Under standing the Crucial Role of Attribute I nteraction in Data Mining
Alex A. Freitas
Pontificia Universidade Catolicado Parana
Postgraduate Program in Computer Science
Rua Imaaulada Conceicao, 1155
Curitiba, PR, 80215901.
Brazil
Tel./Fax: (55) (41) 330-1669
E-mail: alex@ppgia.pucpr.br
URL.: http://www.ppga.pucpr.br/~alex
Abstract

This is a review paper, whose godl is to significantly improve our understanding of
the aucial role of attribute interadion in data mining. The main contributions of this
paper are & follows. Firstly, we show that the @mncept of attribute interadion has a
crucial role acoss different kinds of problem in data mining, such as attribute
construction, coping with small disjuncts, induction of first-order logic rules, detection
of Simpson’s paradox, and finding several types of interesting rules. Hence a better
understanding of attribute interadion can lead to a better understanding of the
relationship between these kinds of problems, which are usually studied separately from
each other. Secondly, we draw attention to the fad that most rule induction algorithms
are based on a gready seach which does not cope well with the problem of attribute
interacion, and point out some alternative kinds of rule discovery methods which tend
to cope better with this problem. Thirdly, we discussed several algorithms and methods
for discovering interesting knowledge that, implicitly or explicitly, are based on the

concept of attribute interadion.
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1 Introduction

Although the basic ideaof extrading some sort of knowledge from data is quite old,
we can consider that - at least from an acalemic viewpoint - the birth of modern data
mining and knowledge discovery as a self-described scholarly, interdisciplinary field
was the 1JCAI-89 Workshop on Knowledge Discovery in Real Databases - see
Piatetsky-Shapiro (1991).

Before this workshop was held, most reseach on data mining consisted of mining
small data sets that can be @lled “databases’ only in the loosest sense of the word. A
major reseach goal set forth by this workshop was to extract high-level knowledge
from real-world database systems. It is well-known that red-world database systems are
very large. Hence, in order to med that important goal, several reseachers have focused
on designing algorithms that are scdable with resped to the size of the data being
mined - see eg. Provos & Kolluri (1999, Freitas & Lavington (1998.

However, red-world databases also offer other significant challenges to data mining,
such as the ones mentioned by Frawley et a. (1991): (a) real-world databases tend to
contain quite noisy data, which requires cost-effedive data cleaning methods; (b) real-
world databases contain many irrelevant attributes, which requires cost-effective
atribute seledion methods; (c) relevant attributes may be missng in real-world
databases.

It should be noted that the &ove dallenges are not strongly related to the size of
real-world databases, but rather strongly related to the nature of the data, more predsely
the fact that the data stored in real-world databases was colleded for purposes other
than data mining. This fad has another implicaion, which is relatively less investigated
inthe literature and is the focus of this paper.

In this paper we ague that one of the major challenges assciated with real-world

databases is that they tend to have alarge degreeof attribute interadion. Note that this



is not the cae in many data sets often used in machine leaning and data mining
reseach. For instance, one of the reasons why in general medical domains are so
appropriate for knowledge discovery is that a considerable medical expertise goes into
seleding which attributes are included in a medicad database, as pointed out by
Piatetsky-Shapiro (1991). Medical doctors usually do not seled attributes that are
redundant or have astrong interadion with other attributes, as noted by Michie & al.
(1994.

The asumption that there is a relatively small degree of attribute interadion in the
data being mined is implicit in most rule induction algorithms - see eg. Rendell &
Seshu (1990, Naza & Bramer (1999, Dhar et a. (2000. Unfortunately, this
asumption does not usually hold when mining red-world database systems, and this is
the basic problem addressed in this paper.

Although throughout the paper we discuss attribute interadion in several pattern-
discovery tasks, in most of the paper we discussattribute interadion in the mntext of a
supervised prediction task, typically classficaion. In this context attribute interadion
can be defined as follows. Consider three dtributes Y, X; and X, where Y is the goal
(class) attribute to be predicted and X; and X, are predictor attributes. X; and X interad
when the diredion or magnitude of the relationship between Y and X; depends on the
value of X,. Actually, this can be alled a two-way interadion. Higher-order attribute
interadions can be defined inasimilar way.

The goal of this paper is to significantly improve our understanding of the aucial
role of attribute interadion in data mining. We believe this is an important goa to be
pursued, for a least threereasons. First, attribute interadions are the rule, and not the
exception, in real-world database systems, as will be discussed in Sedion 2. Second,

attribute interadion issues are rarely explicitly discussed in the literature. Third, the



understanding of attribute interadion as a key concept in data mining can lea to the
design of new kinds of data mining algorithms and methods ecifically designed from
scratch to take into acmunt (and sometimes even take advantage of) the large degree of
attribute interadion found in real-world database systems. Indeed, sedion 4 of this
paper will discuss ®me recent algorithms and methods for discovering interesting
knowledge that, implicitly or explicitly, are based on the mncept of attribute interadion.

The rest of this paper is organized as follows. Sedion 2 discusses the importance of
attribute interadion, to suppat our argument that attribute interadion is a key concept
in data mining. Sedion 3 presents a aitica review of how most current rule induction
systems cope with attribute interadion. Sedion 4 will show how attribute interadion
can be used as the key concept for discovering interesting petterns. Finally, sedion 5

concludes the paper.

2 TheImportanceof Attribute Interaction in Data Mining

2.1 Psychological Evidencefor the Importance of Attribute Interaction

Since the goal of data mining is to discover knowledge that is not only acairate but
also comprehensible for human decision makers, the field of cognitive psychology is
clealy relevant for data mining, as pointed out e.g. by Pazzani (2000.

The problem of classficaion has long been studied by psychologists. In their
terminology a class is called a cdegory, or a concept. Roughy spe&king, until a few
decales ago the field of psychology was dominated by a classicd view of concepts, but
in the last decales this view has been replacel by a natural view of concepts - see
Gardner (1984). A major difference between these two views has to do with attribute

interadion.



In the clasgcal view, caegories are defined by a small set of attributes. All members
of a cdegory share these defining attributes, and no non-member shares them. In
general the defining attributes are supposed to be largely independent (uncorrelated) of
eah other - i.e. there islittle or no attribute interadion.

For instance consider Bruner et al.’s clasgcal psychological study of how
individuals lean to form concepts, as simmarized by Gardner (1984. In this sudy
subjects were asked to recognize instances of geometric concepts like large red triande
or tall blue cyinder. A concept was arbitrarily defined and each objed was
unambiguously considered a member or a non-member of that category. The subjed
was exposed to one cad at atime, asked in eadh case whether that card belonged to the
target concept, and then told whether his’her response was corred. The subject’s task
was to identify the dtributes defining the target concept, in order to seled all, and only,
those cads exhibiting the defining feaures of the concept. The reseachers found that
the most foolproof method used by subjeds was conservative focusing, where one finds
a positive instance of the amncept and then makes a sequence of choices, each of which
atersonly asingle atribute value of this first “focus’ card and tests whether the dhange
yields a positive or negative instance of the ancept. This psychological study was quite
influential, and it seems that at that time no one redized that the use of such artificial
concepts might invalidate the findings.

In any case, we find a striking parallel between conservative focusing and the greely
seach performed by some rule induction algorithms, particularly AQ-style algorithms -
seeMichalski (1983, which start with a seed example and then slowly generalize it by
removing one-attribute-at-a-time. (The isue of greedy rule induction will be discussed
later.)

By contrast, in the natural view of concepts, highly correlated (non-independent)



attributes are the rule, not the exception. For instance consider the classification of
animals into birds and non-birds in the real world. Wings occur with feahers much
more often than they do with furs. Hence, there is considerable interadion between
predictor attributes, and this kind of interadions is exploited by human concept-
reagnition mechanisms. This situation is very different from the above example of
classical view, where independent attributes are used to define atificial, arbitrary
concepts. In the natura view concepts are much fuzzier and are motivated by real-life
considerations, rather than being arbitrarily defined.

To summarize in the natural view of concepts, which is currently much more
acceted in psychology than the classical view, attribute interacion is the rule, and not
the exception. Evidence for this natural view of concepts is provided, in the mntext of
data mining, by projeds that did found a significant degree of attribute interadion in
real-world data sets. An example is the large number of small disuncts found by
Provost & Danyluk (1993 in telecommunications data, as mentioned in sedion 2.2.
Another example is the several instances of Simpson’s paradox discovered in real-world
data sets by Fabris & Freitas (1999, as discussd in sedion 2.3. Yet another example is
the existence of strong attribute interadions in a typicd financial data set, as discussed

by Dhar et a. (2000 - seealso sedion 3.2.

2.2 Thelnfluenceof Attribute Interaction on Concept Hardnessand Small
Diguncts

There ae, of course, many fadors that make a oncept (classdescription) difficult to
be leaned, including urbalanced class distributions, noise, missng relevant attributes,
etc. However, in some @ses even if al relevant information for class €paration is

included in the data - i.e. al relevant attributes are present, there is little noise, etc. -



many rule induction algorithms achieve poor predictive acaracy when leaning some
concepts. These kinds of concepts can be @lled hard - see Rendell & Seshu (1990,
Rendell & Cho (1990), Rendell & Ragavan (1993, Naza & Bramer (1999 - and the
main reason for their hardnessis the problem of concept dispersion.

We summarize, in the following, the main arguments of Rendell et al. To smplify
our discusgon, let us assume a two-class problem where the concept to be leaned
consists of the positive-class examples. In essence, we can say that a concept is
dispersed when we neal a large number of small disjuncts (rules covering a few
examples) to cover the acncept. This point is illustrated in Figure 1, which shows
graphical representations of the data spacefor two hypothetical data sets, ead with two
attributes. Figure 1(a) shows an extreme ase where the positive-class (“+”) examples
are maximally spread aaoss the data space Each “+” example is surrounded by “-”
examples, so one canot induce reliable, generalized rules predicting the “+” class

Figure 1(b) shows the other extreme, where the “+” concept can be easily leaned.

Az AZ
+ - 4+ - + + - -
-+ - 4+ + + - -
+ - 4+ - + + - -
-+ -+ + + - -
A A
(a) hard classificaion problem (b) easy clasgfication problem

Figure 1: Large degreeof attribute interadion makes a wncept harder to lean.

Note that the kind of concept dispersion shown in Figure 1(a) is mainly caused by
attribute interadion. Indeed, in that Figure, in order to determine the class of an
example we need to know the values of both predictor attributes, since aminor variation
in the value of one dtribute leals to an entirely different prediction. Knowing the value
of a single dtribute is useless Although the &ove example is hypothetical and

simplified for pedagogicd reasons, data sets with a large degree of concept dispersion -



i.e. with many small disjuncts - do exist in the real-world.

One of the ealiest machine leaning projeds to cope with a large degree of attribute
interadion in a real-world data set was Samuel’s cheder player developed during the
1950s by Samuel (1959. This projed was very influential and it anticipated many
ideas rediscovered later in machine leaning research. (For instance, Samuel’ s adaptive
polynomial leaning, which adjusted the weights of a polynomium of attributes for
evaluating a board position, was quite similar to perceptron neural networks.)

This projed showed that to lean well the cncept ‘winning' it was necessary to use
high-level attributes uch as piece avantage, which are usually a good indicaor of the
strength of a position. This kind of representation effedively helps to group together
examples of the same classin the data space which grealy reduces the number of small
disiuncts. By contrast, consider alow-level representation where e&h attribute indicates
whether a board square was occupied by a blad king, black man, red king, red man, or
vacant. This kind of representation would lead to a much larger number of small
disuncts, since now there is no small set of attributes that can be considered a good
indicator of the strength of a position. With this low-level representation one would
neeal to consider the value of virtually all the dtributes to evaluate the strength of a
position, and a minor variation in the value of one of the many attributes might lead to a
completely different evaluation of the position.

More recettly, a number of data mining pojects have had to cope with a large
number of small disjuncts, due to a large degree of attribute interadion. A good
example is areal-world application reported by Danyluk & Provost (1993, where small
disjuncts cover roughy 50% of the training examples.

This fad has probably influenced the design of some rule induction algorithms. For

instance, Domingos (1999's RISE algorithm tends to cope with small disjuncts better



than most rule induction algorithms. The reason is that, in a nutshell, this algorithm
starts with arule set where e&h rule is atraining example, and it generalizes arule only
if this generalization increases the global predictive acaracy on the training set. Hence,
small-disjunct rules will not be unduly generalized by RISE.

In addition, several methods for coping with small disjuncts have been proposed —
Holte d al. (1989, Ting (1994, Weiss (1995 1998, Weiss & Hirsh (2000, Carvalho
& Freitas (2000, 200M). Despite these alvances, the problem of small disjuncts
(related to a high degreeof attribute interadion) is gill an open problem in data mining.

To summarize, in general the more dispersed the positive examples of a concept are,
the more difficult that concept is to be leaned. Low-level representations, such as the
one illustrated in Figure 1(a) are asciated with many small disuncts and much
concept dispersion due to a high degree of attribute interaction, which tends to lead to
poor predictive acaracy. By contrast, high-level representations, such as the one
illustrated in Figure 1(b), grealy reduce the degreeof attribute interadion, which tends

to lead to alessdispersed concept and so to a higher predictive acarracy.

2.3 Deteding occurrences of Simpson’s paradox

Attribute interadion is at the core of an occurrence of Simpson’s paradox. This
paradox can be briefly described as follows — see Simpson (1951), Wagner (1982,
Newson (1991]). Suppose that a population is partitioned into two Pop; and Pop,, and
that the probability of a given situation of interest — i.e. the value of a given goal
attribute — increases (deaeases) from Pop; to Pop,. Suppose now that both Pop, and
Pop, are further partitioned into several caegories. We say that Simpson’'s paradox
occaurs if the probability of the situation of interest deaeases (increases) from Pop; to

Pop, in each of those caegories. The ideais better illustrated with an example.



Table 1: Simpson’s paradox in data eout tuberculosis deahs.

New York Richmond
Total Population 4766883 127682
No. of deaths 8878 286
Percentage 0.19% 0.22%

New York Richmond

white coloured white | coloured

Total Population 4675174 91709 80895 46733
No. of deaths 8365 513 131 155
Percentage 0.18% 0.56% 0.16% 0.33%

Table 1 shows an occurrence of the paradox in a comparison of tuberculosis deahs
in New York City and Richmond, Virginia, during the year 1910- see Newson (1991).
Overall, the tuberculosis mortality rate of New York was lower than Richmond’s one.
However, the opposite was observed when the data was further partitioned acording to
two radal categories. white and coloured. In both these racial caegories Richmond had
alower mortality rate. In other words, if we @nsider only one dtribute (City) we draw a
conclusion, while if we @nsider the interadion between two attributes (City and Racial
Category) we draw the opposite cnclusion.

Simpson’s paradox occurs more often than one might think at first glance For
instance, several real-world instances of the paradox are described by Newson (1997
and Wagner (1982. In addition, Fabris & Freitas (1999 have shown that the paradox

ocaursin several data sets from the UCI repository, as will be seen in sedion 4.4.

3 A Critical Review of Rule Induction Systems Concerning How They Cope with

Attribute Interaction

3.1 TheMyopia of Gready Rule Induction
In general arule induction algorithm is said to be gready if: (1) it constructs arule in
an incremental fashion by considering one-attribute-at-a-time; (2) at eat step the best

possible local choice is made. While there ae many different kinds of rule induction
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algorithm, the majority of them is grealy, performing a local seach as described in
Figure 2. Figure 2(a) shows that this kind of seach discovers one rule & atime. The
procedure performed to build a single rule can be top-down or bottom-up, as $rown in
Figures 2(b) and 2(c). In both cases, rules are typicaly built by considering one dtribute
at atime and choosing the best atribute to be included/removed in/from the rule in a

greedy fashion.

Procedure for Rule Set Induction
Specify the training set of examples;
DO
induce arule avering as many “+” examples and as few “-” examples as possible
remove the “+” examples covered by the induced rule from the training set
UNTIL there ae uncovered “+” examples in the training set

(a)building arule set on an one-rule-at-a-time basis
Top-Down Procedure for Rule Induction ~ Bottom-Up Procedure for Rule Induction

Rule =0; Rule = a onjunction of conditions;
DO DO
[* specializetherule*/ [* generalizethe rule*/
add the “best” condition to the rule; remove “worst” condition from the rule;
UNTIL (stopping criterion) UNTIL (stopping criterion)
(b) top-down rule cnstruction (c) bottom-up rule @nstruction

Figure 2: High-level view of greedy seach in rule induction

It should be noted that the grealy seach performed by most rule induction
algorithms makes them quite sensitive to attribute interadion problems. A very simple
example of the danger of greedily constructing a rule by seleding one-attribute-at-a-
time is shown in the hypothetical data set of Figure 3. The first column indicates
whether the aedit limit granted to a austomer is low or high. The second column
indicaes whether the balance of the austomer’s current acount is low or high. The third
column, corresponding to the goal (class) attribute, indicates whether or not the aedit
limit is abnormal, in the sense of being incompatible with the aurrent acount balance of
the austomer. The value of this goal attribute is given by a kind of logic XOR

(eXclusive OR) function, which is true (‘yes’) if and only if the two predictor attributes
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have different values, and isfalse (‘no’) otherwise.

credit_limit c/a_bdance is credit_abnomal?
low low no

low high yes

high low yes

high high no

Figure 3: Attribute interadion in akind of logic XOR (eXclusive OR) function

Suppose that we try to induce arule from the data in Figure 3 by selecting one
atribute-value mndition at a time. Suppose we include in our rule the cndition
<credit_limit = low>. This condition is not useful for predicting the value of
is _credit_abnamal?, since the class distribution for the examples stisfying the
condition is 50%-50%, which is the same class distribution as in the eitire data set.
Actually, any of the four rule cnditions (attribute-value pairs) which could be included
in a rule leads to the same problem, so a grealy rule induction algorithm would
conclude that these rule mnditions are irrelevant for predicting the goal attribute.
However, this is not the cae. The problem is that we need to know the value of both
predictor attributes at the same time to acaurately predict the value of the goal attribute.

Note that one of the most popular kind of data mining algorithm, namely decision-
tree algorithms, would be fooled by the simple dtribute interadion problem shown in
Figure 3. For instance assume that the data set shown in Figure 3 includes not only
attributes credit_limit and c/a_bdance but also another attribute, say gender, which is
irrelevant for predicting is_credit_abnamal ? but turns out to be slightly correlated with
is_credit_abnamal? by shee chance (i.e. a spurious correlation). No matter how small
this gurious correlation is, the irrelevant attribute gender would be dhosen to label the
root node of a decision treg since the two relevant attributes credit_limit and
c/a_bdance (when considered separately, one-at-a-time) have no correlation at all with

is _credit_abnaomal?.
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In passing, we note that the @ove-discussed kind of logical XOR problem is in
reality a particular a cae of parity problems, where the target function returns true if
and only if an odd number of predictor attributes is true. The complexity of attribute
interadion in parity problems increases very fast with the number of predictor
attributes, which makes this kind of problem very difficult for greedy rule induction
algorithms, as $1own e.g. by Schaffer (1993.

Similar arguments hold for the bottom-up rule induction procedure shown in Figure
2(c). Thisisthe kind of search performed e.g. by AQ-style rule induction algorithms -
see Michalski (1983, which start with a sead example and then generalize it, in a
gready fashion, by removing one-condition-at-a-time. In other words, both rule
induction procedures in Figure 2(b) and Figure 2(c) are gredly, they are simply greedy
in “opposite diredions’.

The @ove discusson was mewhat simplified for pedagogical reasons, but the
basic ideais that, in order to cope well with attribute interadions, we neel data mining
methods which consider several-attributes-at-a-time.

There ae other knowledge discovery paradigms that cope better with attribute
interadion than rule induction. An example is neural nets. However, despite the
progressin the aeaof extrading comprehensible rules from neural nets - see eg. Taha
& Ghosh (1999, Vaughn (1996 - this extradion still remains a difficult, cumbersome
task. Hence, we do not discuss neural networks here. Rather, we discuss below other
knowledge discovery paradigms that not only tend to cope better with attribute
interadion than the classcal rule induction paradigm but also lend themselves more

naturally to the discovery of comprehensible rules.
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3.2 The Global Search of Evolutionary Algorithms

An attempt to cope better with attribute interadion is to avoid the idea of greedy
seach altogether and perform a more global seach in the rule space This can be
achieved with evolutionary algorithms sich as genetic algorithms - see Michalewicz
(1996 - and genetic programming - seeBanzhaf (1998.

An important charaderistic of evolutionary algorithms is that they perform a global
seach. This is due to several fadors. First of all, evolutionary algorithms work with a
population of candidate solutions, rather than working with a single candidate solution
at atime. These solutions concurrently explore different parts of the seach space
Sewond, the major genetic operator, crosover, modifies individuals on a several-
genes(attributes)-at-a-time basis, rather than on a single-gene(attribute)-at-a-time basis.
Third, the fitness function evaluates an individual as a whole. In the cntext of data
mining, this corresponds to evaluating a candidate rule (or a candidate rule set) as a
whole, rather than one condition at atime (or arule & atime).

Finally, evolutionary algorithms use stochastic seach operators, which contributes to
make them nore robust and less snsitive to noise.

Intuitively, the &ove fadors make evolutionary algorithms cope better with attribute
interadion than the grealy seach algorithms often used in rule induction. Some
evidence that thisisthe cae is provided e.g. by Greene & Smith (1993, who show that,
as the amount of interadion increases, the relative performance between a genetic
algorithm and two rule induction algorithms (CN2 and Newld, the latter a dedsion tree
algorithm) becomes increasingly larger. Another evidence for the fad that evolutionary
algorithms cope well with attribute interadion is provided by Dhar et a. (2000. They
have compared a genetic algorithm with two rule induction algorithms, namely RL and

CART (a well-known decision-tree dgorithm), on a financial data set involving a
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considerable amount of attribute interadion. The GA outperformed the other two
algorithms due to its abil ity to perform a more global, thorough search in rule space To
guae from the mnclusions of Dhar et al. (2000, p. 278

“We daim that for hard problems, genetic dgorithms, appropriately ‘fixed ug, are more thoroughin

their seach than other rule leaning algorithms. Our results support this clam. GLOWER inded is less

restricted by greely search biases, and for problems with weak structure or variable interactions, it is

predsely the subtle relationships that are useful discoveries.”

Recent collections of papers on data mining with evolutionary algorithms can be
found in Zytkow (1999, Freitas (1999, Freitas (2000. Sedion 3.3.1 will revisit
evolutionary algorithms in the cntext of constructive induction.

It should be noted that evolutionary algorithms also have some disadvantages in the
context of data mining. Arguably, one of the most serious problems, at least in the
context of very large databases, is the fact that they tend to take much longer to run than
gready rule induction algorithms. This disadvantage is partially mitigated by their
potential for parallel processing - see eg. Neri & Giordana (1995, Anglano et al.
(1997, Araujo et a. (1999, Freitas & Lavington (1998 - but scdability with resped to
the size of the database being mined is gill an open problem for evolutionary

algorithms.

3.3 TheCrucial Role of Attribute Interaction in Attribute Construction

With resped to the autonomy of a rule induction algorithm, one @n make an
important distinction between two kinds of algorithms. Roughy spe&ing, some
algorithms discover rules by just seleding attribute values among the original set of
inpu attributes and their corresponding domains, while other algorithms discover rules
by not only seleding but also automatically constructing new attributes.

The former kind of algorithm includes many well-known rule induction algorithms,
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such as Quinlan (1993’s C4.5. These algorithms carefully choose attribute-value pairs
to include in rule conditions. However, they are incgpable of constructing relatively
simple new attributes, which can be quite useful in some situations. For instance
suppose we try to predict whether the shares of a cmpany will go up or down in the
financial market, based on a set of predictor attributes that includes both the mmpany’s
total income and the company’s total expenditure in the last 12 months. Mogt rule
induction algorithms are not cgpable of discovering rules of the form:
IF (Income > Expenditure) AND . . . THEN (Shaes=up)

IF (Income < Expenditure) AND . . . THEN (Shaes=down) ,

because those algorithms do not have the aitonomy to create attribute-attribute (rather
than attribute-value) rule conditions. Clealy, this limitation would be removed if the
rule induction algorithm was able to automatically construct the new boolean attribute
“Income > Expenditure?” .

More generaly, an attribute wnstruction algorithm might face #ribute interadion
problems of arbitrary complexity in its sarch for high-level, effedive new attributes.
The better the dgorithm can cope with attribute interadion, the more useful the new
constructed attributes will probably be.

A review of constructive induction algorithms is beyond the scope of this paper. The
interested realer is referred to Liu & Motoda (1998 and an online bibliography at
http:/liinvww.ira.uka.de/bibliography/Ai/fegure.engineaing.html.

It is important to note, however, that most constructive induction methods follow the
gredly, local seach paradigm of rule induction discussed in sedion 3.1. Hence we
briefly discuss in subsedion 3.3.1 an aternative gproad for constructive induction
based on genetic programming, with the aim of performing a more global seach in the

spaceof candidate new attributes.
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3.3.1 Constructive Induction with Genetic Programming

As mentioned above, the major problem in attribute construction is that the search
gpacetends to be huge. In addition, the anstruction of a good attribute often requires
that the atribute construction algorithm generates and evaluates combinations of several
original attributes, rather than just two attributes. This is where evolutionary algorithms
can be useful. In particular, genetic progranming (GP), due to its charaderistic of
performing a very open-ended, stochastic, global seach - see Banzhaf (1999 - seems
particularly suitable for efficiently searching a huge spaceof candidate new attributes.

In GP an individual is usually represented by a tree with rule cnditions and/or
attribute values in the led nodes and functions (e.g. logical, relational or mathematical
operators) in the internal nodes. An individual’s tree ca grow in size and shape in a
very dynamica way. In general, in order to apply GP to data mining one must define a
terminal set, containing the dtributes and their corresponding domain values, and a
function set, containing the operatorsto be gplied to the terminal set elements.

In the mntext of rule induction and attribute construction, the important point is that
we can include virtually any kind of operator in the function set of GP. In the first
iteration (generation) operators will be gplied to original attributes in a kind of random
way. However, as the population of individuals (candidate new attributes) evolves, the
system will automatically discover which operator must be gplied to which
combination of original attributes in order to create good new attributes (the best
evolved individuals).

Evidence that GP is an effective method for constructive induction is presented e.g.
by Hu (1998 and Kuscu (1999. Hu's results are particularly interesting, because they

involved more data sets and more algorithms being compared. More predsely, Hu
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compares CPCl, a GP-based constructive induction method, with two other constructive
induction methods, namely LFC and GALA. The comparison is made acoss 12 data
sets. Overall, the predictive acarracy of GPCI was considerably better than LFC’s one

and somewhat better than GALA’ s one.

3.4 Coping with Attribute Interaction via Inductive Logic Programming (1L P)

Although it is rarely described this way, Inductive Logic Programming (ILP) can be
regarded as away to cope with attribute interadion.

One of the basic ideas of ILP is to use aricher, more expressive knowledge
representation language, based on first-order logic (FOL) - see eg. Lavrac & Dzeroski
(1994, Quinlan (1990. This representation is more expressive than the traditional
propositional (“zero-th order”), attribute-based representation used by most rule
induction algorithms. A very simple example shows the point. Let A and B be two
boolean predictor attributes. A concept defined by the equality of these two attributes
would be represented in propositional logic &s. ((A =true) AND (B = true)) OR ((A =
false) AND (B = false)). The same mncept would be represented in FOL as: A = B,
which is obviously a much more @wmpad representation. Another example of the
representational power of first-order logic is the fad that it allows the discovery of rule
conditions such as “Income > Expenditure?’, as mentioned in sedion 3.3. Note that,
asuming that the Income and Expenditure attributes are red-valued, we would need an
infinite number of propositional rule mnditions to expressa rule set equivalent to the
FOL rule condition “Income > Expenditure?”.

Another basic ideaof ILP is that the rule induction algorithm accepts as input not
only the training set of examples, but also a set of domain (background) knowledge

predicates. Actually, FOL is a useful tool to cope with attribute interadion because it
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allows usto expressin a single term (predicate) arbitrarily complex relationships among
attributes, rather than attribute values. In essence a predicate in FOL corresponds to a
relation in relational databases, while the predicate aguments (variables) correspond to
attributes in relational databases. An example is the predicate better_investment(A, B),
which means that an investment A is better than one B if a set of arbitrarily complex
conditions are satisfied. These predicae conditions can be intentionally defined by logic
clauses sich as “higher_interest_rate(A, B) AND smaller_risk(A, B)”, which is
analogous to a view definition in relational databases, or extensionally defined by a set
of grounded fads satisfying the condition, which is analogous to enumerate the set of
tuples belonging to the relation.

Hence, we can say that the use of a FOL badground predicae allows ILP systems
not only to capture an arbitrarily complex attribute interadion among attributes but also
to expressthat interadion in a @mpad, abstracted form. However, it should be noted
that, despite this advantage, most ILP systems gill have two limitations for coping with
attribute interadion, as follows.

First, badkground predicaes are usually manually predefined. They correspond
either to relations (or views) predefined in the database or to logical clauses (or sets of
grounded fads) manually specified specifically for the target data mining task. In other
words, most ILP systems ladk the autonomy to build badkground predicates. Some
exceptions will be seen in the next subsedion, where we discuss|LP-based constructive
induction.

Sewond, most |LP systems use the same kind of greedy, local seach strategy as used
by most rule induction algorithms. Indeed, a high level description of many ILP
algorithms could consist of the pseudo-code in Figure 2 with a simple modification:

replace the dtribute-based words condtion and rule by the FOL words literal and
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clause, respedively — see eg. asimilar pseudo-code in Quinlan (1990.

3.4.1ILP-Based Constructive Induction

An interesting approad is to combine the seach autonomy of constructive induction
procedures with the more expressive representation language of FOL typically used in
ILP systems. Here we briefly mention a couple of examples of this approad.

LINUS converts all possible combinations of badkground predicates into attributes,
which are then given as input to a propositional, attribute-based rule induction algorithm
- seeDzeroski & Lavrac(1993. The discovered rules are then converted bad into FOL
predicaes. This transformation of badkground predicates into attributes can be regarded
as aform of constructive induction.

Another ILP-based constructive induction method is proposed by Srinivasan & King
(1999. This method essentially works as follows. An ILP algorithm is used to induce
clauses. Then the algorithm identifies subsets of literals of the discovered clauses that
can be used as attributes. Each identified subset of literals consists of a wnjunctive
sequence of literals, and each of these @njunctive sequences is considered a new
attribute.

Note that both above methods essentially generate all possible cmbinations of
badground predicates that can be used as predictor attributes by a rule induction
algorithm. Hence, the new-attribute generation procedure performs a kind a exhaustive-
seach procedure. There is no heuristics to limit the number of candidate atributes
generated by the system. Heuristics are used only in the form of evaluation functions to
seled the best new attributes, among all generated candidates. This kind of exhaustive
generation of candidate new attributes ssems not to be scalable to databases with a high

number of badkground predicaes.
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Thisisin contrast with alternative gpproadies for constructive induction that perform
a more heuristic search in the space of candidate new attributes, such as the gproac

discussed in sedion 3.3.1.

4 Attribute Interaction asa Key Concept for Discovering I nterestingnessPatterns
The ooncept of attribute interadion can be a valuable tool to deted surprising
knowledge. Indeed, as argued above, human analysts usually analyze data on an one-
attribute-at-a-time basis - see Gardner (1984, Brazlil & Henery (1994, Michie 4 a.
(1999 - and they have difficulty in analyzing data on a severa-attributes-at-a-time
basis. Hence, the kind of rule deemed interesting by a user is probably a non-
compositional rule, where - due to attribute interadions - the relationship expressed in
the rule @ a whole is quite different from the relationship that is expressed in separate
parts of the rule. This sdion will address this issue in detail, discussing four methods to

discover interesting patterns based on the key concept of attribute interadions.

4.1 Attribute Interaction asthe Key Concept in Pruning and Summarizing
Discovered Rules

Liu et al. (1999 proposed a method for summarizing and pruning discovered rules.
Their method is implicitly based on detecting attribute interadion, even though this
point is not explicit in their work. In eseence the method works as follows. Let X - Y
be arule, where X is a onjunction of attribute-value cnditions and Y is a single
attribute-value pair. X and Y are said to be correlated if: (@) the rule support exceels a
user-defined minimum support; and (b) X and Y are deemed correlated by using a di-
squared test at a user-defined significance level.

If these two conditions are met, the system determines whether X and Y have a
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positive or a negative wrrelation. The aorrelation is considered positive (negative) if the
observed frequency of examples satisfying both X and Y is greaer (smaller) than the
expected frequency assuming statistical independence between X and Y.

The system then finds all diredion setting rules, which are to be included in the
summary of rules to be reported for the user. Note that a diredion setting rule an be
considered an interesting rule, for the purposes of our discussion. A precise definition of
a diredion setting rule an be found in the original paper. For the purpose of our
discussion it is enough to say that: (a) a k-condition rule r is viewed as a cmbination of
two rules, a 1-condition rule r1 and a (k-1)-condition rule rres With the same consequent
(there ae k such combinations); (b) if the crrelation of the rule r is expeded with
resped to any of the k combinations, then it is not a diredion setting rule.

These ideas are better explained with an example. Asuume that the rule r given by
Job=yes AND Own_hause=yes - Loarn~appoved is positively correlated. Suppose
that both the rule Job=yes - Loar~appoved and the rule Own_hause=yes -
loarapproved are positively correlated. Then the rule r is not a diredion setting rule,
since it is not interesting (two positive rrelations are expeded to lead to a positive
correlation). Now suppose instead that both the rule Job=yes — Loar~approved and
the rule Own_hause=yes — Loan=appoved are negatively correlated. Then the rule r
is a diredion setting rule, since it is interesting (two negative arrelations are
unexpected to lead to a positive arrelation).

In effed, a rule r is considered interesting (diredion setting) when attribute
interadion makes the rrelation of the rule to be different from the wrrelations of the
rule ombinations formed fromr.

At first glance perhaps one might argue that this method is greedy because the k rule

combinations are generated by picking one @ndition at atime to form rule r1. However,
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note caefully that all rule cmbinations must pass the test of having a @rrelation
different from that of the original rule. Therefore, the method does incorporate a
“global” (rule-wide) test of correlation reversal and effedively deteds atribute

interadions.

4.2 Attribute Interaction asthe Key Concept in Finding Surprising Rules

Freitas (1998 proposed that a rule be considered as surprising knowledge to the
extent that it predicts a class different from the classes predicted by its minimum
generalizations. In esence this method works as follows. Let a rule antecalent be a
conjunction of m conditions, of the form cond; AND cond, AND ... condy,. A rule hasm
minimum generalizations, one for ead of its m conditions. The k-th minimum
generalizaion of the rule, k = 1,...,m, is obtained by removing the k-th condition from
the rule.

Note that a minimum generalization g of arule r covers a superset of the examples
covered by r. As a result, the class distribution of the examples covered by g can be
significantly different from the class distribution of the examples covered by r.
Therefore, assuming that a rule predicts the majority classof the examples covered by
the rule, after creating the generalized rule g the system has to re-compute the class
predicted by g, which can be different from the class predicted by the original ruler. Let
C be the class predicted by the original rule r and let Cy be the class predicted by the
k-th minimum generalization g« of r. Then the system compares C with eah C,
k=1,...,m, and counts the number of times that C differs from Ci. The higher the value
of this count, the higher the degree of surprisingness (interestingnesg assgned to the
original ruler.

In other words, the system effedively considers that a rule r has a large degree of
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surprisingness when attribute interadion makes r cover a set of examples whose
majority classis different from the majority class of the sets of examples covered by

most of the minimum generalizations of r.

4.3 Attribute Focusing

Attribute Focusing is a technique designed for deteding interesting attribute values,
in the sense that the values differ from an expeded value. Bhandari (1993, Bhandari &
Biyani (1994 proposed two methods for detecting interesting attribute values. The first
method consists of finding interesting values of a given attribute, by comparing the
observed frequency of that value with its expeded frequency assuming a uniform
probability distribution. Since this is an one-dimensional method, analyzing just one
atribute at a time, it involves no attribute interadion and so will not be further
discussed here.

The second method, however, isvery relevant for our discusson. It analyzes one pair
of attributes at atime. An interestingness function I is used to deted an interesting pair
of attribute values, where e&h of the values belongs to a different atribute of a given
pair of attributes.

The function |, measures how much the observed joint frequency of a pair of
attribute values deviates from the expeded frequency asauming that the two attributes
are statistically independent. More precisely,

12(A=Vi,B=V)) = [Pr(A=Vi,B=V)) - Pr(A=V)) x Pr(B=V))|, (2
where A is one of the dtributes being analyzed, V; is i-th value of the domain of A,
Pr(A=V;) isthe probability of attribute A having value V;; B, V; and Pr(B=V) are defined
in the obviously analogous way; Pr(A=V;,B=V,) is the probability that both A has value

V; and B has value Vj; and |x| denotes the asolute value of x. Pr(A=V;) is computed as
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theratio of the number of records in which A=V, over the number of records in which A
has me value. Pr(B=V;) is computed in the aaogous way. Pr(A=V;B=V)) is
computed as the ratio of the number of records in which both A=V, and B=V, over the
number of records in which both A and B have some value. A pair of attribute values is
considered interesting if its |, value is greaer than a user-specified threshold.

Hence, the esence of Attribute Focusing (using interestingness function 1) is
precisely to deted attribute values whose interadions produce unexpeded observed
joint frequency. Note that this basic idea is similar to the basic idea of the method
discussed in sedion 4.1 — though the latter is considerably more elaborated and
discovers high-level rules, rather than just pairs of attribute values.

Although the basic ideaof attribute focusing is quite simple, it has been effectively
used to discover interesting knowledge in real-world data by Bhandari (1993, Bhandari
& Biyani (1994 and it has been used as the basis for additional reseach in data mining.
We briefly mention here two examples of this additional reseach.

Goil & Choudhary (1997 have extended Attribute Focusing for multi-dimensional
databases (data cubes). A contribution of this work was to introduce a parallel algorithm
to compute the a&ove-discussed interestingness function I,. This reseach addressd the
problem of making Attribute Focusing more cmputationally efficient, which is
important in the context of large data abes. However, it did not adapt Attribute
Focusing to one of the major charaderistics of data aibes, namely the faa that
dimensions contain hierarchical attributes.

This charaderistic of data aibes introduces new opportunities and requirements for
adapting the computation of the interestingness function |,. For instance, suppose we
use Attribute Focusing to analyze sales of a product and find interesting combinations

of values of two attributes, say Store, with hierarchy: store - city — state, and Time,
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with hierarchy: day — month — yea. Should the function I, for combinations of states
and yeas (highest hierarchical level of both attributes) be computed in the same way as
for the combinations of stores and days (lowest hierarchical level of both attributes)?
What about combinations of stores and years (mixed herarchical levels)? These
guestions are aldressed by Fabris & Freitas (2000, where the computation of the
function |, takes into acmunt a correction fador based on the aurrent hierarchicd levels

of the two attributes being analyzed by Attribute Focusing.

4.4 Discovering Surprising Patterns by Deteding Occaurrences of Simpson’s
paradox

Freitas (1998 has designed an algorithm that seaches for al occurrences of
Simpson’s paradox in a data set. The motivation for this algorithm is that Simpson’s
paradox, due to its paradoxical nature, can be deemed a surprising pettern. Hence
intuitively occurrences of the paradox are a potentially interesting output for a data
mining algorithm.

Fabris & Freitas (1999 have gplied this algorithm to seven data sets of the UCI
repository (http://www.ics.uci.edw~mlean/MLRepository.html). They have discovered
in total 13 instances of the paradox in four data sets, namely seven instances in Voting
Reoords, two instances in Hepatitis, two instances in Australian Credit and two
instances in Nursery.

Note that, as mentioned in section 2.3, attribute interadion is at the cre of an
occurrence of Simpson’s paradox. Hence this work can be regarded as a dired
approach to make the detedion of attribute interadion the eentral goal of a data mining
algorithm. In addition, it can be regarded as an algorithm designed from scratch to

discover interesting petterns, rather than first discover many patterns and them pass
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them through afilter that seleds the most interesting petterns.

5 Conclusion

We have agued that attribute interadion is a key concept of data mining that has
been relatively little investigated in the literature, at least in an explicit form. Hence, the
general goal of this paper was to significantly increase our understanding of this
concept, in order to eventually support the design of better data mining systems.

The main contributions of this paper are & follows. Firstly, we showed that the
concept of attribute interadion has a aucial role acoss different kinds of problem in
data mining, such as attribute wnstruction, coping with small disjuncts, induction of
first-order logic rules, detection of Simpson's paradox, and finding several types of
interesting rules. Hence, a better understanding of attribute interadion can leal to a
better understanding of the relationship between these kinds of problems, which are
usually studied separately from each other.

Seoondly, we drew attention to the fact that most rule induction algorithms are based
on a gready search which does not cope well with the problem of attribute interadion,
and pointed out some alternative kinds of rule discovery methods which tend to cope
better with this problem.

Thirdly, we discusd several algorithms and methods for discovering interesting
knowledge that, implicitly or explicitly, are based on the mncept of attribute interadion.

We hope that the insights provided by this paper can guide the design of more
effedive data mining algorithms, which take into aacount the large degree of attribute

interadion typically found in real-world database systems.
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