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ABSTRACT 

Model trees are a particular case of decision trees employed to 

solve regression problems. They have the advantage of presenting 

an interpretable output with an acceptable level of predictive 

performance. Since generating optimal model trees is a NP-

Complete problem, the traditional model tree induction algorithms 

make use of a greedy heuristic, which may not converge to the 

global optimal solution. We propose the use of the evolutionary 

algorithms paradigm (EA) as an alternate heuristic to generate 

model trees in order to improve the convergence to global optimal 

solutions. We test the predictive performance of this new 

approach using public UCI datasets, and compare the results with 

traditional greedy regression/model trees induction algorithms.   

Categories and Subject Descriptors 

I.2.6 [Learning]: Induction and Knowledge Acquisition – model 

trees induction, multi-objective genetic algorithms.  

Keywords 

Model Trees, Evolutionary Algorithms, Data Mining, Multi-

Objective optimisation. 

1. INTRODUCTION 
Within the data mining regression task, model trees are a popular 

alternative to classical regression methods, presenting good 

predictive performance and an intuitive interpretable output. 

Similarly to decision/regression trees, they are structured trees 

that represent graphically if-then-else rules, which seek to extract 

implicit knowledge from datasets. While decision trees are used to 

solve classification problems (i.e., the output is a nominal 

attribute), both model and regression trees are used to solve 

regression problems (i.e., the output is a continuous value). The 

main difference between these approaches is that while regression 

trees have a single value as the output in their leaves 

(corresponding to the average of values that reach the leaf), model 

trees hold linear regression models (equations) to calculate the 

final output. 

A model tree is composed by non-terminal nodes, each one 

representing a test over a dataset attribute, and linking edges that 

partition the data according to the test result. In the bottom of the 

tree, the terminal nodes will hold linear regression models, which 

were built according to the data that reached each given node. 

Thus, for predicting the target-attribute value for a given dataset 

instance, we walk along the tree from the root node to the bottom, 

until a terminal node is reached, and then we apply the 

corresponding linear model. Model trees result in a clear 

knowledge representation, providing the user information on how 

the output was reached (i.e., the if-then-else rule that is provided 

by the tree once we follow the path until a terminal node).  

In contrast, approaches such as neural networks and support 

vector machines, while more efficient than model trees in terms of 

predictive performance in many problems, lack on transparency, 

because they do not provide the user information about how 

outputs are produced [21]. 

Model trees are traditionally induced by divide-and-conquer 

greedy algorithms which are sequential in nature and locally 

optimal at each node split [9]. Since inducing the best tree is a 

NP-Complete problem [23], a greedy heuristic may not derive the 

best overall tree. In addition, recursive partitioning iteratively 

degrades the quality of the dataset for the purpose of statistical 

inference, because the larger the number of times the data is 

partitioned, the smaller becomes the data sample that fits the 

specific split, leading to results without statistical significance and 

creating a model that overfits the training data [2].  

In order to avoid the instability of the greedy tree-induction 

algorithms, recent works have focused on powerful ensemble 

methods (e.g., bagging [5], boosting [13], random forests [6], 

etc.), which attempt to take advantage of this unstable process by 

growing a forest of trees from the data and later averaging their 

predictions. While presenting very good predictive performance, 

ensemble methods fail to produce a single-tree solution, operating 

also in a black-box fashion. We highlight the importance of 

validation and interpretation of discovered knowledge in many 

data mining applications that can lead to new insights and 

hypotheses upon the data [12]. Hence, we believe there should be 

a trade-off between predictive performance and model 

interpretability, so a predictive system can be useful and helpful in 

real-world applications. 

Evolutionary algorithms are a solid heuristic able to deal with a 

variety of optimization problems, performing a robust global 

search in the space of candidate solutions [11]. Evolutionary 

induction of decision trees for classification tasks is well-explored 

in the research community. For instance, Basgalupp et al. [3] 

proposed an evolutionary algorithm for the induction of decision 

trees, named LEGAL-Tree, which looks for a good trade-off 

between accuracy and model comprehensibility. Very few works 

however propose evolving regression/model trees in order to 

avoid the problems previously mentioned. 
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In this work, we propose a new algorithm based on the core idea 

presented in LEGAL-Tree to deal with regression problems, and 

we test the predictive performance and comprehensibility of this 

new algorithm using UCI regression datasets [1]. For such, we 

briefly review model trees in Section 2 and then we present our 

new approach for evolving model trees in Section 3. The 

experiments are presented in Sections 4 and 5, where we compare 

our approach to M5 [20], the most traditional model trees 

induction algorithm, and to a regression trees induction algorithm 

called REPTree [25]. We finish this paper with a brief description 

of related works and our conclusions. 

2. MODEL TREES 
Suppose we have  predictor variables,  and a 

response continuous variable , which is the target of the 

prediction model. The training set has  records,  where  

is the vector of predictor variable values for the  training 

record, i.e.,  and  is the target attribute 

value for this same  record. A model tree holds  terminal 

nodes that will partition the predictor variable space into  

regions, where . Each region  will predict the 

value of  through a multivariate linear regression procedure, 

created through a least-square method [4]. Considering that each 

terminal node will have  predictor variables (a subset of ) and 

 records (a subset of ), the linear regression demands the 

creation of   design matrices,  such as the 

one shown in Equation 1. 

      (1) 

Considering   the -dimensional vector 

that represents the regression coefficients that minimize the sum 

of the squared error for the response variable , and 

 the -dimensional vector that represents the  

values of the response variable , we can define the coefficients 

by solving the matrix equation given in Equation 2. 

 

Once the coefficients are known, each terminal node will hold a 

regression model such as the one in Equation 3. 

 

Hence, we can notice that model trees are more sophisticated than 

either regression trees (whose terminal nodes hold the average of 

all the training examples’ attribute values to which the terminal 

node applies) or linear regression. Since each terminal node will 

hold a regression model based on the instances that reach that 

node, model trees can even approximate non-linear problems, 

which is the case of a wide range of mining applications. 

For growing a model tree, most algorithms rely on a greedy top-

down strategy for splitting recursively the nodes. These 

algorithms seek to minimize some error measure that results from 

testing each attribute for splitting the node. M5 [20] uses the 

standard deviation as the error measure for choosing the best split 

at each node. The goal is to maximize the standard deviation 

reduction (SDR) by testing the possible splits over the training 

data that reach a particular node, as shown in Equation 4. 

 

where  is the standard deviation,  is the training set portion 

that reaches the node that is being tested and  the training set 

portion that results from splitting the node according to a given 

attribute and split value.  

The tree induction of model trees through greedy algorithms is 

sequential in nature and locally optimal at each node split, which 

means that convergence for a global optimal solution is hardly 

feasible. In addition, minor modifications in the training set often 

lead to large changes in the final model due to the intrinsic 

instability of these algorithms [9]. Ensemble methods were 

proposed to take advantage of these unstable algorithms by 

growing a forest of trees from the data and averaging their 

predictions. While these methods often present a better predictive 

performance, it is well-known that the use of ensembles tends to 

reduce the model comprehensibility. Thus, one has to choose 

between a simple and comprehensible model with reduced 

predictive performance and models with a higher predictive 

capability that sacrifice the principles of simplicity and 

comprehensibility. 

In order to find a good trade-off between predictive performance 

and model interpretability, we present a novel algorithm based on 

Genetic Algorithms (GAs) [15]. Instead of local search, GAs 

perform a robust global search in the space of candidate solutions. 

Through this evolutionary approach where each individual is a 

model tree, we increase the chances of converging to a globally 

near-optimal solution. Furthermore, our approach results in a 

single model tree, preserving the comprehensibility of the 

regression model. We call our algorithm E-Motion (Evolutionary 

MOdel Trees InductiON), which is presented in the next section. 

3. E-MOTION 
Evolutionary model trees induction (E-Motion) is a novel 

evolutionary algorithm for creating model trees. It is closely 

related to LEGAL-Tree [2], [3], which induces decision trees 

through the evolutionary paradigm. We have extended such 

approach for dealing with regression problems, in order to 

generate efficient and comprehensible regression models for a 

variety of data mining applications. 

3.1 Solution Representation 
While GA applications generally rely on binary strings for 

representing each individual, we adopt the tree representation, 

because it seems logical that if each individual represents a model 

tree, the solution is best represented as a tree. Thus, each 

individual is a set of nodes, with each node being either a non-

terminal or a terminal node. Each non-terminal node contains an 

attribute, and each leaf node contains a linear regression model. A 

set of edges linking each node with its respective children is also a 

part of the tree representation. There are two distinct possible 

cases of node relations: (i) the relationship between a categorical 

node and its children: if a node x represents a categorical attribute, 

there will be n edges, where n is the total number of categories the 

attribute owns; and (ii) the relationship between a numeric 

continuous node and its children: if a node x represents a numeric 

continuous attribute, there will be a binary split according to a 

given threshold chosen by the algorithm. 



3.2 Initial Forest 
The initial population generation of model trees implemented by 

E-Motion is twofold. First, the algorithm produces basic trees, 

based on each dataset attribute. For categorical attributes, the 

basic tree is composed by a root node that holds the test over that 

given attribute, and an edge for each category the attribute owns. 

The leaf nodes initially do not compute the linear regression 

models for these basic trees, because they will not be used for 

prediction purposes at this point. For numeric attributes, E-Motion 

seeks to incorporate task-specific knowledge in order to derive 

reasonable threshold values. This strategy is depicted in 

Algorithm 1. 

Five different basic trees are created for each numeric attribute of 

the dataset. The first one uses the SDR of the entire training set to 

define the best threshold value. The other four make use of the 

thresholds given by the SDR of four different partitions of the 

training set. This approach has two main advantages: (a) we 

define the thresholds in a data-driven manner (i.e., by using the 

standard deviation reduction for selecting interesting threshold 

values), instead of selecting random values, which is the case of 

most evolutionary approaches; and b) we can achieve a certain 

degree of heterogeneity by partitioning the training set into 

different pieces, increasing the chances of selecting a good 

threshold value. Both advantages are a result of incorporating 

general knowledge about the regression task being solved (rather 

than knowledge specific to a given application domain like 

finance or medicine) into the GA, which tends to increase its 

effectiveness. 

Algorithm 1: Numeric basic trees generation. 

1. let x be the training dataset  

2. let a[i] be the i
th
 attribute of x 

3. for each a[i] do 

4. root = a[i] 

5. threshold = SDR(a[i],x) 

6. new basicTree(root,threshold) 

7.  divide x in 4 different pieces 

8.  let y[k] be the k
th 
piece of x 

9.  for each y[k] 

10.    threshold = SRD(a[i],y[k]) 

11.    new basicTree(root,threshold) 

The second step for generating the initial forest is the aggregation 

of different basic trees that were previously created. The user sets 

the maximum depth value for the trees that will be part of the 

initial forest, and E-Motion randomly combines different basic 

trees so as to create a tree with depth that can range from 1 to the 

maximum depth value informed.  

3.3 Multi-objective fitness function 
After generating an initial forest, E-Motion evaluates each single 

tree in terms of its predictive performance. It makes use of two 

error measures to evaluate the fitness of each model tree: root 

mean-squared error (RMSE) and mean absolute error (MAE). The 

mean-squared error is the most common measure to evaluate 

numeric predictions. We take the square root to give it the same 

dimensions as the predicted value itself. The RMSE is given by 

        (5) 

where  is the actual value of the target attribute and  is the 

estimated value of the target attribute. MAE, which is another 

common choice for evaluating regression problems, is given by 

      (6) 

It is known that any given evaluation measure is biased to some 

extent. RMSE for instance is quite sensitive to outliers, while MAE 

treats all size of errors evenly according to their magnitude. It is 

clear that each evaluation measure can serve a different purpose 

and its use depends on a large extent upon the objectives of the 

prediction system user. We have chosen these two error measures 

because they are the most common for regression problems, and 

even though they present significant differences when dealing 

with particular cases, it turns out that in most practical situations 

the best numeric prediction method is still the best for whatever 

error measure used. 

Even though predictive performance is clearly of great importance 

and has been the primary focus of researchers when developing 

prediction models, we believe it is not sufficient to indicate a 

robust predictive approach. Comprehensibility or the capacity of 

explaining to the end-user how a prediction was obtained is 

crucial in several applications. Understanding the predictions 

made by a model helps the end-user to get more confidence in the 

prediction, and more importantly, can provide the basis for the 

end-user to have new insight about the data, confirming or 

rejecting hypotheses previously formed. A comprehensible model 

can even allow the end-user to detect errors in the model or in the 

data [12]. 

Burgess and Lefley [8] suggest that an evolutionary algorithm that 

optimises a single evaluation measure is faded to degrade the 

other measures, and that a fitness function that is not tied to one 

particular measure may present more acceptable overall results. 

Based on such assumption, we have decided to use three different 

measures to evaluate how fit an individual is: RMSE and MAE as 

error measures and tree size (number of nodes) as a measure of 

model comprehensibility, assuming that smaller trees are more 

comprehensible than larger ones. We emphasize that E-Motion is 

a multi-objective evolutionary algorithm that seeks a trade-off 

between predictive performance and comprehensibility. There are 

several strategies for coping with multi-objective optimization. 

Freitas [10] discusses three common approaches: (i) weighted-

formula; (ii) Pareto dominance; and (iii) lexicographic analysis. 

The lexicographic approach seems to be an interesting choice 

considering that it recognizes the non-commensurability of the 

different criteria, and it allows the user to determine which criteria 

is more important without the need of identifying the correct 

weight of each measure, while preserving the simplicity of the 

weighted-formula approach and returning a single solution as the 

fittest one. E-Motion makes use of the lexicographic analysis 

among RMSE, MAE and tree size. The priorities of each measure 

and the tolerance thresholds are detailed in the experimental 

methodology, Section 4. 

3.4 Selection 
E-Motion uses tournament selection, a popular and effective 

selection method. A percentage t of the current population of 

individuals is selected randomly, and they “battle”' against each 

other, i.e., the fittest individual is chosen to undergo crossover or 

mutation. E-Motion also implements the elitism technique, which 



means it preserves a percentage x of the fittest individuals of the 

current population for the next one. 

3.5 Crossover 
E-Motion implements the crossover operation as follows. First, 

two individuals randomly chosen among the selected ones 

(selection operation) will exchange sub-trees. According to a 

randomly selected number which varies from 1 (root node) to n 

(total number of tree nodes), E-Motion performs an adapted pre-

order tree search method, visiting recursively the root node and 

then its children from left to right. For numeric nodes, such search 

method is equivalent to the traditional binary pre-order search. In 

case the attribute is categorical and has more than 2 children, the 

search method will visit each child from left to right, according to 

an index that identifies each child node. After identifying the 

nodes according to the randomly selected number in both parents, 

E-Motion will exchange the whole sub-trees which are 

represented by the selected nodes, generating two new individuals 

(offspring). 

Figure 1 illustrates the crossover operation, where the offspring is 

created by keeping the structure of the parents but with the 

selected nodes being replaced. By exchanging the whole sub-trees 

from the selected nodes and not only specific nodes, we avoid 

domain irregularities, because each edge refers to attribute 

characteristics that are represented by a node. It does not prevent, 

however, redundant rules and inconsistencies. See Section 3.7 for 

details on how E-Motion addresses these issues. 

3.6 Mutation 
E-Motion implements two different strategies for mutation of 

individuals. The first one considers the exchanging of a whole 

sub-tree, selected randomly from an individual, by a leaf node, 

acting like a pruning procedure. The second strategy replaces a 

randomly selected leaf node in an individual by a basic tree 

generated during the initial forest creation. These strategies aim at 

increasing or diminishing the individual’s size, improving the 

population heterogeneity and avoiding local optima convergence. 

 

Figure 1. Crossover between two individuals. 

3.7 Validity Issues 
The stochastic operators of the evolutionary algorithm, due to 

their own nature, may create incoherent scenarios regarding the 

logical structure of model trees. E-Motion implements a filtering 

process to deal with these validity issues. After each evolutionary 

iteration and before each individual is evaluated, the training 

dataset is distributed along each individual so the linear models 

are calculated according to the instances that reach the leaf nodes. 

The following inconsistent scenarios may occur: 

- A categorical attribute appears more than once in a sub-tree. It 

is well-known that the same categorical attribute test should not 

be done more than once in a same sub-tree. 

- Incoherent thresholds for repeated numeric nodes. If a numeric 

attribute appears in a same sub-tree more than once, a special 

caution should be taken regarding the threshold values. For 

instance, if a given numeric attribute  is tested according to a 

threshold 10, the sub-tree that results from the test  may 

possibly contain another test over the attribute , but no threshold 

larger than 10 would result in a node that holds instances. 

Incoherent thresholds also should be prevented from happening. 

To deal with these two inconsistent scenarios, E-Motion analyzes 

whether the parent node of a given empty (with no instances) leaf 

node is categorical or numeric. If it is the case the parent is 

numeric, it means that no training instance fits that given numeric 

threshold and hence there is no need to make the binary split to 

the parent node. Thus, the parent node that was once a numeric 

node is transformed into a leaf node, and the child sub-trees are 

pruned. In the case where the parent node is categorical, each one 

of its children is verified, and the same procedure is applied for 

the case that only one child node holds instances. This process 

provides smaller trees that are consistent with the training dataset, 

preventing empty leaf nodes and consequently incoherent numeric 

thresholds and repeated categorical attributes in a same sub-tree. 

Figure 2 presents both cases, with the original and filtered trees. 

 

Figure 2. Filtering process. 

4. EXPERIMENTAL METHODOLOGY 
We have applied the proposed approach of inducing model trees 

through a lexicographic multi-objective GA to several regression 

datasets available in the UCI machine learning repository [1], 

namely AutoMpg {A}, BreastTumor {B}, FishCatch {F}, 

MachineCPU {M}, Quake {Q}, Stock{So}, Strike {Si} and 

Veteran {V} (Table 1). The machine used in our experiments is a 

dual Intel Xeon Quad-core E5310 running at 1.6 GHz each, 8 MB 

L2 and 4 GB RAM. First, we have analyzed the RMSE, MAE and 

tree size obtained by the M5P algorithm (WEKA’s 



implementation of the well-known M5) [24]  and REPTree [25], a 

regression tree algorithm also implemented in WEKA, for the 

datasets listed in Table 1. 

Table 1. Public datasets used for experimentation. 

Dataset #Instances 
Numeric 

Attributes 

Categorical 

Attributes 

AutoMPG 398 4 3 
BreastTumor 286 1 8 

MachineCPU 209 6 0 

Quake 2178 3 0 
Stock 950 9 0 

Strike 625 5 1 

Veteran 137 3 4 

The M5P and REPTree parameter settings used are the default 

ones and we have used 10-fold cross-validation, a widely 

disseminated approach for validating prediction models. In each 

of the ten iterations of the cross-validation procedure, the training 

set is divided into sub-training and validation sets, which are used 

to produce the basic trees and linear models (sub-training set), 

filtering process (sub-training set) and fitness function (validation 

set). Each set represents 50% of the full training set. This split is 

intended to avoid training data overfitting. 

E-Motion was executed according to the parameters listed in 

Table 2. The parameter values were based on our previous 

experience in using evolutionary algorithms for decision tree 

induction, and we have made no attempt to optimise parameter 

values, a topic left for future research. For the lexicographic 

analysis, RMSE is the highest-priority measure, followed by MAE 

and tree size, respectively. Thresholds were calculated 

dynamically, where each error measure has a threshold of 5% of 

its average value within the current population, and 20% for the 

average tree size. These parameters were defined empirically, 

through previous experimentation. “Convergence rate” (i.e., rate 

of the maximum number of generations without fitness 

improvement) and “max number of generations” are the 

algorithm’s stopping criteria.  

Table 2. E-Motion parameters. 

Parameter Value 

Initial forest max depth 3 

Population size 500 

Convergence rate 3% 

Max number of generations 500 

Tournament rate 0.6% 

Elitism rate 5 % 

Crossover rate 90% 
Mutation rate 5% 

Due to the fact that GA is a non-deterministic technique, we have 

run E-Motion 30 times (varying the random seed across the runs) 

for each one of the ten training/test set folds generated by the 10-

fold cross-validation procedure. These folds were the same ones 

used by M5P and REPTree, to make the comparison among the 

algorithms as fair as possible. After running E-Motion on each of 

the eight datasets presented in Table 1, we have calculated the 

average and standard deviation of the 30 executions for each fold 

and then the average of the ten folds. We have calculated the 

averages and standard deviations for the ten folds of M5P and 

REPTree since these are deterministic algorithms. 

To assess the statistical significance of the differences observed in 

the experiments for each dataset, we have executed the corrected 

paired t-test [17], with a significance level of α = 0.05 and 9 

degrees of freedom. The measures we analysed were the same we 

used in the lexicographic analysis: tree size, RMSE and MAE. To 

assess the statistical significance of the differences observed in the 

experiments for each dataset, we have executed the corrected 

paired t-test [17], with a significance level of α = 0.05 and 9 

degrees of freedom. The measures we analysed were the same we 

used in the lexicographic analysis: tree size, RMSE and MAE. 

5. EXPERIMENTAL RESULTS 
Table 3 presents the average values for the error measures for E-

Motion (E), M5P and REPTree (REP). Standard deviation values 

are within parentheses.  

Table 3. Error measures for E-Motion, M5P and REPTree. 

Dataset 
RMSE MAE 

E M5P REP E M5P REP 

AutoMPG 2.98 
(0.65) 

2.72 
(0.52) 

3.44 
(0.59) 

2.20 
(0.38) 

2.00 
(0.33) 

2.53 
(0.36) 

BreastTumor 10.45 
(1.24) 

9.94 
(1.36) 

10.47 
(1.02) 

8.36 
(1.15) 

8.05 
(1.08) 

8.30 
(0.92) 

FishCatch 62.72 
(0.98) 

59.92 
(15.96) 

139.30 
(60.56) 

43.41 
(0.81) 

40.76 
(10.45) 

81.72 
(29.36) 

MachineCPU 45.91 
(21.82) 

54.81 
(27.38) 

93.13 
(58.08) 

29.51 
(11.13) 

29.82 
(10.27) 

49.73 
(24.28) 

Quake 0.19 
(0.01) 

0.19 
(0.01) 

0.19 
(0.01) 

0.15 
(0.01) 

0.15 
(0.01) 

0.15 
(0.01) 

Stock 1.04 
(0.07) 

0.92 
(0.20) 

1.21 
(0.24) 

0.81 
(0.05) 

0.67 
(0.08) 

0.84 
(0.12) 

Strike 440.44 
(282.66) 

436.99 
(277.65) 

459.87 
(274.23) 

217.52 
(52.36) 

211.29 
(48.91) 

225.40 
(54.68) 

Veteran 133.35 
(86.34) 

126.85 
(78.12) 

140.01 
(81.91) 

92.68 
(47.97) 

91.95 
(42.88) 

98.98 
(37.39) 

Table 4 presents the results regarding the average tree size 

(number of nodes) of the solutions produced by each algorithm. 

Table 5 shows in which datasets the differences regarding the 

error measures and tree size were statistically significant, 

according to the corrected paired t-test. This table is divided into 

two parts. The left part indicates the datasets in which E-Motion 

was significantly better than M5P or REP according to each of the 

three criteria in column (a). Each entry in the column E-Motion 

contains 8 values, one for each of the datasets, and the value in 

question is a dataset identifier if E-Motion was significantly better 

than the corresponding algorithm in the second column (M5P or 

REP) according to the corresponding measure in column (a); 

otherwise the value in question is “-“. The second part of the table 

has a similar structure, but now each entry in the column E-

Motion indicates for which dataset E-Motion was significantly 

worse than the corresponding algorithm in the second column, 

according to the corresponding measure in column (b). 

Table 4. Tree Size for E-Motion, M5P and REPTree. 

Dataset 
Tree Size 

E M5P REP 

AutoMPG 3.17 (0.26) 6.60 (2.63) 71.90 (14.08) 

BreastTumor 2.59 (0.80) 1.80 (1.03) 10.30 (12.60) 

FishCatch 3.34 (0.60) 7.80 (4.34) 38.60 (10.72) 

MachineCPU 6.18 (0.83) 6.00 (3.16) 21.20 (14.28) 

Quake 1.00 (0.00) 3.60 (2.99) 18.00 (33.88) 

Stock 11.78 (0.67) 87.80 (15.70) 160.40 (15.69) 

Strike 4.93 (0.72) 10.40 (7.55) 41.20 (16.10) 

Veteran 3.31 (0.75) 1.80 (2.53) 9.80 (8.44) 

Regarding statistical significance results, we can notice that E-

Motion performs similarly to M5P and REPTree in terms of error 

measures. It outperforms M5P in the MachineCPU dataset (RMSE 

and MAE), and it outperforms REPTree in FishCatch (RMSE and 



MAE) and MachineCPU (MAE). E-motion is never outperformed 

by REPTree considering the error measures, and it is 

outperformed by M5P only in Stock (MAE). Considering absolute 

values only, E-Motion is superior to REPTree in 7 datasets for 

RMSE and 6 for MAE. However, it is outperformed by M5P, 

though by statistically insignificant margins. 

Table 5. E-Motion significantly better (a) or worse (b) than 

M5P and REP according to the corrected paired t-test. 

(a)  E-Motion  (b)  E-Motion 

RMSE 
M5P ---M----  

RMSE 
M5P -------- 

REP --F-----  REP -------- 

MAE 
M5P ---M----  

MAE 
M5P -----So-- 

REP --FM----  REP --------  

Tree 
Size 

M5P --F-QSo--  Tree 
Size 

M5P ---M---- 

REP A-FM-SoSi-  REP -------- 

Once E-Motion induces trees with predictive performance similar 

to M5P and REPTree, it is interesting to analyse the 

comprehensibility of the models generated. As we can see in 

Table 4, E-Motion always produces smaller trees when compared 

to REPTree. In addition, it produced trees that are smaller than 

M5P ones in 5 out of the 8 datasets we used. This difference is 

statistically significant in 5 out of 8 datasets when comparing E-

Motion to REPTree, and in 3 out of 8 when comparing E-Motion 

to M5P. Only in the MachineCPU dataset M5P was able to 

generate trees that are smaller than E-Motion’s trees with 

statistical significance. Overall, these results suggest that E-

Motion seems to produce trees which are often both accurate and 

significantly smaller than the other two traditional algorithms.  

We conclude by arguing that the lexicographic analysis used as 

fitness function has achieved its goal by providing a good trade-

off between predictive performance and model comprehensibility, 

which we consider to be the main contribution of this work. We 

point out that E-Motion’s execution time is coherent to most 

evolutionary algorithms, which means it turns out to be around 10 

times slower than most greedy algorithms for generating model 

trees. Note that in predictive data mining tasks such as regression, 

computational time is normally considered much less important 

than solution-quality criteria such as prediction error and tree size. 

6. RELATED WORK 
Evolutionary induction of decision trees is a well-addressed issue, 

as presented in works such as [2], [3], [14], [26]. However, very 

few studies have discussed the evolutionary induction of 

regression/model trees, and we briefly review them below. 

TARGET [9], [16] is a GA proposed to evolve regression trees. It 

makes use of a Bayesian information criterion as the measure of 

tree fitness, which is basically a weighted-formula that penalizes 

for model complexity. TARGET is compared to the traditional 

regression tree induction algorithm CART [7], and also to the 

ensemble methods Random Forests and Bagging in two public 

regression datasets. It outperforms CART in terms of MSE, but is 

outperformed by both ensemble methods. The authors claim that 

TARGET presents a good trade-off in terms of error measures and 

model comprehensibility (final result is a single tree), whereas 

CART presents only good comprehensibility and the ensemble 

methods only good predictive performance. 

GPMCC [18] is a framework proposed to evolve model trees. Its 

structure is divided in three different parts: (1) GASOPE [19], 

which is a GA to evolve polynomial expressions; (2) K-Means, 

which is a traditional clustering algorithm and is used in this 

framework to sample the training set; and (3) a genetic algorithm 

to evolve the structure of trees through a fitness function that is an 

extended form of the adjusted coefficient of determination (a 

weighted-formula approach that penalizes for the size of the tree 

and the complexity of each terminal model). GPMCC handles 

trees that contain non-linear models in their terminal nodes, a 

variation of traditional model trees. It is compared to a neural 

network approach called NeuroLinear [22] and to a commercial 

version of Quinlan's M5 [20], outperforming these approaches 

only by the number of rules generated (paths of the tree), and 

being outperformed in terms of predictive performance (mean-

absolute error). 

Our approach for evolving trees (E-Motion) differs from 

TARGET since we are evolving model trees and not regression 

trees. It is important to notice that model trees are a more robust 

and effective approach when compared to regression trees, often 

presenting more accurate results [25]. Our strategy, while having 

the same goal as the GPMCC framework, makes use of a single 

GA to evolve model trees, which makes the induction of model 

trees faster and simpler. Additionally, GPMCC relies on a single-

objective evaluation, which can explain the fairly inaccurate 

results it provides. Our approach, on the other hand, makes use of 

a lexicographic analysis to better handle the multi-objective 

optimisation and find a good trade-off between predictive 

performance and comprehensibility. To the best of our 

knowledge, E-Motion is the first lexicographic multi-objective 

evolutionary algorithm for model tree induction. 

7. CONCLUSIONS AND FUTURE WORK 
Model trees are a popular alternative to classical regression 

methods, mainly because the models they provide resemble the 

human reasoning. We emphasize that the comprehensibility of the 

discovered model is important in many applications where 

decisions will be made by human beings based on the discovered 

knowledge. Therefore, there is a clear motivation to provide 

model trees that are not only accurate but also relatively simple. 

Traditional model tree induction algorithms which rely on a 

recursive top-down greedy strategy are relatively fast but 

susceptible to converging to local optima, while an ideal 

algorithm should choose the correct tree partitioning in order to 

converge to a global optimum. With this goal in mind, we have 

proposed a novel Genetic Algorithm for inducing model trees 

called E-Motion. It avoids the greedy search performed by 

conventional tree induction algorithms, and performs instead a 

global search in the space of candidate model trees. Additionally, 

while other approaches typically rely on a single objective 

evaluation (possibly collapsing multiple objectives into a single 

objective using a weighted formula), we propose a lexicographic 

approach, where multiple measures are evaluated in order of their 

priority. This approach is relatively simple to implement and 

control and does not suffer from the problems the weighted-

formula and Pareto dominance do, as discussed earlier. 

E-Motion considers the two most common error measures used 

for evaluating regression problems: root mean-square error and 

mean-absolute error. Also, it considers tree size as a measure of 

model comprehensibility, assuming that smaller trees are easier to 

interpret. In experiments with 8 datasets, E-Motion’s results did 

not significantly differ from the popular M5 algorithm regarding 

the error measures, but E-Motion consistently induced smaller 



model trees. This means an overall improvement in simplicity was 

obtained without any statistically significant loss in predictive 

performance in most datasets. This is a clearly positive result, 

which is also supported by the well-known principle of Occam’s 

razor, a principle very often used in data mining and science in 

general. Regarding the comparison with REPTree, E-Motion is 

superior both in error measures and tree size, which is partially 

explained by the different types of trees that are induced (model 

trees versus regression trees), but also by the capacity of E-

Motion of producing reduced and accurate trees. 

Some possibilities for future research are as follows. First, the 

setting of input parameters for E-Motion could be done through a 

supportive GA, helping to achieve convergence to a global 

optimum. In addition, we intend to extend the leaf models in order 

to generate polynomial expressions, so each model tree will hold 

non-linear models in its leaves. Finally, we are looking for parallel 

solutions in order to speed-up the algorithm’s execution time. 
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