I.2.6 [Learning]: Induction and Knowledge Acquisition –
decision trees induction, multi-objective genetic algorithms.

General Terms
Algorithms.

Keywords
Lexicographic Multi-Objective Genetic Algorithms, Decision
Tree Induction, Data Mining, Evolutionary Algorithms.

1. INTRODUCTION
Decision trees (DT) are a powerful and widely-used technique for
data mining classification tasks. This can be explained by several
factors, among them [18]: (i) ease of understanding, due to the
knowledge representation method – a decision tree is a graphical
representation and can be easily converted into a set of rules
written in a natural language; (ii) robustness to the presence of
noise; (iii) availability of computationally inexpensive DT
induction algorithms, even for very large training datasets; and
(iv) good handling of irrelevant or redundant attributes.

Some well-known algorithms for DT induction are Quinlan’s ID3
[19] and C4.5 [20] and Breiman et al.’s CART (Classification and
Regression Trees) [3]. Such algorithms typically rely on a greedy,
top-down, recursive partitioning strategy for the growth of the
tree. There are at least two major problems related to these
characteristics: (i) the greedy strategy usually produces locally
(rather than globally) optimal solutions, (ii) recursive partitioning
iteratively degrades the quality of the dataset for the purpose of
statistical inference, because the larger the number of times the
data is partitioned, the smaller the data sample that fits the current
split becomes, making such results statistically insignificant,
contributing to a model that overfits the data.
To overcome these difficulties, different approaches were
suggested, though not without drawbacks. These approaches can
be divided into two basic threads: (i) multiple splits at non-
terminal nodes; and (ii) multiple tree generation, so as to combine
different views over the same domain. Approaches based on (i)
result in the so-called Option Trees [3], which are not, per se, a
DT. An Option Tree is hard to interpret, hurting what is probably
one of the most important characteristics of DTs. Approaches
based on (ii) can aggregate different trees’ classifications into a
single one, according to a given criterion. Well-known ensemble
methods such as random forests [18], boosting and bagging [21]
are the most common approaches based on (ii).
It is well-known that, in general, an ensemble of classifiers
improves predictive accuracy by comparison with the use of a
single classifier. On the other hand, the use of ensembles also
tends to reduce the comprehensibility of the model. A single
comprehensible predictive model can be interpreted by an expert,
but it is not practical to ask an expert to interpret an ensemble
consisting of a large number of comprehensible models. In
addition to the obvious problem that such an interpretation would
be time-consuming and tedious to the expert, the classification
models being combined in an ensemble are often to some extent
inconsistent with each other – this inconsistence is necessary to
achieve diversity in the ensemble, which in turn is necessary to
increase the predictive accuracy of the ensemble. Considering that
each model can be regarded as a hypothesis to explain predictive
patterns hidden in the data, this means that an ensemble does not
represent a single coherent hypothesis about the data, but rather a
large set of mutually inconsistent hypothesis, which in general
would be too confusing for an application-domain expert [9].
In order to alleviate the inherent problems of DT induction, and to
avoid the shortcomings of the current approaches, we present a
novel algorithm based on the Genetic Algorithms paradigm (GA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

[11]. Instead of local search, GAs perform a robust global search
in the space of candidate solutions [7]. Through this evolutionary
approach where each individual is a decision tree, we increase the
chances of converging to a globally near-optimal solution.
Furthermore, our approach results into a single decision tree,
preserving the comprehensibility of the classification model.
We focus on comprehensible models because model
comprehensibility is highly important in many data mining
applications [20, 24], even though it is usually underrated by the
data mining community. Indeed, a comprehensible model has
advantages such as [9]: (a) improving the user's confidence in the
prediction; (b) giving the user's new insights about the data and/or
the application domain; and (c) potentially detecting errors in the
model or in the data. To the best of our knowledge this is the first
paper to propose a GA based on a lexicographic multi-objective
criterion for the problem of decision tree induction. In essence, the
proposed GA optimizes a decision tree’s predictive accuracy as a
higher-priority objective and tree size as a lower-priority
objective. Computational results in 7 datasets have shown that,
overall, the proposed GA improves decision tree simplicity
without significantly reducing predictive accuracy, by comparison
with the trees built by the very well-known J48 algorithm [24],
WEKA’s implementation of C4.5 [20].
This paper is organized as follows. Section 2 describes our novel
algorithm’s characteristics. Section 3 reports our experimental
methodology. Section 4 reports the experimental results. Section 5
discusses related work and Section 6 presents our conclusions and
some future research directions.

2. THE LEGAL-TREE ALGORITHM
We have created a new evolutionary method for inducing decision
trees called LEGAL-Tree (LExicographical Genetic Algorithm for
Learning decision Trees). The next sections detail the main steps
of this algorithm.

2.1 Solution Representation
While GA applications generally rely on binary strings for
representing each individual, we adopt the tree representation,
because it seems logical that if each individual represents a
decision tree, the solution is best represented as a tree. Thus, each
individual is a set of nodes, with each node being either a non-
terminal or a terminal (leaf) node. Each non-terminal node
contains an attribute, and each leaf node contains a predicted
class. A set of edges linking each node with their children is also a
part of the tree representation. If a node x represents a categorical
attribute, there are n edges, where n is the total number of
categories (values) the attribute owns. If a node x represents a
numeric continuous attribute, there is a binary split according to a
given threshold automatically chosen by the algorithm.
We have chosen to deal with missing values through the following
simple strategy: for categorical attributes, the missing values will
be replaced by the mode (in training set) of all attribute values;
and for numeric attributes, the missing values will be replaced by
the mean (in training set) of all attribute values.

2.2 Generating the initial population
Although a random individual generation is the most common
technique for generating the initial population in GA applications,
we believe that by incorporating task-specific knowledge for
inducing decision trees (i.e., knowledge about the meaning of a
decision tree in the context of a classification task) we can derive

better solutions, or at least equally good solutions in fewer
generations. Our strategy for incorporating task-specific
knowledge into the GA is described in Algorithm 1.
A decision stump is the simplest case of decision trees which
consists of a single decision node and two predictive leaves [10].
We have extended such concept for categorical attributes, where
each edge that represents an attribute category (value) will lead to
a predictive leaf. Thus, the pseudo-code shown in Algorithm 1
will basically generate a set of decision stumps (in fact, 10 X n
decision stumps, where n is the number of predictive attributes of
the dataset). By dividing the training dataset in 10 different pieces,
we hope to achieve a certain degree of heterogeneity for the
decision stumps involving numeric attributes, because they will be
essential in the generation of the initial population. Such process
of generating decision stumps is far from being random, since the
thresholds for numeric attributes are deterministically chosen.
More precisely, for setting the threshold of numeric attributes, we
use the information gain measure [18]. The final step for
generating the initial population is the aggregation of the different
decision stumps previously created.

The user sets the depth for the trees that will be part of the initial
population, and the algorithm randomly combines different
decision stumps in order to create a tree with the informed depth.
For instance, consider that three randomly picked decision stumps
(A, B and C) are merged into one complete tree of depth 2. The
randomly selected root is decision stump A, while its two child
nodes are replaced by B and C. All trees generated in the initial
population are complete trees resulting from the merging of
randomly picked decision stumps. However, the trees that will
populate the next generations will not necessarily be complete due
to the genetic operations that will affect their structures.
The two main advantages of this approach for generating the
initial population of decision trees are that: (a) the thresholds for
numerical attributes in non-terminal nodes are chosen in a data-
driven manner based on information gain, rather than randomly
chosen; and (b) the class associated with a leaf node is always the
most frequent class among the examples covered by the leaf node,
rather than a randomly chosen class. Both advantages are a result
of incorporating general knowledge about the classification task
being solved (rather than knowledge specific to a given
application domain like finance or medicine) into the GA, which
tends to increase its effectiveness.

2.3 Lexicographic multi-objective fitness
function
It is also usually accepted that the knowledge discovered by a data
mining algorithm should be not only accurate but also
comprehensible to the user [24], where comprehensibility (or

Algorithm 1: Decision Stumps Generation
1. let x be the training dataset
2. divide x in 10 different pieces
3. let dsList be a list of decision stumps
4. let yj represent the jth piece of x
5. for each j do
6. let ai be the ith dataset attribute
7. for each i
8. if ai is numeric
9. threshold = infoGain(yj,ai)
10. dsList.add(new numericDS(yj,ai,threshold))
11. else
12. dsList.add(new categoricalDS(yj,ai))

simplicity) is usually estimated by the size of the classifier –
smaller classifiers are assumed to be preferable, other things being
equal. This is also justified by Occam’s razor [5], a principle often
used in science, which essentially says that, out of multiple
hypothesis that are equally consistent with the data, one should
choose the simplest hypothesis. In this context, we present a
lexicographic multi-objective approach, which basically consists
of assigning different priorities to different objectives and then
focusing on optimizing them in their order of priority [7]. In this
work, we only consider predictive accuracy and tree size as
objectives, since they are the most common measures for
evaluating decision trees.
Consider the following example. Let x and y be two decision trees
and a and b two evaluation measures. Besides, consider that a has
the highest priority between the measures and that ta and tb are
tolerance thresholds associated with a and b respectively. The
lexicographic approach works according to the following analysis:
if |ax – ay| > ta then it is possible to establish which decision tree is
“better” considering only measure a. Otherwise, the lower-priority
measure b must be evaluated. In this case if |bx – by| > tb then the
fittest tree considering x and y can be decided only by considering
measure b. If it still is the case the difference between values falls
within the assigned threshold tb, the best value of the higher-
priority measure a is used to determine the fittest tree.
There are other approaches for coping with multi-objective
problems. For instance, there is the conventional weighted-
formula, in which a single formula containing each objective
adjusted by weights reduces the multi-objective problem into a
single-objective one. Also, there is the Pareto approach, where
instead of transforming a multi-objective problem into a single-
objective one and then solving it by using a single-objective
search method, one should use a multi-objective algorithm to
solve the original multi-objective problem in terms of Pareto
dominance [4]. A weighted-formula approach suffers from several
known problems, namely the “magic number” problem (setting
the weights in the formula is an ad-hoc procedure), “mixing
apples and oranges” (adding up non-commensurable criteria such
as accuracy and tree size) and mixing different units of
measurement (operating on different objective scales and
introducing a bias when choosing a suitable normalization
procedure) [8]. A Pareto approach also has its drawbacks, with
one of the most expressive ones being the difficulty of choosing a
single best solution to be used in practice. Another shortcoming of
such approach is the difficulty in handling different-priority
objectives, that is, cases where one objective is significantly more
important than the other to the user. In particular, in the
classification task of data mining, most researchers and users
agree that predictive accuracy is usually considered more
important than tree size for decision trees, but a Pareto approach
would not be able to recognize that accuracy is more important
than size. Consider, for instance, two decision trees t1 and t2,
where t1 has 90% of accuracy and 20 nodes, and t2 has 70% of
accuracy and 15 nodes. Most data mining researchers and users
would clearly prefer tree t1 over t2. However, the Pareto approach
would consider that none of these two trees dominates the other.
A lexicographic approach does not suffer from the mentioned
problems (in the above example, it would choose tree t1 over t2 for
any sensible accuracy tolerance threshold < 20%, respecting the
user’s preferences), and it is conceptually simple and easy to use.
Note that, to the best of our knowledge, a lexicographic approach
has not yet been used for evolutionary decision tree induction.

2.4 Selection
LEGAL-Tree uses the popular and effective tournament selection
method. It also implements the elitism technique, i.e., it preserves
a percentage of individuals based on their fitness values.

2.5 Crossover
LEGAL-Tree implements the crossover operation as follows.
First, two individuals randomly picked among the selected ones
(selection operation) will exchange sub-trees. According to a
randomly number which varies from 1 to n (number of nodes),
LEGAL-Tree performs an adapted pre-order tree search method,
visiting recursively the root node and then its children from left to
right. For numeric nodes, such search method is equivalent to the
traditional binary pre-order search. If the attribute is categorical
and has more than 2 children, the search method will visit each
child from left to right, according to an index that identifies each
child node. After identifying the nodes sorted by the randomly
picked number in both parents, LEGAL-Tree will exchange the
whole sub-tree represented by the sorted node.
Consider two individuals presented as “parents” in Figure 1. For
Parent 1, the sorted node was node C, while for Parent 2 it was
node M. After this, the crossover operation will make sure two
children individuals are created keeping the tree structure from
one of the parents but with the sorted nodes being exchanged.
Child 1 keeps the tree structure from Parent 1, but inherits node M
from Parent 2. Similarly, Child 2 keeps the structure from Parent
2 but inherits node C from Parent 1. By exchanging the whole
sub-trees from the sorted node and not only specific nodes, we
avoid problems such as domain irregularities, because each edge
refers to attribute characteristics that are represented by a node. It
does not prevent, however, redundant rules and inconsistencies.
Section 2.7 details how LEGAL-Tree addresses such issues.

Figure 1. Crossover between Parents 1 and Parent 2.

2.6 Mutation
LEGAL-Tree implements two different strategies for mutation of
individuals. The first one considers the exchanging of a whole
sub-tree, selected randomly from an individual, by a leaf node
representing the most frequent class attribute value among the
examples covered by that leaf. The second strategy replaces a
randomly selected leaf node in an individual by a decision stump
created in the population initialization process. Figure 2 depicts
both strategies abovementioned. Such strategies aim at increasing
or diminishing the individual‘s size, increasing the heterogeneity
of the population and avoiding convergence to local optima.

Parent 1 Parent 2

Child 1 Child 2

C
M

Figure 2. Two strategies for mutating individuals.

2.7 Candidate Solution Validity Issues
After crossover and mutation operations, there are cases where
evolution generates inconsistent scenarios. For instance, consider
that a sub-tree from tree a has been replaced by a sub-tree from
tree b generating a child individual during the crossover process.
If the new sub-tree has a node representing an attribute already
specified by an ancestral node, actions must be taken to avoid
redundant rules or inconsistent threshold intervals. If the node’s
attribute is categorical and an ancestor represents the same
attribute, then we have some redundancy which can be eliminated.
In such case, we have chosen to replace this sub-tree by a leaf
node representing the most frequent class value for that given leaf
node. Similarly, if the node is numeric and its threshold interval is
inconsistent with some ancestral node, then such interval must be
adjusted in order not to generate rules that are not satisfied by any
data instance. This adjustment also considers task-specific
knowledge because it recalculates the information gain for
defining the new threshold interval value. Such problems are
addressed by LEGAL-Tree through a filtering process applied
after the crossover and mutation operations.
Another problem that may occur after the crossover and mutation
operations is when leaf nodes stop representing the most frequent
class attribute value. Such irregularity is also addressed by
LEGAL-Tree during this filtering process, which recalculates the
correct class attribute value for the modified leaf, considering the
training set. Dealing with such issues was an essential step in the
construction of LEGAL-Tree, since we can converge faster to a
near-optimal solution by implementing this filtering process.

3. EXPERIMENTAL METHODOLOGY
We have applied the proposed approach of inducing decision trees
through a lexicographic multi-objective genetic algorithm to
several classification problems collected in the UCI machine
learning repository [17], including Credit-a, Credit-g, Colic,
Diabetes, Glass, Hepatitis and Sonar (Table 1).
First, we have analyzed the predictive accuracy and tree size
obtained by the J48 decision tree induction algorithm (WEKA’s
implementation of C4.5) [24] in each dataset. All parameter
settings used are the algorithm’s default ones, and we have used
10-fold cross-validation, a widely disseminated approach for
validating classification models. In each of the 10 iterations of the
cross-validation procedure, the training set is divided into sub-
training and validation sets, which are used to produce the
decision stumps (sub-training set), filtering process (sub-training)
and fitness function (sub-training or validation set, according to
the approach). Each set represents 50% of the full training set.

Table 1. Datasets specification.

Dataset Instances Numeric
Attributes

Categorical
Attributes Classes

Colic 368 7 15 2
Credit-a 690 6 9 2
Credit-g 1000 7 14 2
Diabetes 768 8 0 2

Glass 214 9 0 6
Hepatitis 155 6 13 2

Sonar 208 60 0 2

We have executed LEGAL-Tree with the parameter values
described in Table 2, but with two different fitness measures. For
the first case, L1, we have used as fitness measures the accuracy
of an individual in the validation set and its tree size, in this
priority order, with thresholds of 1% for accuracy and 2 nodes for
tree size. Analysis of the results with this L1 version of LEGAL-
Tree revealed that the algorithm was overfitting the validation set,
since the “learning stage” of our algorithm does not make
extensive use of the sub-training set, especially by comparison
with the extensive use of the entire training set by C4.5. Hence, to
mitigate this problem, we have created a second configuration,
L2, where we have used as fitness measures the accuracy in the
validation set, the accuracy in the sub-training set and tree size, in
this priority order, and the thresholds of 2% for both accuracies
and 2 nodes for tree size. This approach preserves the highest-
priority of accuracy in validation set but introduces an additional
selective pressure to maximize accuracy in the sub-training set as
a second criterion (still more important than tree size), and so it
helps avoiding overfitting to the validation set.

Table 2. LEGAL-Tree parameters for the experiments.

Parameter Value
Initial population max depth 3
Population size 500
Improvement rate 3%
Max number of generations 500
Tournament rate 0.6%
Elitism rate 5 %
Crossover rate 90%
Mutation rate 5%

The parameter values in Table 2 were based on our previous
experience in using evolutionary algorithms, and we have made
no attempt to optimize parameter values, a topic left for future
research. Improvement rate (i.e., rate of the maximum number of
generations without fitness improvement) and Max number of
generations are the algorithm’s stopping criteria. Due to the fact
that GA is a non-deterministic technique, we have run LEGAL-
Tree 30 times for each one of the 10 training/test set folds
generated by the 10-fold cross-validation procedure. These folds
were the same ones used by J48, to make the comparison between
the algorithms as fair as possible. After running LEGAL-Tree
over the 7 datasets presented in Table 1, we have calculated the
average and standard deviation of the 30 executions for each fold,
and then the average of the ten folds. Considering J48, we have
calculated the averages and standard deviations for the ten folds.
A few tests were executed to assess the statistical significance of
the differences observed in the experiments. The data used consist
of both the mean classification predictive accuracy and the tree
size for each test fold. The statistical test used was the corrected
paired t-test [16], with a significance level of α = 0.05 and 9
degrees of freedom.

Mutation 2

Random Decision Stump

Mutation 1

Most Frequent Class Value for the Path

4. EXPERIMENTAL RESULTS
Table 3 shows the mean predictive accuracy (in the test set) and
the tree sizes for J48 and the 2 versions of LEGAL-Tree: L1 and
L2. A summarized comparison between the results of LEGAL-
Tree and J48, in terms of the previously mentioned statistical test
of significance, is shown in Table 4. In this table, each cell Ci,j
contains the label of the datasets in which technique i is
significantly better than technique j (Table 4a) or i is significantly
worse than j (Table 4b). The dataset labels are as follows
{Co}olic, {Ca}redit-a, {Cg}redit-g, {D}iabetes, {G}lass,
{H}epatitis and {S}onar.
Table 3. Mean predictive accuracy (%), tree size (in number
of nodes) and respective standard deviation (in parenthesis).

Dataset Predictive Accuracy Tree Size
J48 L1 L2 J48 L1 L2

Colic 85.30
(4.50)

82.72
(3.24)

84.72
(2.69)

8.10
(2.02)

15.37
(7.73)

8.62
(5.01)

Credit-a 86.08
(3.56)

85.76
(1.49)

85.45
(1.01)

28.10
(8.58)

6.37
(4.04)

4.74
(2.55)

Credit-g 70.50
(3.41)

71.24
(2.39)

71.86
(2.57)

117.40
(28.20)

13.82
(7.38)

16.23
(10.73)

Diabetes 73.83
(5.37)

72.94
(3.10)

73.69
(3.09)

37.40
(12.38)

16.05
(6.22)

34.08
(25.53)

Glass 66.75
(7.53)

60.28
(7.03)

62.94
(6.07)

44.20
(5.23)

18.55
(6.55)

22.59
(10.06)

Hepatitis 83.79
(6.87)

78.97
(6.63)

81.13
(4.29)

17.80
(4.40)

15.99
(4.87)

20.39
(6.58)

Sonar 71.16
(6.74)

69.79
(8.87)

72.22
(8.79)

29.20
(3.40)

27.33
(8.41)

45.93
(12.57)

As it can be seen in Table 4, LEGAL-Tree’s lexicographic L1
version obtained a predictive accuracy significantly worse than
J48 in just one dataset – in the other 6 datasets there was no
significance difference. On the other hand, L1 obtained a
significantly simpler (smaller) decision tree than J48 in 4 datasets,
and the opposite was true in just one dataset. Hence, L1 obtained
competitive results with respect to J48.

Table 4. L1 and L2 significantly better (a) or worse (b) than
J48 according to the corrected paired t-test.

(a) J48 (b) J48

Accuracy L1 ------- Accuracy L1 Co------
L2 ------- L2 -------

Tree Size L1 -CaCgDG-- Tree Size L1 Co------

L2 -CaCg-G-- L2 ------S

LEGAL-Tree’s lexicographic L2 version performed particularly
well. Its predictive accuracy was statistically indistinguishable
from J48’s one in all 7 dataset, but L2 obtained a significantly
simpler decision tree in 3 datasets, whilst the opposite was true in
only one dataset. This shows that the lexicographic approach used
in L2, based on choosing the smallest out of competing trees when
their accuracy is not significantly different, is working well,
leading to a significant reduction in the size of the DT produced
by the system in approximately half of the datasets, without
sacrificing accuracy in any dataset, by comparison with J48.
As a final note, we have also stored the execution time for both
algorithms, and LEGAL-Tree was, as expected for being an
evolutionary algorithm, slower than J48. Nevertheless, our current
efforts are to maximize LEGAL-Tree’s performance.

5. RELATED WORK
One branch of Evolutionary Algorithms (EAs), Genetic
Programming (GP), has been largely used as an induction method

for decision trees, in works such as [1, 6, 12, 13, 14, 22, 23, 25,
26]. Koza [12] was the pioneer in inducing decision trees with
GP, converting the attributes of Quinlan’s weather problem [19]
into functions. In [25], it is proposed a tool which allows the user
to set different parameters for generating the best computer
program to induce a classification tree. This work takes into
account the cost-sensitivity of misclassification errors, in a multi-
objective approach to define the optimal tree. In [6], it was
implemented an algorithm of tree induction in the context of
bioinformatics, in order to detect interactions in genetic variants.
Bot and Langdon [1] proposed a solution for linear classification
tree induction through GP, where an intermediate node is a linear
combination of attributes. In [13] the authors proposed different
alternatives to represent a multi-class classification problem
through GP, and later extended their work [14] for dealing with
nominal attributes. In [22, 26], the authors proposed the design of
binary classification trees through GP, and in [23] it is described a
GP algorithm for tree induction that considers only binary
attributes. In [15] GP with lexicographic fitness is proposed, but
that work does not involve decision tree induction.
At this point it is important to discuss an issue of terminology. In
GP each individual of the population is a computer program
(containing data and operators/functions applied to that data),
generally with its structure being represented in the form of trees.
Ideally a computer program should be generic enough to process
any instance of the target problem (in our case, the evolved
program should be able to induce decision trees for any
classification dataset in any application domain). It should be
noted, however, that in the above GP works each individual is a
decision tree for the dataset being mined, and not a generic
computer program responsible for generating decision trees from
any given classification dataset. This is also the approach
followed in this paper. Although the above work are presented as
GP, we prefer to call our EA a Genetic Algorithm (GA), to
emphasize the fact that the EA is evolving just a decision tree
(which is not a program in the conventional sense), i.e., just a
solution to one particular instance of the problem of inducing
decision trees from a given dataset; rather than evolving a generic
computer program (like C4.5) that can induce decision trees from
any given dataset. Regardless of terminology issues, all these GP
algorithms differ from ours in an important way: we propose a
multi-objective GA based on the lexicographic criterion.

6. CONCLUSION AND FUTURE WORK
Decision trees have been widely used to build classification
models which are easy to comprehend, mainly because such
models resemble the human reasoning. Recall that the
comprehensibility of the discovered classification model is
important in many applications where decisions will be made by a
human being based on the discovered model. Hence, there is a
clear motivation to discover decision trees that are not only
accurate but also relatively simple.
Traditional decision tree induction algorithms which rely on a
recursive top-down partitioning through a greedy split evaluation
are relatively fast but susceptible to converging to local optima,
while an ideal algorithm should choose the correct splits in order
to converge to a global optimum. With this goal in mind, we have
proposed a novel Genetic Algorithm for inducing decision trees
called LEGAL-Tree. LEGAL-Tree avoids the greedy search
performed by conventional decision tree induction algorithms, and
performs instead a global search in the space of candidate decision

trees. In addition, it differs from previously proposed evolutionary
algorithms for decision tree induction in a very important aspect:
the fitness function. While other approaches typically rely on a
single objective evaluation (possibly collapsing multiple
objectives into a single objective using a weighted formula) or on
an evaluation based on Pareto dominance, we propose a
lexicographic approach, where multiple measures are evaluated in
order of their priority. This approach is relatively simple to
implement and control and does not suffer from the problems the
weighted-formula and Pareto dominance do, as discussed earlier.
LEGAL-Tree’s fitness function considers the two most common
measures used for evaluating decision trees: classification
accuracy and tree size. In experiments with 7 datasets, the first
version of LEGAL-Tree was moderately successful, and its
second version was quite successful, obtaining significantly better
results than the very well-known J48 algorithm overall. More
precisely, the former obtained statistically significantly simpler
decision trees than the latter in 3 datasets, whilst the opposite was
true in just one dataset; and such an overall improvement in
simplicity was obtained without any significant loss in predictive
accuracy in any dataset. This is a clearly positive result, which is
also supported by the aforementioned Occam’s Razor, a principle
very often used in data mining and science in general [5].
Some possibilities for future research are as follows. First, the
setting of input parameters for LEGAL-Tree could be done
through a supportive GA, helping to achieve convergence to a
global optimum. In addition, we are working on alternative
methods for mutation and dealing with categorical missing values.
A future mutation implementation will be a tree pruning method
which will have a higher probability of occurring.

7. ACKNOWLEDGMENTS
Our thanks to Fundo de Amparo à Pesquisa do Estado de São
Paulo (FAPESP) for supporting this research.

8. REFERENCES
[1] Bot, M.C.J., Langdon, W.B. 2000. Application of genetic

programming to induction of linear classification trees,
Proceedings of the Third European Conference on Genetic
Programming, 247–258.

[2] Breiman, L., Friedman, J., Olshen, R., Stone, C. 1984
Classification and Regression Trees. Wadsworth.

[3] Buntine, W. 1993. Learning Classification Trees. Statistics
and Computing, v. 2 (2), 63-73.

[4] Coello, C., Veldhuizen, D., Lamont, G. 2002 Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer.

[5] Domingos, P. 1999. The Role of Occam’s razor in
Knowledge Discovery. Data Mining and Knowledge
Discovery, v. 3 (4), 409-425.

[6] Estrada-Gil, J. K. et al. 2007. GPDTI: A Genetic
Programming Decision Tree Induction Method to find
epistatic effects in common complex diseases.
Bioinformatics, v. 23, 167-174.

[7] Freitas, Alex A. 2007. A Review of Evolutionary Algorithms
for Data Mining. Soft Computing for Knowledge Discovery
and Data Mining. Springer-Verlag New York, Inc., 79-111.

[8] Freitas, A. A. 2004. A critical review of multi-objective
optimization in data mining: a position paper. SIGKDD
Explorations Newsletter 6, 2 (Dec. 2004), 77-86.

[9] Freitas, Alex A., Wieser, Daniela C., Apweiler, Rolf. 2008.
On the importance of comprehensible classification models
for protein function prediction. To appear in IEEE/ACM
Transactions on Computational Biology and Bioinformatics.

[10] Freund, Y., Mason, L. 1999. The alternating decision tree
learning algorithm. Proceedings of the 16th International
Conference on Machine Learning, 124-133.

[11] Goldberg, D. 1989 Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley.

[12] Koza, J.R. 1991. Concept formation and decision tree
induction using the genetic programming paradigm.
Proceedings of the First Workshop on Parallel Problem
Solving from Nature, 124–128.

[13] Loveard, T., Ciesielski, V. 2001. Representing classification
problems in genetic programming. Proceedings of the 2001
Congress on Evolutionary Computation, 1070–1077.

[14] Loveard, T., Ciesielski, V. 2002. Employing nominal
attributes in classification using genetic programming.
Proceedings of the Fourth Asia-Pacific Conference on
Simulated Evolution and Learning, 487 – 491.

[15] Luke, S., and L. Panait. 2002. Lexicographic Parsimony
Pressure. In GECCO-2002: Proceedings of the Genetic and
Evolutionary Computation Conference. W. B. Langdon et al,
eds. Morgan Kauffman. 829-836.

[16] Nadeau, C., Bengio, Y. 2003. Inference for the generalization
error. Machine Learning, v. 52 (3), 239–281.

[17] Newman, D. J., Hettich, S., Blake, C. L., Merz, C. J. 1998.
UCI Repository of Machine Learning Databases,
http://www.ics.uci.edu/~mlearn/MLRepository.html.

[18] Tan, P., Steinbach, M., Kumar, V. 2005 Introduction to Data
Mining. Addison-Wesley Longman Publishing.

[19] Quinlan, J. R. 1986. Induction of Decision Trees. Machine
Learning, v. 1, 81-106.

[20] Quinlan, J. R., 1993 C4.5: Programs for Machine Learning.
Morgan Kaufmann.

[21] Quinlan, J. R., 1996. Bagging, boosting, and C4.5. In
Proceedings of the Fourteenth National Conference on
Artificial Intelligence.

[22] Shirasaka, M., Zhao, Q., Hammarmi, O., Kuroda, K., Saito,
K. 1998. Automatic design of binary decision trees based on
genetic programming. Proceedings of the Second Asia-
Pacific Conference on Simulated Evolution and Learning.

[23] Tür, G., Güvenir, H.A. 1996. Decision tree induction using
genetic programming. Proceedings of the Fifth Turkish
Symposium on Artificial Intelligence and Neural Networks.

[24] Witten, I. H., Frank, E. 2005 Data Mining: Practical machine
learning tools and techniques, 2nd Edition, Morgan
Kaufmann, San Francisco.

[25] Zhao, H. 2007. A multi-objective genetic programming
approach to developing Pareto optimal decision trees.
Decision Support Systems 43, 3 (Apr. 2007), 809-826.

[26] Zhao, Q., Shirasaka, M. 1999. A study on evolutionary
design of binary decision trees, Proceedings of the 1999
Congress on Evolutionary Computation, 1988–1993.

