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Abstract 

A set of classification rules can be considered as a disjunction of rules, where each rule is a 
disjunct. A small disjunct is a rule covering a small number of examples. Small disjuncts are a 
serious problem for effective classification, because the small number of examples satisfying 
these rules makes their prediction unreliable and error-prone. This paper offers two main 
contributions to the research on small disjuncts. First, it investigates 6 candidate solutions 
(algorithms) for the problem of small disjuncts. Second, it reports the results of a meta-learning 
experiment, which produced meta-rules predicting which algorithm will tend to perform best for 
a given data set. The algorithms investigated in this paper belong to different machine learning 
paradigms and their hybrid combinations, as follows: two versions of a decision-tree (DT) 
induction algorithm; two versions of a hybrid DT/genetic algorithm (GA) method; one GA; one 
hybrid DT/instance-based learning (IBL) algorithm. Experiments with 22 data sets evaluated 
both the predictive accuracy and the simplicity of the discovered rule sets, with the following 
conclusions. If one wants to maximize predictive accuracy only, then the hybrid DT/IBL seems 
to be the best choice. On the other hand, if one wants to maximize both predictive accuracy and 
rule set simplicity – which is important in the context of data mining – then a hybrid DT/GA 
seems to be the best choice.  

 

Keywords: classification, data mining, decision trees, genetic algorithms, instance-based 
learning 

1. Introduction 

This paper addresses the well-known classification task of data mining [17], where the objective 

is to predict the class of an example (record) based on the values of the predictor attributes for 

that example. Among the several kinds of knowledge representation that can be used to 

represent the knowledge discovered by a classification algorithm [21], a popular one consists of 

IF-THEN classification rules of the form: 

   IF <condition 1> AND ….. AND <condition i > AND ….. AND <condition m>   

   THEN <prediction (class)> 

where each condition is typically a triple <Attribute, Operator, Value>, such as “Age < 21” or 
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“Gender = female”. This knowledge representation has the advantage of being intuitively 

comprehensible for the user. From a logical viewpoint, typically the discovered rules are 

expressed in disjunctive normal form, where each rule represents a disjunct and each rule 

condition represents a conjunct. In this context, a small disjunct can be defined as a rule which 

covers a small number of training examples [19].  

The concept of small disjunct is illustrated in Figure 1. This figure shows a decision tree where 

the size of the ellipsis representing each node is roughly proportional to the number of examples 

belonging to that node. In addition, the number inside each leaf node represents the number of 

examples belonging to that node. Intuitively, the two leaf nodes at the right bottom can be 

considered small disjuncts, since they have just 4 and 3 examples. (A more precise definition of 

small disjunct in the context of this research will be given in section 2, when we will revisit 

Figure 1.) 

 

  Figure 1: A hypothetical decision tree illustrating the concept of small disjuncts 

The vast majority of rule induction algorithms have a bias that favors the discovery of large 

disjuncts, rather than small disjuncts. For instance, decision tree induction algorithms usually 
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have a bias that favors smaller trees (whose leaf nodes are larger disjuncts) over larger trees 

[22]. The motivation for this bias seems clear, involving the belief that the relationship between 

the class and predictor attributes represented by a large disjunct, discovered in the training set, 

will probably generalize better to the test set. In other words, intuitively, the larger the number 

of examples covered by a disjunct, the more reliable the accuracy estimate associated with that 

disjunct. The challenge is to accurately predict the class of examples covered by small disjuncts. 

Clearly, this prediction is much less reliable, since the number of examples supporting the 

prediction is much smaller. 

At first glance small disjuncts seem to have a small impact on predictive accuracy, since they 

contain just a small number of examples. However, in many application domains ignoring small 

disjuncts will lead to a significant degradation in predictive accuracy. The reason is that, even 

though each small disjunct covers a small number of examples, the set of all small disjuncts can 

cover a large number of examples. For instance, Danyluk and Provost [11] report a real-world 

application where small disjuncts cover roughly 50% of the training examples. In such cases we 

need to discover accurate small-disjunct rules in order to obtain a good predictive accuracy. 

Other projects showing the relevance of the problem of small disjuncts are as follows. Weiss 

investigated the interaction of noise with rare cases (true exceptions) and showed that this 

interaction led to degradation in classification accuracy when small-disjunct rules are eliminated 

[29]. However, these results have a limited utility in practice, since the analysis of this 

interaction was made possible by using artificially generated data sets. In real-world data sets 

the correct concept to be discovered is not known a priori, so that it is not possible to make a 

clear distinction between noise and true rare cases. Weiss performed experiments showing that, 

when noise is added to real-world data sets, small disjuncts contribute disproportionally and 

significantly to the total number of classification errors made by the discovered rules [30]. 

More recently, Weiss and Hirsh presented a quantitative measure for evaluating the effect of 

small disjuncts on learning [31]. The authors reported more extensive experiments with a 
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number of data sets to assess the impact of small disjuncts on learning, especially when factors 

such as training set size, pruning strategy, and noise level are varied. Their results confirmed 

that small disjuncts do have a negative impact on predictive accuracy in many cases.  

It should be noted that the previously-mentioned projects focused mainly on understanding the 

problem of small disjuncts and its effect on learning. By contrast, this paper investigates several 

solutions for the problem of small disjuncts, where each solution corresponds to a different 

classification algorithm. In addition, this paper also reports the results of a meta-learning 

experiment, which produced meta-rules predicting which kind of algorithm will tend to perform 

best for a given kind of data set. Each of the algorithms investigated here has been proposed in 

the literature. Hence, the goal of this paper is not to propose a new algorithm for the problem of 

small disjuncts. Rather, it is to compare the performance of several algorithms for solving this 

problem. We emphasize that none of the algorithms should be considered a complete solution to 

this problem, which is indeed a very difficult problem and can hardly be completely solved. 

Rather, the algorithms investigated here should be considered as “candidate solutions” to this 

very difficult problem, but here we refer to them as “solutions” for short.  

We have performed an extensive set of experiments, comparing 7 algorithms across 22 data 

sets. In essence, the 7 algorithms being compared can be categorized with respect to their 

machine learning paradigm [22], as follows: a) three versions of a decision-tree induction 

algorithm; b) two versions of a hybrid decision tree (DT)/genetic algorithm (GA) method; (c) 

one genetic algorithm; (d) one hybrid decision tree/instance-based learning algorithm. 

Out of these 7 algorithms, 6 can be considered solutions for the problem of small disjuncts, 

whilst the other (a decision tree induction algorithm) is used as a baseline algorithm, as will be 

discussed in section 2. The performance of the algorithms is compared with respect to two 

criteria, namely their predictive accuracy and the simplicity of the discovered rule set.  

The remainder of this paper is organized as follows. Section 2 briefly describes each of the 
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above-mentioned 7 algorithms. Section 3 reports the results of extensive experiments evaluating 

the performance of the 7 algorithms. Section 4 reports the results of meta-learning experiments. 

Finally, section 5 concludes the paper. 

2. A Summary of Classification Algorithms for the Problem of Small Disjuncts  

Out of the 7 algorithms being compared in this paper, 3 of them make no distinction between 

small and large disjuncts. The other 4 algorithms are more flexible and have been designed 

specifically for solving the problem of small disjuncts. They treat small disjuncts and large 

disjuncts in a very different way. Hence, before we describe the algorithms themselves, we 

explain the criterion that we use to categorize a given rule as a small or large (“non-small”) 

disjunct. This criterion is the same for all the 4 algorithms designed specifically for solving the 

small-disjunct problem, and it is based on the use of a conventional decision-tree induction 

algorithm, as follows.  

First, one runs a decision-tree induction algorithm – viz., C4.5 [25] – and the induced (and 

pruned) tree is transformed into a set of IF-THEN classification rules in the usual way. In other 

words, each path from the root to a leaf node is transformed into a classification rule predicting 

the class that is the label of the corresponding leaf node. This set of classification rules is 

expressed in disjunctive normal form, so that each rule corresponds to a disjunct. Each rule is 

considered either as a small disjunct or as a “large” (non-small) disjunct, depending on whether 

or not its coverage (the number of examples covered by the rule) is smaller than or equal to a 

given threshold, called the small-disjunct size threshold (S). This process of identifying small 

disjuncts can be illustrated by revisiting Figure 1, where the numbers inside each leaf node 

denote the number of examples covered by the corresponding rule. If we set S to 3, there would 

be just one small disjunct in the tree (the rightmost leaf node), whilst if we set S to 15 there 

would be three small disjuncts in the tree. Hence, intuitively the value of the parameter S seems 

to have a significant influence in the performance of an algorithm that treats small disjuncts and 
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large disjuncts in a very different way, which is the case for several algorithms discussed in this 

paper. Therefore, we did experiments with different values of the threshold S, in order to 

investigate the influence of this parameter in the performance of the algorithms, as will be 

discussed in the section on Computational Results.  

We now describe each of the 7 classification algorithms compared in our experiments. Since 

each of these algorithms has been published in the literature, our discussion here will be brief, 

by focusing on the main characteristics of the algorithms and their similarities and differences. 

Out of the 7 algorithms, one is standard C4.5, a very well-known decision tree induction 

algorithm [25], which is used as a baseline algorithm throughout our experiments. The other 6 

algorithms represent different solutions to the problem of small disjuncts. We will also briefly 

review the rationale for using each of the algorithms as a solution for the problem of small 

disjuncts. Of course, a more detailed description about these algorithms can be found in the 

references cited below. The 7 algorithms are as follows.  

a) Default C4.5 – This is just C4.5, with its default parameters, including its default tree 

pruning method. Note that C4.5 makes no distinction between small disjuncts and large 

disjuncts, i.e., it does not use the parameter S. 

b) C4.5 without pruning – This is C4.5 with its default parameters, with one exception: it 

returns as its output the unpruned decision tree. It is well known that in general C4.5 with 

pruning usually obtains a better predictive accuracy (on the test set) than C4.5 without pruning. 

However, in the context of our work there is a motivation for evaluating the results of C4.5 

without pruning. Recall that we are looking for small-disjunct rules, which tend to be 

considerably more specific (i.e., have more conditions in their antecedent) than large-disjunct 

rules. Turning off the pruning procedure of C4.5 does lead to more specific rules. Of course, 

there is a danger that C4.5 without pruning will overfit the data, and this approach will produce 

more specific rules not only for small-disjunct examples, but also for large-disjunct examples. 

In any case, it is worth trying C4.5 without pruning as a possible solution for the problem of 



 7 

small disjuncts, since this is a very simple approach and requires no new algorithm for solving 

the problem of small disjunct. Hence, this approach can be regarded as a very simple solution to 

the problem of small disjuncts, to which more sophisticated solutions (algorithms) will be 

compared.  

c) Double C4.5 – This is another way of using C4.5 as a classification algorithm, and it can be 

considered an algorithm specifically developed for solving the problem of small disjuncts [4], 

[5], [7]. The basic idea is to build a classifier by running C4.5 twice. The first run considers all 

examples in the original training set, producing a first decision tree. Once the system has 

identified which leaf nodes are small disjuncts, it groups all the examples belonging to the leaf 

nodes identified as small disjuncts into a single example subset, called the second training set. 

Then C4.5 is run again on this second, reduced training set, producing a second decision tree.  

 

 
                                               Figure 2: The basic idea of double C4.5 

In order to classify a new example of the test set, the rules discovered by both runs of C4.5 are 

used as follows: first, the system checks whether the new example belongs to a large disjunct of 
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the first decision tree; if so, the class predicted by the corresponding leaf node is assigned to the 

new example; otherwise (i.e., the example belongs to one of the small disjuncts of the first 

decision tree), the new example is classified by the second decision tree. This process is 

illustrated in Figure 2, where the leaf nodes identified as small disjuncts (in the first tree, built 

from the entire training set) are represented by a square with the acronym “SD” inside. The 

motivation for this more elaborate use of C4.5 was an attempt to create a simple algorithm that 

was more effective to cope with small disjuncts, by comparison with a single run of C4.5. 

d) Hybrid C4.5/IB1 – This is a hybrid decision-tree algorithm (C4.5)/instance-based learning 

algorithm (IB1), proposed by [28]. In essence, the first step of this hybrid algorithm is to run 

C4.5 and identify which leaf nodes of the induced tree are considered small disjuncts, as 

previously discussed. The next step consists of classifying new examples in the test set (unseen 

during training), as follows. Each test example is pushed down the tree until it reaches a leaf 

node. If that leaf node is a large disjunct, the example is classified by the decision tree. On the 

other hand, if that leaf node is a small disjunct, the example is classified by IB1 – a simple 1-

NN (one nearest neighbor) algorithm, which assigns the test example to the class of the nearest 

example in the data space.  

 

                                   Figure 3: The basic idea of the hybrid C4.5/IB1 
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This process is illustrated in Figure 3, where again small disjuncts are denoted by a square with 

“SD” inside. IB1 uses as its training set the set of examples belonging to the corresponding leaf 

node of the induced tree. The motivation for this hybrid method is that the correct classification 

of small disjuncts tends to require a specificity bias, and, as pointed out by [28], instance-based 

learning seems to have the maximum specificity bias required for this kind of problem.  

e) Hybrid C4.5/GA-Small – This is a hybrid C4.5/genetic algorithm (GA), proposed by [2], 

[3], [5]. The GA is called GA-Small, to emphasize that it is a GA specifically designed for 

solving the problem of small disjuncts. Let us first review the hybrid algorithm as a whole, and 

next briefly review GA-Small. 

The basic idea of this hybrid algorithm is, at a high level of abstraction, similar to the idea of the 

hybrid C4.5/IB1. Again, the first step is to run C4.5 and identify which leaf nodes of the 

induced tree are considered small disjuncts. The major difference between the two hybrid 

methods lies in how they deal with small disjuncts. Instead of using IB1, the hybrid C4.5/GA-

Small uses the rules discovered by GA-Small. More precisely, after all the leaf nodes 

considered small disjuncts are identified, the set of examples belonging to each of those leaf 

nodes is given as a training set to GA-Small. Therefore, GA-Small is run k times, each time 

with a different training set, where k is the number of leaf nodes considered small disjuncts. 

Each run of GA-Small discovers a rule set that will be used to classify the test examples that 

reach the corresponding leaf node from which GA-Small was trained. In other words, after all 

the k runs of GA-Small have been completed, each test example is pushed down the tree until it 

reaches a leaf node. Again, if that leaf node is a large disjunct, the example is classified by the 

decision tree. On the other hand, if that leaf node is a small disjunct, the example is classified by 

the rule set discovered by the corresponding run of GA-Small. This process is illustrated in 

Figure 4. The motivation for this hybrid method is that attribute interactions are considered one 

of the causes of small disjuncts [26], [27], [13] and GAs tend to cope better with attribute 

interaction than conventional greedy rule induction and decision-tree induction algorithms [14], 
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[10], [23], [13], [15]. In addition, by comparison with C4.5/IB1, C4.5/GA-Small has the 

advantage that GA-Small discovers knowledge in the form of high-level classification rules, 

unlike IB1. 

 

 Figure 4: The basic idea of the hybrid C4.5/GA-Small 

In a nutshell, the main characteristics of GA-Small are as follows. Each individual of the 

population represents a candidate classification rule. In addition to standard genetic operators 

(one-point crossover and mutation), it has a task-dependent rule pruning operator, i.e., a rule 

pruning operator designed specifically for pruning classification rules. This operator is applied 

to every individual of the population, right after the individual is formed. Unlike the usually 

simple operators of GA, this rule-pruning operator is an elaborate procedure based on 

information theory [8]. The basic idea is that, the smaller the information gain of a rule 

condition (an attribute-value pair), the higher the probability that that condition will be removed 

from the rule. The fitness function of GA-Small is: (TP / (TP + FN)) * (TN / (FP + TN)), where 

TP, FN, TN and FP – standing for the number of true positives, false negatives, true negatives 

and false positives – are well-known variables often used to evaluate the performance of 

classification rules [17]. Some limitations of GA-Small will be discussed in the next item.  
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f) Hybrid C4.5/GA-Large  – This is also a hybrid C4.5/genetic algorithm (GA), proposed by 

[4] [7]. Although the GA component of the method was specifically designed for solving the 

problem of small disjuncts, this GA is called GA-Large, rather than GA-Small. The reason for 

this terminology is that this GA effectively learns from a large training set, rather than from a 

small training set. Once more, the first step is to run C4.5 and identify which leaf nodes of the 

induced tree are considered small disjuncts. However, instead of running GA-Small once for 

each small disjunct, the system groups all the examples belonging to the leaf nodes identified as 

small disjuncts into a single example subset, called the second training set. This is exactly the 

same training set used for the second run of C4.5 in the above-described “double C4.5” 

algorithm. The difference is that, instead of running C4.5 on the second training set, the system 

runs GA-Large on the second training set. This process is illustrated in Figure 5.  

 

                               Figure 5: The basic idea of the hybrid C4.5/GA-Large 

After GA-Large has run, each test example is pushed down the tree until it reaches a leaf node. 

Again, if that leaf node is a large disjunct, the example is classified by the decision tree. On the 

other hand, if that leaf node is a small disjunct, the example is classified by the rule set 
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discovered by GA-Large.  

At a high level of abstraction, the motivation for this hybrid method is the same as the 

motivation for the hybrid C4.5/GA-Small, i.e., attribute interactions are considered one of the 

causes of small disjuncts, and GAs tend to cope better with attribute interaction than 

conventional greedy rule induction and decision-tree induction algorithms. At a lower level of 

abstraction, the development of C4.5/GA-Large was motivated by the need for avoiding some 

limitations of C4.5/GA-Small, as follows: (a) Each run of GA-Small has access to a very small 

training set, consisting of just a few examples belonging to a single leaf node of a decision tree. 

Intuitively, this makes it difficult to induce reliable classification rules in some cases. (b) 

Although each run of the GA is relatively fast (since it uses a small training set), the hybrid 

C4.5/GA-Small as a whole has to run the GA many times (since the number of GA-Small runs 

is proportional to the number of small disjuncts). Hence, the hybrid C4.5/GA-Small turns out to 

be considerably slower than the use of C4.5 alone. (c) Since GA-Small discovers more than one 

rule for each leaf node considered a small disjunct, the hybrid C4.5/GA-Small discovers a larger 

number of rules than C4.5 alone, reducing the simplicity of discovered knowledge. The hybrid 

C4.5/GA-Large avoids these problems, as will be shown in the section on computational results.  

It should be noted that the differences between GA-Small and GA-Large go beyond the training 

set used by the two GAs. Another difference is as follows. Due to an increase in the cardinality 

of its training set (by comparison with GA-Small), GA-Large needs to discover many rules 

covering the second training set. GA-large uses the “sequential covering” approach – a popular 

approach in conventional rule induction algorithms [32] – to discover a diverse set of rules. In 

essence, the first run of GA-Large is initialized with the full second training set and an empty 

set of rules. After each run of GA-Large, the best evolved rule is added to the set of discovered 

rules and the examples correctly covered by that rule are removed from the second training set. 

Hence, the next run of GA-Large will consider a smaller second training set. This process 

proceeds until all or almost all examples have been covered.  
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Yet another difference between GA-Small and GA-Large involves the rule pruning procedures 

used by these algorithms. As mentioned earlier, GA-Small uses a pruning procedure based on 

information theory. This procedure involves computing the information gain [8] of each 

attribute in a preprocessing step and using that measure to stochastically select the attributes to 

be removed from a given rule. Note that this is a data-driven rule pruning procedure, since the 

information gain values are computed directly from the training set, regardless of the result of 

any classification algorithm. By contrast, GA-Large uses a hypothesis-driven rule pruning 

procedure, which uses information about the classification accuracy (on the training set) of the 

induced decision tree to estimate the predictive power of each attribute, in order to decide which 

conditions (attribute-value pairs) should be pruned from a given rule. Hence, GA-Large can 

directly exploit information obtained from the hypothesis (decision tree) produced by a 

classification algorithm, unlike GA-Small.  

These differences between the two algorithms are described in more detail in [4]. 

g) GA-Large alone – This algorithm consists of simply running GA-Large in the entire training 

set, and using the discovered rules to classify all test examples, without distinguishing between 

small disjuncts and large disjuncts. This algorithm is included in our experiments to determine 

whether or not the hybrid C4.5/GA-Large really “combines the best of both worlds”, in the 

sense of performing better than both C4.5 and GA-Large separately. 

3.  Computational Results 

We have performed extensive experiments to compare the effectiveness of the 7 classification 

algorithms described in the previous section. The experiments used 22 real-world data sets. 12 

of these 22 data sets are public-domain data sets of the well-known UCI’s data repository, 

available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.  
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                                   Table 1: Data sets used in the experiments  

Data set No. of examples No. of attributes No. of classes 
Connect 67557 42 3 
Adult 45222 14 2 
Crx 690 15 2 
Hepatitis 155 19 2 
House-votes 506 16 2 
Segmentation 2310 19 7 
Wave 5000 21 3 
Splice  3190 60 3 
Covertype 8300 54 7 
Letter 20000 16 26 
 Nursery 12960 8 5 
Pendigits 10992 16 9 
ds-1 5690 23 3 
ds-2 5690 23 3 
ds-3 5690 23 3 
ds-4 5690 23 2 
ds-5 5690 23 2 
ds-6 5894 22 3 
ds-7 5894 22 3 
ds-8 5894 22 3 
ds-9 5894 22 2 
ds-10 5894 22 2 

 

The other 10 data sets are derived from a database of the CNPq (the Brazilian government’s 

National Council of Scientific and Technological Development), whose details are confidential. 

The database contains data about the scientific production of researchers. We have identified, 

with the help of the user, five possible class attributes (to be predicted) in this database. These 

class attributes involve information about the number of publications of researchers, with each 

class attribute referring to a specific kind of publication. For each class attribute, we have 

extracted two data sets from the database, with a somewhat different set of predictor attributes 

in the two data sets. This has led to the extraction of 10 data sets, denoted ds-1, ds-2, ds-3, ..., 

ds-10. The number of examples, attributes and classes for each of the 22 data sets is shown in 

Table 1. The examples that had some missing value were removed from these data sets before 

the classification algorithm was applied. 

The performance of the seven classification algorithms was compared with respect to two 

criteria, namely predictive accuracy and simplicity of the discovered rule set. Let us first explain 

the methodology used to evaluate predictive accuracy. 
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All accuracy rates reported here refer to results in the test set – which was not accessed during 

training. In three of the public domain data sets, Adult, Connect and Letter, we have used a 

single division of the data set into a training and a test set. This is justified by the fact that the 

data sets are relatively large, so that cross-validation is not necessary [17]. In the Adult data set 

we used the predefined division of the data set into a training and test sets. In the Letter and the 

Connect data sets, since no such predefined division was available, we have randomly 

partitioned the data into a training and a test sets. In the Letter the data set, the training and test 

set had 14,000 examples and 6,000 examples, respectively. In the Connect data set the training 

and test sets had 47,290 and 20,267 examples, respectively. In the other public domain datasets, 

as well as in the 10 data sets derived from the CNPq’s database, the accuracy rate on the test set 

was estimated by running a well-known 10-fold cross-validation procedure [17].  

Intuitively, the performance of 4 out of the 7 classification algorithms described in section 2 

depends on the parameter S, a threshold on the small disjunct size. (Recall that a decision-tree 

leaf is considered a small disjunct if and only if the number of examples belonging to that leaf is 

smaller than or equal to a fixed size S.)  Hence, we did experiments with four different values of 

S, namely S = 3, 5, 10 and 15. We use the term “experiment” to refer to all the runs performed 

for all algorithms and for all the above-mentioned 22 data sets, for each value of S.  

The values of S used in our experiments are approximately within the range of values of this 

parameter previously used in the literature – see, e.g., [19], [24], [11]. Note that a value of S 

significantly larger than 15 does not seem to make much sense, at least if we take into account 

the natural meaning of the term small disjunct. In addition, most of the algorithms investigated 

in this paper assume that C4.5 is adequate to correctly classify examples belonging to large 

disjuncts. If a leaf node of the tree produced by C4.5 had many more than 15 examples, it seems 

safe to assume that that leaf node would make a reliable prediction of the class of a new 

example. Otherwise C4.5 would not have generated that leaf node – it would, instead, have 

further expanded the tree, transforming that leaf node into an internal one and creating new 
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branches and children nodes. In any case, we make no claim that the values of S used in our 

experiments are “optimal”. They just represent a reasonable range of different values of this 

parameter. Finding the “optimal” value of S might be done in future research, but it would be 

even more computationally expensive (our current experiments with four values of S already 

involve more than 15,000 algorithm runs in total) and the result would probably be data set-

dependent. 

There was a small difference in the number of algorithms which were run in some experiments, 

as follows. For S = 10 and S = 15 we have run the 7 above-mentioned algorithms. For S = 3 and 

S = 5 we have run 6 out of the 7 algorithms. The only algorithm which was not evaluated in 

these two experiments was C4.5/GA-Small. The reason is that, for S = 3 and S = 5, each of the 

training sets that would be used by GA-Small would have a very small cardinality. Intuitively, 

this small cardinality would hinder the performance of GA-Small, making it very difficult to 

discover reliable classification rules that generalize well from such a small number of examples. 

This intuition was indeed confirmed by our preliminary experiments with GA-Small. Note that, 

although the IB1 component of C4.5/IB1 uses the same small training sets as used by GA-

Small, in general IB1 does not have any problem with the values S = 3 and S = 5. The reason is 

that IB1 does not try to generalize from the small set of examples to discover a classification 

rule. It performs classification by using the examples themselves.  

In all the experiments, whenever a GA (GA-Small or GA-Large) was run, that GA was run ten 

times, varying the random seed used to generate the initial population of individuals. The GA-

related results reported below are based on an arithmetic average of the results over these ten 

different random seeds. Therefore, GA-Large’s and GA-Small’s results are based on average 

results over 100 runs (10 seeds x 10 cross-validation folds), except in the Adult, Connect and 

Letter data sets, where the results were averaged over 10 runs (10 seeds). In all the experiments 

GA-Small and GA-Large were always run with a population of 200 individuals, and the GA 

was run for 50 generations. In addition, in all the experiments GA-Small and GA-Large used 
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one-point crossover with a probability of 80%, condition mutation with a probability of 1%, and 

tournament selection with tournament size of 2. 

In the next two subsections we report the results with respect to predictive accuracy and rule set 

simplicity, respectively. A subset of these results has been previously published in [4], [5], [6], 

[7]. This paper differs from those previous papers in two ways, as follows. On one hand, those 

previous papers explained in detail some of the algorithms investigated in this paper (in 

particular the algorithms involving GAs), whilst this paper presents just a brief summary of 

those algorithms. On the other hand, this paper contains more extensive computational results 

than those previous papers. More precisely, this paper contains results for more data sets and 

more values of the parameter S, results for two other algorithms (namely GA-Large alone and 

C4.5/IB1) and extensive results about rule set simplicity. The latter extension is particularly 

important in the context of data mining – see section 3.2. 

Furthermore, this paper reports – in section 4 – new meta-learning results that have not been 

published yet in the literature. These results are useful to predict which algorithm tends to 

obtain the best performance, depending on the characteristics of the data set being mined. 

3.1 Computational Results Evaluating Predictive Accuracy 

The detailed results of the experiments for S = 3, 5, 10, and 15 are reported in Tables A.1, A.2, 

A.3 and A.4 (in the Appendix), respectively. These tables are put in the Appendix because they 

contain a large amount of detail. Hence, in this section we present and discuss only a summary 

of the results reported in Tables A1. to A.4. This improves the readability of the paper and is 

also supported by the fact that results were qualitatively similar across the four values of S (3, 5, 

10 and 15), i.e., across Tables A.1, A.2, A.3 and A.4. Hence, our analysis of the results focus on 

the overall performance of each algorithm taking into account the four values of S. 

A summary of the results of Tables A1 to A.4 is reported in Table 2. This table shows, for each 

value of S, two indicators of the performance of each algorithm. First, the columns titled “win” 
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indicate in how many data sets each algorithm obtained a predictive accuracy significantly 

higher than the accuracy of default C4.5, which was used as a baseline method. Second, the 

columns titled “loss” indicate in how many data sets each algorithm obtained a predictive 

accuracy significantly lower than the accuracy of default C4.5. The definition of significantly 

higher (lower) performance is explained in the Appendix. 

In Table 2 the columns associated with the results of C4.5/GA-Small for S = 3 and S = 5 have 

an N/A (Not Applicable) flag, since this algorithm was not used with these small values of the 

small disjunct size threshold – as discussed earlier, this is a limitation of this algorithm.  

                                      Table 2: Summary of predictive accuracy results 

 C4.5 without 
 pruning 

 
Double C4.5 

 
GA-Large 

 
C4.5/IB1 

C4.5 / 
GA-Small 

C4.5 / 
GA-Large 

S Win Loss Win Loss Win Loss Win Loss Win Loss Win Loss 

3 0 7 8 4 1 11 8 1 N/A N/A 9 2 

5 0 7 6 3 1 11 8 1 N/A N/A 8 2 

10 0 7 4 4 1 11 8 1 7 4 9 2 

15 0 7 7 4 1 11 10 1 7 3 8 3 

 

Note that in Table 2 the number of “wins” and “losses” for C4.5 without pruning and GA-Large 

is constant for all values of S. This is a consequence of the fact that these algorithms do not use 

the threshold size S to identify small disjuncts – i.e., they classify all the examples without any 

distinction between large disjuncts and small disjuncts. Let us now analyze the performance of 

each algorithm in turn. 

(a) C4.5 without pruning – This algorithm obtained bad results. It did not significantly 

improved classification accuracy in any data set, and it significantly reduced classification 

accuracy (with respect to the baseline C4.5 with pruning) in 7 out of the 22 data sets.  

(b) Double C4.5 – This algorithm performed considerably better. More precisely, for three 

values of S, namely S = 3, 5 or 15, double C4.5 significantly improved classification accuracy 

more often than it significantly reduced it. In the other value of S (10) double C4.5 obtained a 

“neutral” result (neither good nor bad), i.e., it significantly improved classification accuracy as 
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often as it significantly reduced it. 

(c) GA-Large – This algorithm obtained the worst results. It significantly improved 

classification accuracy (with respect to the baseline default C4.5) in just 1 data set, and it 

significantly reduced classification accuracy in 11 data sets. This result is not very surprising, 

considering that GA-Large was designed to classify only small-disjunct examples, rather than 

classifying all the examples.  

(d) C4.5/IB1 – This hybrid algorithm obtained very good results. For three values of S, namely 

S = 3, 5 or 10, it significantly improved classification accuracy in 8 data sets, and significantly 

reduced classification accuracy in only 1 data set. It did even better when S = 15, where it 

significantly improved classification accuracy in 10 data sets, and significantly reduced 

classification accuracy in only 1 data set. 

(e) C4.5/GA-Small – This hybrid algorithm obtained good results. It significantly improved the 

classification accuracy in 7 data sets, whereas it significantly reduced it in only 4 or 3 data sets, 

when S = 10 or 15, respectively.  

(f) C4.5/GA-Large – This hybrid algorithm obtained very good results. It significantly 

improved classification accuracy in 8 or 9 data sets, and it significantly reduced classification 

accuracy in only 2 or 3 data sets, depending on the value of S. 

To summarize, the 6 solutions (algorithms) for the problem of small disjuncts evaluated in this 

paper can be divided into three groups, with respect to classification accuracy. The first group 

consists of the most successful algorithms, namely C4.5/IB1 and C4.5/GA-Large. These 

algorithms can be considered very good solutions to the problem of small disjuncts – with 

respect to classification accuracy. The second group consists of double C4.5 and C4.5/GA-

Small. Although these two algorithms were successful, in the sense of performing better 

(overall) than the baseline default C4.5, they were not so successful as C4.5/IB1 and C4.5/GA-

Large. Finally, the third group consists of C4.5 without pruning and GA-Large alone. These two 
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algorithms obtained bad results, considerably worse than the results of the baseline default C4.5. 

It is interesting to note that there was only one data set in which both the best algorithms 

(C4.5/IB1 and C4.5/GA-Large) consistently obtained a predictive accuracy significantly worse 

than default C4.5 in all the four values of S – i.e., in Tables A.1, A.2, A.3 and A.4. The data set 

in question is Segmentation. The explanation for this phenomenum seems to be that this data set 

contains a considerable degree of class noise. This is due to the fact that the class labels for this 

data set were produced by manually labeling each region of an image – where the regions were 

previously identified by a segmentation algorithm. This kind of manual labeling tends to 

introduce a significant degree of class noise [1]. Indeed, [20] reports a significant improvement 

on predictive accuracy in this data set by using an ensemble technique particularly designed for 

coping with noisy data. Although class noise is a difficult problem for any classification 

algorithm, the problem tends to be more serious in algorithms designed for discovering small 

disjuncts than in (conventional) algorithms for discovering large disjuncts. The reason is that the 

latter have a bias in favor of discovering more general rules, and so they tend to treat small-

disjunct examples as noise data. Such a bias tends to be appropriate to very noisy data sets. By 

contrast, algorithms designed for discovering small disjuncts have a bias in favor of discovering 

more specific rules, which seems appropriate if the data contains many small-disjunct examples 

that represent true exceptions in the data, rather than noisy data. As a result, algorithms 

designed for coping with small disjuncts seem particularly sensitive to high levels of class 

noise.  

It is also important to observe how the performance of some algorithms varied for different 

values of the parameter S, the size threshold used to identify small disjuncts. Recall that this 

parameter is used by four algorithms – namely, double C4.5, C4.5/IB1, C4.5/GA-Small and 

C4.5/GA-Large. Overall, these algorithms turned out to be quite robust to different values of 

this parameter, as can be observed in Table 2. 

3.2 Computational Results Evaluating Simplicity of the Discovered Rules 
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Rule set simplicity is important in the context of data mining [12], [16], [32] because it allows 

the user to validate discovered knowledge and use it – combined with his/her own background 

knowledge – to make an intelligent decision. In addition, if discovered knowledge is so complex 

that the user does not understand it, then the user will not trust it [18].  

Hence, we have also measured the simplicity of the rule set discovered by each of the 

algorithms investigated in this paper, with the exception of the hybrid C4.5/IB1. The latter 

classifies small-disjunct examples by using the instance-based learning paradigm, which does 

not produce comprehensible classification rules. Note that the sizes of decision trees and rule 

sets are not directly comparable, because they have different structures. Hence, we converted 

the decision trees into rule sets, as described next, in order to make the comparison of the 

simplicity of the discovered rules among the algorithms as fair as possible. The simplicity of the 

discovered rule set was measured by the number of rules and the average number of conditions 

per rule. These measures were computed for each algorithm, as follows. 

In the case of default C4.5 and C4.5 without pruning, first the induced tree is converted into a 

set of rules in the usual way. That is, each path from the root to a leaf node is transformed into a 

rule, whose antecedent consists of the conditions on the attribute values specified along that 

path and whose consequent is the class predicted by the leaf node. Hence, the number of rules is 

the number of leaf nodes in the tree. Next we apply a simple, purely syntactical post-processing 

method to the set of rules, with the goal of reducing the size of the rules without changing its 

coverage or predictive accuracy. This post-processing method just merges all the conditions of 

a rule referring to the same attribute (which often happens with continuous attributes) into a 

single equivalent condition. For instance, suppose that C4.5 generated a rule including the 

conditions “age > 21” and “age > 25”. These two conditions are converted into a single 

equivalent condition “age > 25”. Once this simple post-processing has been done, the average 

number of conditions per rule is simply computed as the total number of conditions (in all rules) 

divided by the number of rules. 
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In the case of double C4.5, C4.5/GA-Small and C4.5/GA-Large, the number of discovered rules 

is computed as follows. The first step is to identify in the tree generated by C4.5 the leaf nodes 

that are considered large disjuncts. Each path from the root node to one of these leaf nodes is 

converted into a rule, as described earlier. Let rlarge be the number of large-disjunct rules created 

in this step. The second step is to determine the number of small-disjunct rules (called rsmall) and 

the number of rule conditions in those rules. In the case of double C4.5, these values are 

obtained by converting the tree generated by the second execution of C4.5 (i.e., from the second 

training set) into a set of rules, using the same method as used for standard C4.5 and C4.5 

without pruning, as described earlier. In the case of C4.5/GA-Small and C4.5/GA-Large, the 

number or small-disjunct rules (rsmall) and the number of conditions in those rules are simply the 

number of rules and conditions discovered by the GA component of the hybrid method. 

For each of these three algorithms (double C4.5, C4.5/GA-Small and C4.5/GA-Large) the total 

number of discovered rules is the number of large-disjunct rules (rlarge) – which is the same for 

the three methods – plus the number of small-disjunct rules discovered by the algorithm in 

question. The average number of conditions per rule is the total number of conditions (in large-

disjunct rules or in small-disjunct rules) divided by the total number of rules (rlarge + rsmall).   

In the case of GA-Large alone, the system just has to count the number of discovered rules and 

the corresponding average number of conditions, since this algorithm does not distinguish 

between large-disjunct and small-disjunct rules. 

As explained earlier, C4.5/GA-Small discovers a larger number of rules than default C4.5, 

because, for each small disjunct identified in the tree generated by C4.5, the GA component of 

this hybrid algorithm discovers several rules. However, double C4.5 and C4.5/GA-Large do not 

have this disadvantage. These two algorithms can discover a total number of rules (rlarge + rsmall) 

considerably smaller than the number of rules discovered by standard C4.5. This is due to the 

fact that these two methods use a relatively large second training set, which provides them with 

an opportunity to discover few rules – each of them with a large coverage – in order to cover the 
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small disjunct examples. 

The number of discovered rules and average number of conditions per rule was computed for 

each algorithm (except C4.5/IB1, as mentioned earlier) in each of the 22 data sets, for each of 

the previously-mentioned values of the parameter S, namely S = 3, 5, 10 and 15 (except 

C4.5/GA-Small for S = 3 and S = 5, as explained earlier). Since the full set of results would 

occupy too much space of this paper, we present here a summary of these results, shown in 

Table 3. Note that, when comparing two rule sets, it is not easy to determine which rule set is 

simpler when one rule set has a smaller number of rules but a larger number of conditions per 

rule. In order to avoid this problem and simplify the analysis of the results, Table 3 was 

generated by considering that the simplicity of a rule set RS1 is better than the simplicity of a 

rule set RS2 if and only if RS1 dominates RS2 in the following sense (inspired by the concept of 

Pareto dominance often used in the literature on multiobjective optimization [9]): RS1 has a 

significantly better simplicity than RS2 in at least one of the two simplicity criteria (number of 

rules and average number of conditions per rule); and RS1 is not significantly worse than RS2 in 

any of the two simplicity criteria. The meaning of significantly better/worse here is the same as 

in the discussion of the predictive accuracy results (see Appendix), i.e., a difference in the 

number of rules or conditions discovered by two algorithms is deemed significant if the 

corresponding intervals (taking into account the standard deviations) do not overlap. 

Table 3 shows, for each value of S, two indicators of the performance of each algorithm. First, 

the columns titled “win” indicate in how many data sets each algorithm discovered a rule set 

significantly simpler than the rule set discovered by default C4.5, which was used as a baseline 

method. Second, the columns titled “loss” indicate in how many data sets each algorithm 

discovered a rule set significantly more complex than the rule set discovered by default C4.5. 
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                                  Table 3: Summary of rule set simplicity results 

 C4.5 without 
 pruning 

 
Double C4.5 

 
GA-Large 

C4.5 / 
GA-Small 

C4.5 / 
GA-Large 

S Win Loss Win Loss Win Loss Win Loss Win Loss 

3 0 12 4 0 17 0 N/A N/A 2 0 

5 0 12 4 0 17 0 N/A N/A 6 0 

10 0 12 5 0 17 0 0 13 15 0 

15 0 12 3 1 17 0 0 13 18 0 

 

Note that in Table 3, analogously to Table 2, the number of significant “wins” and “losses” for 

C4.5 without pruning and GA-Large is constant for all values of S. Again, this is a consequence 

of the fact that these algorithms classify all the examples without any distinction between large 

disjuncts and small disjuncts. Let us now analyze the performance of each algorithm in turn. 

(a) C4.5 without pruning – This algorithm significantly degraded simplicity (by comparison 

with the baseline default C4.5 with pruning) in 12 out of the 22 data sets. Of course, this bad 

result was expected, since an unpruned tree tends to be considerably larger than a pruned tree.  

(b) Double C4.5 – This algorithm obtained reasonably good simplicity results. More precisely, 

for S = 3, 5 or 10 double C4.5 generated a rule set significantly simpler than default C4.5 in 4 or 

5 data sets, and its discovered rule set was not significantly more complex than default C4.5’s 

rule set in any data set. When S = 15 the performance of double C4.5 was not so good, but it 

still obtained a “positive” performance (3 wins against 1 loss). 

(c) GA-Large – This algorithm obtained very good simplicity results. It discovered a rule set 

significantly simpler than default C4.5’s rule set in 17 out of the 22 data sets. Unfortunately, 

however, this algorithm obtained bad predictive accuracy results, as shown earlier. Hence, this 

algorithm by itself seems too much biased towards the discovery of general rules, with a high 

coverage. One should recall, however, that this algorithm was not designed to be used as a stand 

alone classifier. It was designed to discover only small-disjunct rules, as mentioned earlier.  

(d) C4.5/GA-Small – This algorithm obtained bad simplicity results.  It discovered a rule set 
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significantly more complex than default C4.5’s rule set in 13 out of the 22 data sets. This kind 

of result was expected, since, as explained earlier, the GA component of this hybrid algorithm 

discovers several rules for each leaf node of the tree built by C4.5 that is considered a small 

disjunct. 

(e) C4.5/GA-Large – This algorithm obtained, overall, very good simplicity results. For the 

four values of S, there was no data set where this algorithm discovered a rule set significantly 

more complex than the one discovered by default C4.5. In addition, this algorithm discovered a 

rule set significantly simpler than the one discovered by default C4.5 in 2, 6, 15 or 18 data sets, 

for the values of S = 3, 5, 10, or 15, respectively.  

To summarize, overall the five algorithms analyzed in this section can be ranked as follows, 

with respect to the simplicity of the rule sets discovered by them. The three best algorithms are, 

in this order, GA-Large, C4.5/GA-Large and double C4.5. The performance of the second best 

algorithm (C4.5/GA-Large) is about as good as the performance of the best algorithm (GA-

Large) for the two largest values of S, viz. S = 10 or 15; and the performance of C4.5/GA-Large 

is about as good as the performance of the third best algorithm (double C4.5) for the two 

smallest values of S, viz. S = 3 or 5. In the fourth and last position of the ranking we can include 

both C4.5 without pruning and GA-Small, since both obtain very similar and very bad 

performances with respect to rule set simplicity. 

4. Meta-Learning Results 

The extensive set of computational results reported in the previous section has motivated us to 

apply a “meta-learning” algorithm to those results, in order to learn rules predicting which of 

the previously-discussed algorithms will obtain the highest predictive accuracy for a given data 

set. These new meta-learning experiments were carried out as follows. 

A meta-learning data set was created containing 11 predictor meta-attributes, a class meta-

attribute and 88 meta-examples. Each of the 88 meta-examples corresponds to one combination 
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of data set and value of the parameter S (22 data sets x 4 values of S = 88 meta-examples). For 

each meta-example, the meta-class attribute value is the name of the algorithm that obtained the 

highest predictive accuracy for the corresponding data set and value of S. Hence, there are seven 

meta-class values, namely: default C4.5, C4.5 without pruning, double C4.5, GA-Large alone, 

C4.5/IB1, C4.5/GA-Small and C4.5/GA-Large. The 11 predictor meta-attributes were defined 

as follows. 

a) Error in small disjunct classification (SD-error) – This is a continuous meta-attribute. Its 

value is given by the formula: (x/y)100, where x is the number of training examples (in the base 

data set) belonging to small disjuncts wrongly classified by C4.5 and y is the number of training 

examples belonging to small disjuncts (identified by running C4.5), for a given value of S.  

b) C4.5’s error rate (C4.5-error) – This is a continuous meta-attribute whose value is the error 

rate obtained by default C4.5 in the training set.  

c) Number of small disjuncts (Num-SD) – This is a continuous meta-attribute, whose value is 

simply the number of small disjuncts in the training set. 

d) Average size of small disjuncts (SD-size) – This is a continuous meta-attribute, whose 

value is the average number of examples per small disjunct of the training set.  

e) Percentage of examples in small disjuncts (SD-perc) – This is a continuous meta-attribute, 

whose value is the ratio of the number of training examples belonging to a small disjunct 

divided by the total number of training examples. 

f) Number of examples (Num-Examp) – This is a categorical meta-attribute indicating that the 

number of examples in the training set is in one of the following categories: very small (less 

than 1,000 examples), small (between 1,000 and 5,000 examples), medium (between 5,000 and 

20,000 examples), and large (20,000 or more examples). These thresholds were manually 

chosen. Of course, the term “large” has to be interpreted in the context of the size of the data 

sets used in the experiments, rather than in the usual sense of the term in data mining.  



 27 

g) Number of classes (Num-Classes) – a continuous meta-attribute. This and the next three 

meta-attributes have a self-explained meaning.  

h) Number of categorical attributes (Num-Cat-Att) – a continuous meta-attribute. 

i) Number of continuous attributes (Num-Con-Att) – a continuous meta-attribute. 

j) Total Number of attributes (Num-Att) – a continuous meta-attribute, whose value is given 

by the summation of the values of the two previous meta-attributes.  

k) Imbalance of Class Distributions (Class-Imbal) – This is a categorical meta-attribute 

indicating that the degree of imbalance of class distributions in the base data set belongs to one 

of the following categories: strongly imbalanced, imbalanced, and balanced. The category to be 

assigned to a particular data set is computed by the following procedure (again, the thresholds 

were manually chosen):  

IF ((FreqMaj – FreqMin) > 70%) OR (FreqMin < 1%)  

   THEN “strongly imbalanced” 

        ELSE IF ((FreqMaj – FreqMin) > 25%)  

         THEN “imbalanced” 

          ELSE “balanced” 

 

Where FreqMaj is the relative frequency of the majority class (in %) and FreqMin is the relative 

frequency of the minority class (also in %). 

Note that the values of SD-error, Num-SD, SD-size and SD-perc are directly dependent on the 

value of S. The values of the other meta-attributes are independent of the value of S.  

The values of the previously-defined attributes were computed for each combination of data set 

and value of S used in our experiments, giving a total of 88 meta-examples, as mentioned 

before. Once this meta-data set is available, we could apply any classification algorithm to it. In 

this work we applied the five algorithms that obtained at least reasonable results in the 

experiments reported in the previous section, i.e., default C4.5, double C4.5, C4.5/GA-Large, 

C4.5/GA-Small and C4.5/IB1. (The only two algorithms not tried were C4.5 without pruning 
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and GA-Large alone, which obtained bad results in the previous sections.) In these meta-

learning experiments we also applied those five algorithms with the same four different values 

of S as used in the previous section (i.e., S = 3, 5, 10, 15). 

Table 4 reports the predictive accuracy in the test set measured by a 10-fold cross-validation 

procedure. As can be seen in the table, for each value of S the best result was obtained by the 

C4.5/GA-Large algorithm – whose results are shown in bold. That algorithm also obtained the 

best results concerning the number of discovered rules and the number of conditions per rule, 

for each value of S, as shown in Tables 5 and 6. The results in these two tables were also 

measured by 10-fold cross-validation.  

Table 4: Accuracy rate (%) on the test set in meta-learning experiments 

Algorithm S = 3 S = 5 S = 10 S = 15 
Default C4.5 77.62 77.62 77.62 77.62 
Double C4.5 79.45 73.83 63.44 63.44 

C4.5/GA-
Large 

81.82 84.11 79.97 79.97 

C4.5/GA-
Small 

76.19 75.61 77.02 74.80 

C4.5/IB1 77.75 73.40 72.92 72.92 
 

Table 5: Number of discovered rules in meta-learning experiments 

Algorithm S = 3 S = 5 S = 10 S = 15 
Default C4.5 19 19 19 19 
Double C4.5 13 17 23 23 

C4.5/GA-
Large 

12 13 17 17 

C4.5/GA-
Small 

25 33 41 41 

 
 

Table 6: Number of conditions per rule in meta-learning experiments 

Algorithm S = 3 S = 5 S = 10 S = 15 
Default C4.5 4.7 4.7 4.7 4.7 
Double C4.5 2.6 2.5 2.2 2.2 

C4.5/GA-
Large 

3.9 3.7 3.5 3.5 

C4.5/GA-
Small 

5.3 4.9 5.2 5.2 
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Since the best predictive accuracy among all the entries in Table 4 was obtained by running 

C4.5/GA-Large with S = 5, we have run this algorithm with this value of the parameter S in the 

entire meta-data set (with the 88 meta-examples), in order to produce the final set of rules to be 

analyzed as a means of getting insight into the difficult problem of predicting which algorithm 

(among the seven ones investigated in this paper) will obtain the highest predictive accuracy in 

a given data set. This final rule set is shown in Figure A.1 in the Appendix.  

As can be observed in that rule set, overall, the two meta-attributes with the greatest predictive 

power were Num-SD and Num-Examp. Indeed, Num-SD was chosen by C4.5 as the attribute to 

label the root node of the tree, and it was also used in 6 out of the 9 rules discovered by GA-

Large. Num-Examp appears in a tree level right below the root in all the subtrees shown in 

Figure A.1, and it appears in 8 out of the 9 rules discovered by GA-Large. 

Another point to be noted is that in total there are 3 rules predicting that the algorithm with 

highest predictive accuracy will be C4.5/IB1 and 4 rules predicting that the algorithm with 

highest predictive accuracy will be C4.5/GA-Large. The other algorithms have fewer rules 

predicting their superiority. This is, of course, consistent with the fact that C4.5/IB1 and 

C4.5/GA-Large were most often the winners – with respect to predictive accuracy – in the 

experiments reported in section 3.1. More precisely, analyzing Tables A1 to A4 we find that 

C4.5/IB1 was the winner in 17 cases and C4.5/GA-Large was the winner in 37 cases.  

Since the two most successful algorithms with respect to predictive accuracy were C4.5/IB1 and 

C4.5/GA-Large, it is important to analyze in more detail the rules discovered in this meta-

learning experiment predicting when each of these two algorithms will be the winner. The 3 

rules predicting that the winner will be C4.5/IB1 are as follows: 

  IF Num-SD > 444 THEN  C4.5/IB1 (8) 

  IF Num-SD < 307 AND Num-Examp in {Large,Medium} A ND Num-Classes >= 3 
  THEN C4.5/IB1 (11/6) 

  IF Num-SD >= 196 AND Num-Examp = Large AND Num-cl asses < 9  
  THEN C4.5/IB1  (5)  
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The first above rule is a large disjunct rule discovered by C4.5, whereas the other two rules are 

rules 8 and 9 discovered by GA-Large, as shown in Figure A.1. By contrast, the 4 rules 

predicting that the winner will be C4.5/GA-Large are as follows: 

  IF Num-SD <= 141 AND Num-Exampl in {Medium,Small}  AND C4.5-error > 4.6%  
      AND SD-error <= 56.24% AND SD-perc > 1.06%    
  THEN C4.5/GA-Large  (17/2) 
 
  IF 141 < Num-SD <= 353 AND Num-Examp in {Medium,S mall} AND  
     4.6% < C4.5-error < 39.3% AND SD-perc > 8.49% AND SD-error > 47.93%       
  THEN C4.5/GA-Large    (7) 
 
  IF Num-SD <= 444 AND Num-Examp = VerySmall AND C4 .5-error > 7.1% AND  
     SD-error <= 51.52 
  THEN C4.5/GA-Large   (6/2) 
 
  IF Num-SD <= 298 AND Num-Examp in {VerySmall,Medi um} AND Num-Classes <= 13  
  THEN C4.5/GA-Large   (24/16) 
 
The first three rules are large disjunct rules discovered by C4.5, whereas the fourth rule is the 

rule 6 discovered by GA-Large, as shown in Figure A.1. Here we have simplified the rules 

extracted from the decision tree, by merging two different conditions referring to the same 

attribute (in the same rule) into a single rule condition. For instance, in the second above rule 

the conditions C4.5-error > 4.6% and C4.5-error < 39.3% were merged into the single condition 

4.6% < C4.5-error < 39.3%.  

In general, the rules predicting C4.5/IB1 suggest that this algorithm will tend to be the winner in 

relatively large data sets, where the value of the meta-attribute Num-Examp is Large or 

Medium, or where the number of small disjuncts (Num-SD) is large.  In particular the first rule 

predicting C4.5/IB1 has only a single condition requiring that Num-SD > 444.  This rule covers 

8 out of the 88 meta-examples of the meta-data set, and all those 8 meta-examples are correctly 

covered by this rule. In addition, the third rule predicting C4.5/IBI as the winner has two 

conditions requiring that Num-SD >= 196 and Num-Examp = Large. This rule also correctly 

classifies all the 5 examples that it covers. Out of the 3 discovered rules predicting C4.5/IBI as a 

winner, the only one that does not require a large number of small disjuncts or examples is the 

second one, which requires that Num-SD < 307 AND Num-Examp in {Large,Medium}. 

However, this rule is less reliable than the other two rules predicting C4.5/IB1, since the former 
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is misclassifying 6 out of the 11 meta-examples that it covers. 

By contrast, in general the rules predicting C4.5/GA-Large suggest that this algorithm will tend 

to be the winner in relatively small or medium-sized data sets, where the value of the meta-

attribute Num-Examp is Very Small, Small or Medium, and where the number of small 

disjuncts (Num-SD) is not so large. In particular, 3 out of the 4 discovered rules predicting 

C4.5/GA-Large specify conditions of the form Num-SD <= t, where t is a threshold, and just 

one rule specifies the condition 141 < Num-SD <= 353. No discovered rule predicting 

C4.5/GA-Large specifies a condition of the form Num-SD > t – unlike, for instance, 2 

discovered rules predicting C4.5/IB1. In addition, no discovered rule predicting C4.5/GA-Large 

has a condition specifying Num-Exampl = Large (not even Large or another value), unlike 2 

discovered rules predicting C4.5/IB1. Another evidence that C4.5/GA-Large tends to be the 

winner in small data sets is the fact that, in the meta-learning experiments reported here – which 

certainly involve a very small meta-data set – C4.5/GA-Large was the winner, as shown in 

Table 4. 

5. Conclusions 

As mentioned earlier, the goal of this paper was not to introduce a new algorithm. Rather, the 

goal of this paper was to investigate the performance of 6 different kinds of algorithm – namely, 

two versions of a decision-tree (DT) induction algorithm; two versions of a hybrid DT/genetic 

algorithm (GA) method; one GA; and one hybrid DT/instance-based learning (IBL) algorithm – 

as potential solutions to the problem of small disjuncts.  

The algorithms were evaluated in extensive experiments with 22 data sets. In total, taking into 

account all the iterations of the cross-validation procedure, all the different runs of the GAs with 

different random seeds (since GAs are stochastic methods), and the different values of the 

parameter S (small-disjunct threshold size), the number of algorithm runs was 15,247. 

Overall, taking into account the results of all these experiments, the best predictive accuracy 
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was obtained by the hybrid DT/IBL (C4.5/IB1) algorithm, and the second best predictive 

accuracy was obtained by a hybrid DT/GA (C4.5/GA-Large). Hence, in general these two 

algorithms seem suitable for mining data sets with small disjuncts, at least with respect to the 

goal of maximizing predictive accuracy. 

However, with respect to rule set simplicity, the hybrid C4.5/IB1 has the disadvantage that IB1 

(and the paradigm of IBL in general) does not discover any comprehensible rule, whilst the 

hybrid C4.5/GA-Large has the advantage of discovering a rule set considerably simpler than the 

rule set discovered by standard C4.5 alone.  

Hence, the general conclusion of the experimental results is as follows: If one wants to 

maximize predictive accuracy only, then the hybrid C4.5/IB1 seems to be the best choice among 

the algorithms evaluated in this paper. On the other hand, if one wants to maximize both 

predictive accuracy and rule set simplicity – which is usually the goal in data mining – then the 

hybrid C4.5/GA-Large seems to be the best choice. 

We have also performed a meta-learning experiment, in order to predict which algorithm would 

obtain the best predictive accuracy in a given data set, by taking into account some 

characteristics of the data set at hand – including characteristics related to the occurrence of 

small disjuncts. The results of this meta-learning experiment were prediction rules indicating 

that, in general: (a) C4.5/IB1 tends to be the winner in relatively large data sets, with a large 

number of examples or small disjuncts; (b) C4.5/GA-Large tends to be the winner in relatively 

small or medium-sized data sets, with a small or medium number of examples and with a not 

very large number of small disjuncts.  

To the best of our knowledge, this is the first paper to perform such an extensive investigation 

of 6 different solutions to the problem of small disjuncts, and the first paper to report meta-

learning results for the problem of small disjuncts.  

An interesting research direction involves another rule quality criterion: rule surprisingness 
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(novelty, unexpectedness). The motivation for this criterion is that many rules that have a high 

predictive accuracy and are highly comprehensible may be uninteresting for the user, because 

they represent an obvious pattern in the data. The classic example is the rule “IF patient is 

pregnant THEN gender is female”.  

Small disjuncts have a good potential to represent novel, surprising knowledge to the user, 

because they tend to represent exceptions in the data, by contrast with the most general patterns 

in the data that are probably already known by the user. Hence, it is interesting to investigate the 

quality of the rule set discovered by the algorithms used in this paper with respect to rule 

surprisingness as well. We are currently investigating this research direction. 
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Appendix 

In Tables A.1 to A.4 the first column indicates the data set, and the other columns report the 

corresponding accuracy rate in the test set (in %) obtained by the algorithm indicated at the title 

of the column. Note that the accuracy rates of default C4.5, C4.5 without pruning and GA-Large 

alone in Tables A.1, A.2, A.3 and A.4 are exactly the same, since the accuracy rates of these 

algorithms do not depend on the value of S. 

The numbers after the “±“ symbol denote standard deviations. For each data set, the highest 
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accuracy rate among all the algorithms is shown in bold. In each column containing the results 

of an algorithm (except the column with the results of default C4.5, the baseline algorithm) we 

indicate, for each data set, whether or not the accuracy rate of that algorithm is significantly 

different from the accuracy rates of default C4.5. This allows us to evaluate the extent to which 

each algorithm can be considered a good solution for the problem of small disjuncts. More 

precisely, the cases where the accuracy rate of each algorithm is significantly better (worse) 

than the accuracy rate of default C4.5 is indicated by the “+” (“-“) symbol. A difference 

between two algorithms is deemed significant when the corresponding accuracy rate intervals 

(taking into account the standard deviations) do not overlap.  

                                             Table A.1: Accuracy rate (%) on the test set for S = 3 

Data Set Default C4.5 C4.5 without 
pruning 

Double C4.5 GA-Large 
alone 

C4.5/IB1 

 

C4.5/GA- 

Large 

Connect 72.60 ±  0.5 72.05 ± 0.5  78.06 ± 0.6 + 74.40 ± 0.6 + 78.13 ±  0.5+ 77.86 ± 0.1 + 

Adult 78.62 ± 0.5 77.00 ± 0.5 - 81.19 ± 0.5 + 78.90 ± 0.3 85.87 ±  0.5+ 85.45 ± 0.1 + 

Crx 91.79 ± 2.1 92.45 ± 1.9  92.57 ± 1.2  78.04 ± 1.2 - 92.97 ± 1.5 93.69 ± 1.2  

Hepatitis 80.78 ± 13.3 77.50 ± 11.3 78.95 ± 6.9 81.28 ± 11.2 95.84 ± 8.3 89.25 ± 9.5  

House-votes 93.62 ± 3.2 93.50 ± 1.7 97.32 ± 2.4 97.63 ± 1.6 96.22 ± 3.1 97.18 ± 2.5  

Segmentation 96.86 ± 1.1 96.30 ± 0.9  76.62 ± 2.8 - 72.42 ± 4.6 - 81.45 ± 1.2 - 81.46 ± 1.1 -  

Wave 75.78 ± 1.9 75.4  ± 2.1   68.18 ± 3.7 - 66.74 ± 4.6 - 83.81 ± 2.0+ 83.86 ± 2.0 + 

Splice  65.68 ± 1.3 66.54 ± 1.3  55.65 ± 6.0 - 60.26 ± 5.0  70.54 ± 8.9 70.62 ± 8.6  

Covertype 71.61 ± 1.9 70.34 ± 1.9  72.88 ± 14.4 65.40 ± 3.1 - 73.03 ± 13.9 73.04 ± 1.2  

Letter 86.4   ± 1.1 86.30 ± 1.1  83.82 ± 1.0 - 75.80 ± 0.3 - 86.17 ± 1.1 84.26 ± 0.2 - 

Nursery 95.4   ± 1.2 96.40 ± 0.9 95.55 ± 0.6  82.13 ± 4.4 - 95.48 ± 0.6 95.35 ± 1.2  

Pendigits 96.39 ± 0.2 96.36 ± 0.3 97.43 ± 0.3 + 89.01 ± 0.5 - 97.41 ± 0.2+ 97.54 ± 0.3 + 

CD-1 60.71 ± 3.0 58.26 ± 2.8 62.75 ± 0.6  61.40 ± 0.3 62.55 ± 3.5 62.53 ± 1.0  

CD-2 65.55 ± 1.5 63.22 ± 1.6 68.95 ± 4.8  62.95 ± 5.1 68.44 ± 4.7 68.44 ± 2.3  

CD-3 75.65 ± 2.4 71.64 ± 1.3 - 80.47 ± 2.1 + 69.24 ± 2.2 - 80.26 ± 1.9+ 80.54 ± 0.9 + 

CD-4 92.97 ± 0.9 89.47 ± 0.8 - 92.75 ± 1.4  89.7 ± 2.9 92.72 ± 1.1 92.72 ± 1.1  

CD-5 82.7  ± 2.8 78.71 ± 1.9   89.74 ± 2.4 + 72.31 ± 2.2 - 90.15 ± 2.6 90.17 ± 2.5 + 

CD-6 57.78 ± 2.1 55.36 ± 2.3 59.72 ± 2.4 59.37 ± 3.7 59.78 ± 2.5 59.65 ± 1.2  

CD-7 65.18 ± 1.0 60.68 ± 1.4 - 69.94 ± 1.5 + 65.90 ± 1.6 69.75 ± 1.4+ 69.66 ± 0.7 + 

CD-8 75.57 ± 1.4 70.30 ± 1.7 - 80.52 ± 2.3 + 73.69 ± 1.9 80.45 ± 2.0+ 80.41 ± 2.0 + 

CD-9 93.00 ± 0.5 89.67 ± 1.4 - 93.72 ± 0.7 87.49 ± 2.9 - 93.86 ± 1.5 93.87 ± 1.4 

CD-10 82.80 ± 1.7 78.45 ± 2.2 - 85.89 ± 0.5 + 73.89 ± 1.4 - 85.80 ± 1.3+ 85.90 ± 1.2 + 
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                                          Table A.2: Accuracy rate (%) on the test set for S = 5 

Data Set Default C4.5 C4.5 without 
pruning 

Double C4.5 GA-Large 
alone 

C4.5/IB1 

 

C4.5/GA- 

Large 

Connect 72.60  ±  0.5  72.05  ± 0.5  77.09 ± 0.6 + 74.40 ± 0.6 + 78.19 ± 0.5 + 77.85 ± 0.2 + 

Adult 78.62  ± 0.5  77.00  ± 0.5 -  79.27 ± 0.5  78.90 ± 0.3 85.94 ± 0.5 + 85.50 ± 0.2 + 

Crx 91.79  ± 2.1  92.45  ± 1.9  92.03 ± 1.0  78.04 ± 1.2 - 92.54 ±  1.2 93.06 ±±±± 1.6   

Hepatitis 80.78  ± 13.3  77.50  ± 11.3  75.67 ± 17.1  81.28 ± 11.2 86.53 ± 10.0 89.48 ±±±± 9.7   

House-votes 93.62  ± 3.2  93.50  ± 1.7  93.54 ± 3.9  97.63 ± 1.6 97.04 ±  1.1 97.44 ± 2.9  

Segmentation 96.86  ± 1.1  96.30  ± 0.9  74.49 ± 3.4 - 72.42 ± 4.6 - 80.22 ± 1.0 - 80.41 ± 1.0 - 

Wave 75.78  ± 1.9  75.4  ± 2.1  65.59 ± 4.4 - 66.74 ± 4.6 - 85.33 ± 2.1 + 85.37 ± 2.4 + 

Splice  65.68  ± 1.3  66.54  ± 1.3  57.45 ± 8.7  60.26 ± 5.0  70.37 ± 8.2 70.44 ±±±± 7.8   

Covertype 71.61 ± 1.9  70.34 ± 1.9  71.34 ± 14.4  65.40 ± 3.1 - 71.63 ± 14.3 71.66 ± 1.3  

Letter 86.4 ± 1.1  86.30 ± 1.1  83.62 ± 1.0 - 75.80 ± 0.3 - 88.15 ± 1.1 83.28 ± 0.2 - 

Nursery 95.4 ± 1.2  96.40 ± 0.9  96.57 ± 0.7  82.13 ± 4.4 - 96.39 ± 0.6 96.25 ± 0.9  

Pendigits 96.39 ± 0.2  96.36 ± 0.3  97.21 ± 0.4 + 89.01 ± 0.5 - 97.86 ± 0.3 + 96.72 ± 0.5  

CD-1 60.71 ± 3.0  58.26 ± 2.8  63.77 ± 3.7  61.40 ± 0.3 63.26 ± 4.1 63.83 ± 1.2  

CD-2 65.55 ± 1.5  63.22 ± 1.6  71.06 ± 5.1  62.95 ± 5.1 70.26 ± 5.2 70.57 ± 2.4 + 

CD-3 75.65 ± 2.4  71.64 ± 1.3 - 81.47 ± 1.7 + 69.24 ± 2.2 - 81.17 ± 1.9 + 81.69 ± 0.9 + 

CD-4 92.97 ± 0.9  89.47 ± 0.8 - 92.58 ± 1.0  89.7 ± 2.9 92.80 ± 1.0 92.84 ± 1.1  

CD-5 82.7 ± 2.8  78.71 ± 1.9  86.68 ± 1.9  72.31 ± 2.2 - 87.08 ± 1.8 87.19 ± 2.1  

CD-6 57.78 ± 2.1  55.36 ± 2.3  60.50 ± 2.3  59.37 ± 3.7 60.28 ± 2.2 60.27 ± 1.2  

CD-7 65.18 ± 1.0  60.68 ± 1.4 - 70.74 ± 1.8 + 65.90 ± 1.6 70.95 ± 1.9 + 71.34 ±±±± 1.2 + 

CD-8 75.57 ± 1.4  70.30 ± 1.7 - 81.18 ±±±± 2.1 + 73.69 ± 1.9 81.11 ± 2.0+ 80.98 ± 2.1 + 

CD-9 93.00 ± 0.5  89.67 ± 1.4 - 93.89 ± 0.8  87.49 ± 2.9 - 93.87 ± 1.3 93.98 ± 1.3 + 

CD-10 82.80 ± 1.7  78.45 ± 2.2 - 86.25 ±±±± 1.1 + 73.89 ± 1.4 - 86.08 ± 1.5 + 85.83 ± 1.4  

 
                    Table A.3: Accuracy rate (%) on the test set for S = 10 

Data Set Default 
C4.5 

C4.5 without 
pruning 

Double C4.5 GA-Large 
alone 

C4.5/IB1 

 

C4.5/GA- 

Small 

C4.5/GA- 

Large 

Connect 72.60 ± 0.5 72.05  ± 0.5  76.19 ± 0.6 + 74.40 ± 0.6 + 78.05 ± 0.5 + 76.87 ± 0.0 + 76.95 ± 0.1 + 

Adult 78.62 ± 0.5 77.00  ± 0.5 - 76.06 ± 0.5 – 78.90 ± 0.3 80.94 ± 0.5 + 80.62 ± 0.0 + 80.04 ± 0.1 + 

Crx 91.79 ± 2.1 92.45  ±±±± 1.9  90.78 ± 1.2 78.04 ± 1.2 - 90.61 ± 1.1 90.89 ± 1.3 91.66 ± 1.8  

Hepatitis 80.78± 13.3 77.50  ± 11.3  82.36 ± 18.7 81.28 ± 11.2 88.91 ± 8.8 94.40 ± 6.2 95.05 ±±±± 7.2 

House 93.62 ± 3.2 93.50  ± 1.7  89.16 ± 8.0 97.63 ± 1.6 97.45 ± 1.7 96.80 ± 1.7 97.65 ± 2.0 

Segmentat. 96.86 ±±±± 1.1 96.30  ± 0.9  72.93 ± 5.5 – 72.42 ± 4.6 - 78.42 ± 1.2 - 79.00 ± 1.0 –  78.68 ± 1.1 –  

Wave 75.78 ± 1.9 75.4  ± 2.1  64.93 ± 3.9 – 66.74 ± 4.6 - 83.24 ± 1.9 + 79.86 ± 4.2     83.95 ±±±± 3.0 + 

Splice  65.68 ± 1.3 66.54  ± 1.3  61.51 ± 6.6  60.26 ± 5.0  67.49 ± 6.5 67.04 ± 4.2 70.70 ±±±± 6.3     

Covertype 71.61 ±±±± 1.9 70.34 ± 1.9  68.64 ± 14.8 65.40 ± 3.1 - 67.34 ± 16.8 69.43 ± 15.9  68.71 ± 1.3 
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Letter 86.40 ± 1.1 86.30 ± 1.1  82.77 ± 1.0 – 75.80 ± 0.3 - 89.24 ± 1.1 + 81.15 ± 0.0 – 79.24 ± 0.2 – 

Nursery 95.40 ± 1.2 96.40 ± 0.9  97.23 ± 1.0 82.13 ± 4.4 - 97.13 ± 0.8 96.93 ± 0.6 96.77 ± 0.7 

Pendigits 96.39 ± 0.2 96.36 ± 0.3  96.86 ± 0.4 89.01 ± 0.5 - 97.91 ± 0.3 + 94.96 ± 1.0 – 95.72 ± 0.9 

CD-1 60.71 ± 3.0 58.26 ± 2.8  63.82 ± 5.2 61.40 ± 0.3 63.28 ± 4.3 64.53 ± 4.5 63.43 ± 1.4 

CD-2 65.55 ± 1.5 63.22 ± 1.6  72.52 ± 5.9 62.95 ± 5.1 72.71 ± 5.7 73.52 ± 5.0 + 73.77 ± 2.5 + 

CD-3 75.65 ± 2.4 71.64 ± 1.3 - 82.27 ± 1.3 + 69.24 ± 2.2 - 81.99 ± 2.2 + 83.16 ± 1.8 + 84.15 ± 0.9 + 

CD-4 92.97 ± 0.9 89.47 ± 0.8 - 92.58 ± 1.0 89.7 ± 2.9 92.60 ± 0.9 93.14 ± 0.9 92.72 ± 1.0 

CD-5 82.7 ± 2.8 78.71 ± 1.9  83.01 ± 1.9 72.31 ± 2.2 - 83.15 ± 1.8 84.38 ± 2.1 83.36 ± 2.1 

CD-6 57.78 ± 2.1 55.36 ± 2.3  60.68 ± 3.2 59.37 ± 3.7 60.69 ± 2.9 60.91 ± 2.9 61.69 ± 1.6 + 

CD-7 65.18 ± 1.0 60.68 ± 1.4 - 70.29 ± 2.4 + 65.90 ± 1.6 70.61 ± 2.4 + 82.77 ± 2.0 + 71.27 ± 1.6 + 

CD-8 75.57 ± 1.4 70.30 ± 1.7 - 81.03 ± 1.9 + 73.69 ± 1.9 81.35 ± 1.6 + 81.78 ± 2.0 + 82.63 ± 1.9 + 

CD-9 93.00 ± 0.5 89.67 ± 1.4 - 93.72 ± 1.2 87.49 ± 2.9 - 93.48 ± 1.3 87.33 ± 1.8 – 93.80 ± 1.4   

CD-10 82.80 ± 1.7 78.45 ± 2.2 - 85.60 ± 1.4 73.89 ± 1.4 - 85.28 ± 1.3 86.76 ± 1.5 + 86.88 ± 1.6 + 

 
                                        Table A.4: Accuracy rate (%) on the test set for S = 15 

Data Set Default 
C4.5 

C4.5 without 
pruning 

Double C4.5 GA-Large 
alone 

C4.5/IB1 

 

C4.5/GA- 

Small 

C4.5/GA- 

Large 

Connect 72.60 ± 0.5 72.05  ± 0.5  74.95 ± 0.6 + 74.40 ± 0.6 + 77.91 ± 0.5 + 76.13 ± 0.0 + 76.01 ± 0.3 + 

Adult 78.62 ± 0.5 77.00  ± 0.5 - 74.29 ± 0.5 - 78.90 ± 0.3 80.37 ± 0.5 + 79.97 ± 0.0 + 79.32 ± 0.2 + 

Crx 91.79 ± 2.1 92.45  ±±±± 1.9  90.02 ± 0.8 78.04 ± 1.2 - 89.46 ± 1.1 88.94 ± 2.3 90.40 ± 2.4  

Hepatitis 80.78± 13.3 77.50  ± 11.3  66.16 ± 19.1 81.28 ± 11.2 85.21 ± 7.8 79.36 ± 23.4 82.52 ± 7.0     

House 93.62 ± 3.2 93.50  ± 1.7  88.53 ± 8.4 97.63 ± 1.6 95.68 ± 1.7 94.88 ± 2.4 95.91 ± 2.3 

Segment. 96.86 ±±±± 1.1 96.30  ± 0.9  73.82 ± 5.8 - 72.42 ± 4.6 - 76.86 ± 1.7 - 77.00 ± 1.7  - 77.11 ± 1.9 -  

Wave 75.78 ± 1.9 75.4  ± 2.1  65.53 ± 4.0 - 66.74 ± 4.6 - 82.43 ± 1.7 + 76.39 ± 5.0     82.65 ±±±± 3.7 + 

Splice  65.68 ± 1.3 66.54  ± 1.3  64.35 ± 4.7 60.26 ± 5.0  66.68 ± 5.5 66.53 ± 4.9 70.62 ±±±± 5.5     

Covertype 71.61 ± 1.9 70.34 ± 1.9  68.87 ±±±± 15.1  65.40 ± 3.1 - 64.32 ± 17.1 68.51 ± 16.3  66.02 ± 1.3 – 

Letter 86.40 ± 1.1 86.30 ± 1.1  81.35 ± 1.0 – 75.80 ± 0.3 - 89.30 ± 1.1 + 80.04 ± 0.0 – 76.38 ± 0.6 – 

Nursery 95.40 ± 1.2 96.40 ± 0.9  97.66 ±±±± 0.8 + 82.13 ± 4.4 - 97.26 ± 0.5 + 97.34 ± 1.2 96.64 ± 0.7 

Pendigits 96.39 ± 0.2 96.36 ± 0.3  96.86 ± 0.4 89.01 ± 0.5 - 97.98 ± 0.3 + 95.71 ± 1.5 95.01 ± 1.2 

CD-1 60.71 ± 3.0 58.26 ± 2.8  63.34 ± 4.9 61.40 ± 0.3 63.36 ± 4.0 63.68 ± 4.4 63.92 ± 1.2 

CD-2 65.55 ± 1.5 63.22 ± 1.6  72.99 ± 4.8 + 62.95 ± 5.1 73.29 ± 4.8 + 74.36 ± 3.9 + 74.75 ± 2.1 + 

CD-3 75.65 ± 2.4 71.64 ± 1.3 - 81.92 ± 2.7 + 69.24 ± 2.2 - 81.78 ± 2.3 + 83.00 ± 2.0 + 83.06 ±±±± 1.0 + 

CD-4 92.97 ± 0.9 89.47 ± 0.8 - 92.75 ± 1.4 89.7 ± 2.9 92.99 ±  1.3 93.28 ± 1.2 93.48 ±±±± 1.3 

CD-5 82.7 ± 2.8 78.71 ± 1.9  82.52 ± 2.0 72.31 ± 2.2 - 81.21 ±  1.8 82.61 ± 2.3 82.81 ±±±± 2.3 

CD-6 57.78 ± 2.1 55.36 ± 2.3  61.51 ± 3.1 59.37 ± 3.7 60.44 ± 2.5 61.78 ± 3.0  62.07 ±±±± 1.6 + 

CD-7 65.18 ± 1.0 60.68 ± 1.4 - 70.11 ± 2.6 + 65.90 ± 1.6 70.11 ± 2.6 + 72.09 ±±±± 3.1 + 70.44 ± 2.0 + 

CD-8 75.57 ± 1.4 70.30 ± 1.7 - 80.88 ± 1.3 + 73.69 ± 1.9 81.43 ± 1.2+ 83.20 ±±±± 1.7 + 81.79 ± 2.2 + 

CD-9 93.00 ± 0.5 89.67 ± 1.4 - 93.60 ± 0.5 87.49 ± 2.9 - 93.58 ± 1.1 87.12 ± 1.6 – 93.67 ±±±± 1.3 

CD-10 82.80 ± 1.7 78.45 ± 2.2 - 85.59 ± 0.5 + 73.89 ± 1.4 - 84.92 ± 1.6 86.71 ±±±± 1.8 + 85.70 ± 2,0 
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Figure A.1 shows the final set of rules derived from the meta-learning experiments described in 

Section 4.  This rule set consists of two parts. The first part contains the part of the decision tree 

built by C4.5 specifying large disjuncts. This includes all the leaf nodes covering more than 5 

meta-examples (since S was set to 5) and the tree branches necessary to define each of those 

large disjuncts. Each leaf node is followed by an annotation of the form (x / y), where x is the 

number of meta-examples belonging to that node and y is the number of misclassified meta-

examples belonging to that node. When y = 0 the value of y is omitted from the notation, which 

is simplified to the form (x). This is the standard C4.5 annotation for leaf nodes.  

The second part of the rule set contains the rules discovered by the GA-Large component of the 

hybrid C4.5/GA-Large algorithm, mining the small-disjunct meta-examples. Each rule is 

followed by the same annotation (x / y) used in the leaf nodes of the tree discovered by C4.5, 

for the sake of uniformity. 
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******large disjuncts in the decision tree built by C4.5*********** 

Num-SD > 444 : C4.5/IB1 (8) 

Num-SD <= 141 : 
|   Num-Exampl in {Medium,Small} : 
|   |   C4.5-error > 4.6% : 
|   |   |   SD-error <= 56.24% : 
|   |   |   |   SD-perc > 1.06% : C4.5/GA-Large (17 /2) 

Num-SD <= 444 : 
|   Num-Examp in {Medium,Small} : 
|   |   Num-SD > 141 : 
|   |   |   SD-perc <= 8.49% : 
|   |   |   |   C4.5-error > 24.3% : Double-C4.5 (8 /2) 

Num-SD <= 353 : 
|   Num-Examp in {Medium,Small} : 
|   |   C4.5-error > 4.6% : 
|   |   |   Num-SD > 141 : 
|   |   |   |   SD-perc > 8.49% : 
|   |   |   |   |   C4.5-error <= 39.3% : 
|   |   |   |   |   |   SD-error > 47.93% : C4.5/GA -Large (7) 

Num-SD <= 444 : 
|   Num-Examp = VerySmall : 
|   |   C4.5-error > 7.1% : 
|   |   |   SD-error <= 51.52 : C4.5/GA-Large (6/2)  
 

********** rules discovered by GA-Large from small disjuncts ********* 
Rule 1  
IF Num-SD <= 7 AND Num-Examp = VerySmall AND SD-err or <= 39.48% 
THEN GA-Large  (4) 

Rule 2  
IF Num-SD < 146 AND Num-Examp in {Medium,Small} AND  C4.5-error < 3.1%  
THEN Default-C4.5 (4/1) 

Rule 3  
IF SD-error > 58.44% AND SD-size > 0.2882 AND Num-A tt <= 8  
THEN Default-C4.5 (1) 

Rule 4  
IF Num-SD < 118 AND Num-Examp = Large AND Num-class es < 8  
THEN Double-C4.5 (4/1) 

Rule 5  
IF Num-Examp = VerySmall AND SD-error > 40%  
THEN C4.5-without-pruning (3/1) 

Rule 6  
IF Num-SD <= 298 AND Num-Examp in {VerySmall,Medium } AND Num-Classes <= 13  
THEN C4.5/GA-Large (24/16) 

Rule 7  
IF C4.5-error < 38% AND Num-Examp = Medium AND Num- Classes < 8  
THEN C4.5/GA-Small (8/2) 

Rule 8  
IF Num-SD < 307 AND Num-Examp in {Large,Medium} AND  Num-Classes >= 3  
THEN C4.5/IB1 (11/6) 

Rule 9  
IF Num-SD >= 196 AND Num-Examp = Large AND Num-clas ses < 9  
THEN C4.5/IB1 (5)  

 
Figure A.1: Rule set produced by C4.5/GA-Large with S = 5 in the entire meta-data set  


