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Abstract

A set of classification rules can be considerea aksjunction of rules, where each rule is a
disjunct. A small disjunct is a rule covering a dmamber of examples. Small disjuncts are a
serious problem for effective classification, besmthe small number of examples satisfying
these rules makes their prediction unreliable arrdr@rone. This paper offers two main
contributions to the research on small disjun€isst, it investigates 6 candidate solutions
(algorithms) for the problem of small disjunctsc8ed, it reports the results of a meta-learning
experiment, which produced meta-rules predictingctvlalgorithm will tend to perform best for
a given data set. The algorithms investigated ig plaper belong to different machine learning
paradigms and their hybrid combinations, as foltotvg versions of a decision-tree (DT)
induction algorithm; two versions of a hybrid DTrggic algorithm (GA) method; one GA; one
hybrid DT/instance-based learning (IBL) algorithBExperiments with 22 data sets evaluated
both the predictive accuracy and the simplicitythed discovered rule sets, with the following
conclusions. If one wants to maximize predictiveuaacy only, then the hybrid DT/IBL seems
to be the best choice. On the other hand, if ongsv@ maximize both predictive accuracy and
rule set simplicity — which is important in the ¢ext of data mining — then a hybrid DT/GA
seems to be the best choice.

Keywords: classification, data mining, decision trees, denalgorithms, instance-based
learning

1. Introduction

This paper addresses the well-known classificaask of data mining [17], where the objective
is to predict the class of an example (record) dasethe values of the predictor attributes for
that example. Among the several kinds of knowledgeresentation that can be used to
represent the knowledge discovered by a classicatigorithm [21], a popular one consists of

IF-THEN classification rules of the form:

IF <condition 1>AND ..... AND <condition i>AND ..... AND <condition "
THEN <prediction (class)>

where each condition is typically a triple <Attriby Operator, Value>, such as “Age < 21" or



“Gender = female”. This knowledge representatios kize advantage of being intuitively
comprehensible for the user. From a logical viewpotypically the discovered rules are
expressed in disjunctive normal form, where eadk represents a disjunct and each rule
condition represents a conjunct. In this contexd@mell disjunct can be defined as a rule which

covers a small number of training examples [19].

The concept of small disjunct is illustrated in dig 1. This figure shows a decision tree where
the size of the ellipsis representing each nodeughly proportional to the number of examples

belonging to that node. In addition, the numberdie®ach leaf node represents the number of
examples belonging to that node. Intuitively, th tleaf nodes at the right bottom can be

considered small disjuncts, since they have jumtdi3 examples. (A more precise definition of

small disjunct in the context of this research Wi given in section 2, when we will revisit

Figure 1.)

Figure 1: A hypothetical decision tree illustrating the copicef small disjuncts

The vast majority of rule induction algorithms haaeias that favors the discovery of large

disjuncts, rather than small disjuncts. For instaraecision tree induction algorithms usually



have a bias that favors smaller trees (whose ledés are larger disjuncts) over larger trees
[22]. The motivation for this bias seems clearpining the belief that the relationship between
the class and predictor attributes represented layge disjunct, discovered in the training set,
will probably generalize better to the test setother words, intuitively, the larger the number
of examples covered by a disjunct, the more redidbhé accuracy estimate associated with that
disjunct. The challenge is to accurately predietdlass of examples covered by small disjuncts.
Clearly, this prediction is much less reliable,ceirthe number of examples supporting the

prediction is much smaller.

At first glance small disjuncts seem to have a simgbact on predictive accuracy, since they
contain just a small number of examples. Howevemany application domains ignoring small
disjuncts will lead to a significant degradationprredictive accuracy. The reason is that, even
though each small disjunct covers a small numbexamples, the set of all small disjuncts can
cover a large number of examples. For instanceylDkrand Provost [11] report a real-world
application where small disjuncts cover roughly 56Bthe training examples. In such cases we

need to discover accurate small-disjunct rulesdeoto obtain a good predictive accuracy.

Other projects showing the relevance of the probtéramall disjuncts are as follows. Weiss
investigated the interaction of noise with rareesagtrue exceptions) and showed that this
interaction led to degradation in classificatioewacy when small-disjunct rules are eliminated
[29]. However, these results have a limited utility practice, since the analysis of this
interaction was made possible by using artificiglgnerated data sets. In real-world data sets
the correct concept to be discovered is not knovaniai, so that it is not possible to make a
clear distinction between noise and true rare ca¥esss performed experiments showing that,
when noise is added to real-world data sets, sdisjilincts contribute disproportionally and

significantly to the total number of classificatierrors made by the discovered rules [30].

More recently, Weiss and Hirsh presented a quainttaneasure for evaluating the effect of

small disjuncts on learning [31]. The authors régrmore extensive experiments with a



number of data sets to assess the impact of sisalhdts on learning, especially when factors
such as training set size, pruning strategy, anskenlevel are varied. Their results confirmed

that small disjuncts do have a negative impactrediptive accuracy in many cases.

It should be noted that the previously-mentionegjgmts focused mainly on understanding the
problem of small disjuncts and its effect on leagniBy contrast, this paper investigates several
solutions for the problem of small disjuncts, whech solution corresponds to a different
classification algorithm. In addition, this papdsareports the results of a meta-learning
experiment, which produced meta-rules predictingctvkind of algorithm will tend to perform
best for a given kind of data set. Each of the dtlgms investigated here has been proposed in
the literature. Hence, the goal of this paper istagropose a new algorithm for the problem of
small disjuncts. Rather, it is to compare the penince of several algorithms for solving this
problem. We emphasize that none of the algorithmsilsl be considered a complete solution to
this problem, which is indeed a very difficult pteim and can hardly be completely solved.
Rather, the algorithms investigated here shoulddresidered as “candidate solutions” to this

very difficult problem, but here we refer to them“aolutions” for short.

We have performed an extensive set of experimeotsparing 7 algorithms across 22 data
sets. In essence, the 7 algorithms being compaaseadbe categorized with respect to their
machine learning paradigm [22], as follows: a) ¢hreersions of a decision-tree induction
algorithm; b) two versions of a hybrid decisionetr@®T)/genetic algorithm (GA) method; (c)

one genetic algorithm; (d) one hybrid decision/irestance-based learning algorithm.

Out of these 7 algorithms, 6 can be consideredtieaki for the problem of small disjuncts,
whilst the other (a decision tree induction algon) is used as a baseline algorithm, as will be
discussed in section 2. The performance of therisliges is compared with respect to two

criteria, namely their predictive accuracy andsimeplicity of the discovered rule set.

The remainder of this paper is organized as follo8ection 2 briefly describes each of the



above-mentioned 7 algorithms. Section 3 reportsdhlelts of extensive experiments evaluating
the performance of the 7 algorithms. Section 4 nspbe results of meta-learning experiments.

Finally, section 5 concludes the paper.

2. A Summary of Classification Algorithms for the Roblem of Small Disjuncts

Out of the 7 algorithms being compared in this papeof them make no distinction between
small and large disjuncts. The other 4 algorithmes more flexible and have been designed
specifically for solving the problem of small distts. They treat small disjuncts and large
disjuncts in a very different way. Hence, before eescribe the algorithms themselves, we
explain the criterion that we use to categorizeivergrule as a small or large (“non-small”)
disjunct. This criterion is the same for all the 4 algorithdesigned specifically for solving the
small-disjunct problem, and it is based on the ofa conventional decision-tree induction

algorithm, as follows.

First, one runs a decision-tree induction algorithmviz., C4.5 [25] — and the induced (and
pruned) tree is transformed into a set of IF-THHAbsIfication rules in the usual way. In other
words, each path from the root to a leaf nodeaisstiormed into a classification rule predicting
the class that is the label of the correspondired tede. This set of classification rules is
expressed in disjunctive normal form, so that eadd corresponds to a disjunct. Each rule is
considered either as a small disjunct or as a élafgon-small) disjunct, depending on whether
or not its coverage (the number of examples covbyethe rule) is smaller than or equal to a
given threshold, called the small-disjunct sizeeghold §). This process of identifying small
disjuncts can be illustrated by revisiting Figurewthere the numbers inside each leaf node
denote the number of examples covered by the qmnekng rule. If we sebto 3, there would
be just one small disjunct in the tree (the righdéimleaf node), whilst if we s& to 15 there
would be three small disjuncts in the tree. Hentejtively the value of the paramet8iseems

to have a significant influence in the performantan algorithm that treats small disjuncts and



large disjuncts in a very different way, whichhe tcase for several algorithms discussed in this
paper. Therefore, we did experiments with differgatues of the threshol&, in order to
investigate the influence of this parameter in geeformance of the algorithms, as will be

discussed in the section on Computational Results.

We now describe each of the 7 classification atgors compared in our experiments. Since
each of these algorithms has been published ititérature, our discussion here will be brief,
by focusing on the main characteristics of the @llgms and their similarities and differences.
Out of the 7 algorithms, one is standard C4.5, & weell-known decision tree induction

algorithm [25], which is used as a baseline alganithroughout our experiments. The other 6
algorithms represent different solutions to thebpgm of small disjuncts. We will also briefly

review the rationale for using each of the algonshas a solution for the problem of small
disjuncts. Of course, a more detailed descriptibaua these algorithms can be found in the

references cited below. The 7 algorithms are dsvisl

a) Default C4.5— This is just C4.5, with its default parametdrgluding its default tree
pruning method. Note that C4.5 makes no distinctimiween small disjuncts and large

disjuncts, i.e., it does not use the param8ter

b) C4.5 without pruning — This is C4.5 with its default parameters, withegexception: it
returns as its output the unpruned decision tree Wwell known that in general C4.5 with
pruning usually obtains a better predictive accpi@n the test set) than C4.5 without pruning.
However, in the context of our work there is a m@tion for evaluating the results of C4.5
without pruning. Recall that we are looking for dlraisjunct rules, which tend to be
considerably more specific (i.e., have more coadgiin their antecedent) than large-disjunct
rules. Turning off the pruning procedure of C4.%sldead to more specific rules. Of course,
there is a danger that C4.5 without pruning wiledit the data, and this approach will produce
more specific rules not only for small-disjunct eydes, but also for large-disjunct examples.

In any case, it is worth trying C4.5 without prugias a possible solution for the problem of



small disjuncts, since this is a very simple apphoand requires no new algorithm for solving
the problem of small disjunct. Hence, this approzah be regarded as a very simple solution to
the problem of small disjuncts, to which more sspbated solutions (algorithms) will be

compared.

c) Double C4.5- This is another way of using C4.5 as a clasgifio algorithm, and it can be
considered an algorithm specifically developeddolving the problem of small disjuncts [4],
[5], [7]- The basic idea is to build a classifigr tunning C4.5 twice. The first run considers all
examples in the original training set, producindirat decision tree. Once the system has
identified which leaf nodes are small disjunctgyribups all the examples belonging to the leaf
nodes identified as small disjuncts into a singlaneple subset, called the second training set.

Then C4.5 is run again on this second, reducexitigaset, producing a second decision tree.

( second training set >

C4.5

Figure 2: The basic idea of double C4.5

In order to classify a new example of the testthet,rules discovered by both runs of C4.5 are

used as follows: first, the system checks whethemew example belongs to a large disjunct of



the first decision tree; if so, the class predidigdhe corresponding leaf node is assigned to the
new example; otherwise (i.e., the example belongente of the small disjuncts of the first
decision tree), the new example is classified by $lecond decision tree. This process is
illustrated in Figure 2, where the leaf nodes idiertt as small disjuncts (in the first tree, built
from the entire training set) are represented tsg@are with the acronym “SD” inside. The
motivation for this more elaborate use of C4.5 awasttempt to create a simple algorithm that

was more effective to cope with small disjunctscbynparison with a single run of C4.5.

d) Hybrid C4.5/IB1 — This is a hybrid decision-tree algorithm (C4rigtance-based learning
algorithm (IB1), proposed by [28]. In essence, fingt step of this hybrid algorithm is to run
C4.5 and identify which leaf nodes of the induceektare considered small disjuncts, as
previously discussed. The next step consists gsiflang new examples in the test set (unseen
during training), as follows. Each test exampl@ushed down the tree until it reaches a leaf
node. If that leaf node is a large disjunct, tharegle is classified by the decision tree. On the
other hand, if that leaf node is a small disjutieg, example is classified by IB1 — a simple 1-
NN (one nearest neighbor) algorithm, which assipestest example to the class of the nearest

example in the data space.

training training training
set set set
1

IB1 IB1 1B

SD SD SD

Figure 3: The basic idea of the hybrid C4.5/IB1



This process is illustrated in Figure 3, where aganall disjuncts are denoted by a square with
“SD” inside. IB1 uses as its training set the datxamples belonging to the corresponding leaf
node of the induced tree. The motivation for thibriid method is that the correct classification

of small disjuncts tends to require a specificiigsh and, as pointed out by [28], instance-based

learning seems to have the maximum specificity f@gsired for this kind of problem.

e) Hybrid C4.5/GA-Small — This is a hybrid C4.5/genetic algorithm (GA)pposed by [2],
[3], [5]. The GA is called GA-Small, to emphasizet it is a GA specifically designed for
solving the problem of small disjuncts. Let ustfirsview the hybrid algorithm as a whole, and

next briefly review GA-Small.

The basic idea of this hybrid algorithm is, at ghhievel of abstraction, similar to the idea of the
hybrid C4.5/IB1. Again, the first step is to run .64and identify which leaf nodes of the
induced tree are considered small disjuncts. Th@pmdifference between the two hybrid
methods lies in how they deal with small disjuntitstead of using IB1, the hybrid C4.5/GA-
Small uses the rules discovered by GA-Small. Morecigely, after all the leaf nodes
considered small disjuncts are identified, the feéxamples belonging to each of those leaf
nodes is given as a training set to GA-Small. Tloeee GA-Small is rurk times, each time
with a different training set, wheleis the number of leaf nodes considered small d¢ggl
Each run of GA-Small discovers a rule set that Wil used to classify the test examples that
reach the corresponding leaf node from which GA4{Bmas trained. In other words, after all
thek runs of GA-Small have been completed, each temhple is pushed down the tree until it
reaches a leaf node. Again, if that leaf nodelarge disjunct, the example is classified by the
decision tree. On the other hand, if that leaf nedesmall disjunct, the example is classified by
the rule set discovered by the corresponding ruAfSmall. This process is illustrated in
Figure 4. The motivation for this hybrid methodhat attribute interactions are considered one
of the causes of small disjuncts [26], [27], [13ldaGAs tend to cope better with attribute

interaction than conventional greedy rule inductmm decision-tree induction algorithms [14],
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[10], [23], [13], [15]. In addition, by comparisowith C4.5/IB1, C4.5/GA-Small has the

advantage that GA-Small discovers knowledge inftmen of high-level classification rules,

unlike IB1.

training training
set set

training
set

GA-small

GA-small

GA-small

Figure 4: The basic idea of the hybrid C4.5/GA-Small

In a nutshell, the main characteristics of GA-Snat as follows. Each individual of the

population represents a candidate classificatide ln addition to standard genetic operators

(one-point crossover and mutation), it has a tagseddent rule pruning operator, i.e., a rule

pruning operator designed specifically for prunatgssification rules. This operator is applied

to every individual of the population, right aftdre individual is formed. Unlike the usually

simple operators of GA, this rule-pruning operatsran elaborate procedure based on

information theory [8]. The basic idea is that, thmaller the information gain of a rule

condition (an attribute-value pair), the higher gnebability that that condition will be removed

from the rule. The fitness function of GA-Small (8P / (TP + FN)) * (TN / (FP + TN)), where

TP, FN, TN and FP — standing for the number of pasitives, false negatives, true negatives

and false positives — are well-known variables roftessed to evaluate the performance of

classification rules [17]. Some limitations of GAnSIl will be discussed in the next item.
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f) Hybrid C4.5/GA-Large — This is also a hybrid C4.5/genetic algorithm {(Gproposed by
[4] [7]. Although the GA component of the methodsagpecifically designed for solving the
problem of small disjuncts, this GA is called GArge, rather than GA-Small. The reason for
this terminology is that this GA effectively learfiem a large training set, rather than from a
small training set. Once more, the first step isut@ C4.5 and identify which leaf nodes of the
induced tree are considered small disjuncts. Howemstead of running GA-Small once for
each small disjunct, the system groups all the @kesrbelonging to the leaf nodes identified as
small disjuncts into a single example subset, ddle second training set. This is exactly the
same training set used for the second run of Cd.5hé above-described “double C4.5”
algorithm. The difference is that, instead of rungnC4.5 on the second training set, the system

runs GA-Large on the second training set. This @geds illustrated in Figure 5.

< second training set >

GA-Large-Small

Figure 5: The basic idea of the hybrid C4.5/GA-Large

After GA-Large has run, each test example is pustmadh the tree until it reaches a leaf node.
Again, if that leaf node is a large disjunct, txample is classified by the decision tree. On the

other hand, if that leaf node is a small disjurtbe example is classified by the rule set
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discovered by GA-Large.

At a high level of abstraction, the motivation fdris hybrid method is the same as the
motivation for the hybrid C4.5/GA-Small, i.e., @bite interactions are considered one of the
causes of small disjuncts, and GAs tend to copeembetith attribute interaction than

conventional greedy rule induction and decisioe-treduction algorithms. At a lower level of

abstraction, the development of C4.5/GA-Large wasivated by the need for avoiding some
limitations of C4.5/GA-Small, as follows: (a) Eanlm of GA-Small has access to a very small
training set, consisting of just a few exampleobging to a single leaf node of a decision tree.
Intuitively, this makes it difficult to induce relble classification rules in some cases. (b)
Although each run of the GA is relatively fast (®nit uses a small training set), the hybrid
C4.5/GA-Small as a whole has to run the GA mansirtsince the number of GA-Small runs
is proportional to the number of small disjunctdgnce, the hybrid C4.5/GA-Small turns out to
be considerably slower than the use of C4.5 al@mesince GA-Small discovers more than one
rule for each leaf node considered a small disjuhethybrid C4.5/GA-Small discovers a larger
number of rules than C4.5 alone, reducing the saitylof discovered knowledge. The hybrid

C4.5/GA-Large avoids these problems, as will bexshim the section on computational results.

It should be noted that the differences betweenSba#ell and GA-Large go beyond the training
set used by the two GAs. Another difference isadlews. Due to an increase in the cardinality
of its training set (by comparison with GA-SmalBA-Large needs to discover many rules
covering the second training set. GA-large usestbguential covering” approach — a popular
approach in conventional rule induction algorithi38] — to discover a diverse set of rules. In
essence, the first run of GA-Large is initializeithathe full second training set and an empty
set of rules. After each run of GA-Large, the ®ailved rule is added to the set of discovered
rules and the examples correctly covered by tHatate removed from the second training set.
Hence, the next run of GA-Large will consider a Bemasecond training set. This process

proceeds until all or almost all examples have lemered.
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Yet another difference between GA-Small and GA-kairgzolves the rule pruning procedures
used by these algorithms. As mentioned earlier, $s#all uses a pruning procedure based on
information theory. This procedure involves compgtithe information gain [8] of each
attribute in a preprocessing step and using thaisore to stochastically select the attributes to
be removed from a given rule. Note that this isatadliriven rule pruning procedure, since the
information gain values are computed directly frtra training set, regardless of the result of
any classification algorithm. By contrast, GA-Largees a hypothesis-driven rule pruning
procedure, which uses information about the clesgibn accuracy (on the training set) of the
induced decision tree to estimate the predictivggraf each attribute, in order to decide which
conditions (attribute-value pairs) should be prufredn a given rule. Hence, GA-Large can
directly exploit information obtained from the hypesis (decision tree) produced by a

classification algorithm, unlike GA-Small.
These differences between the two algorithms asertteed in more detail in [4].

g) GA-Large alone —This algorithm consists of simply running GA-Larigethe entire training
set, and using the discovered rules to classifieatl examples, without distinguishing between
small disjuncts and large disjuncts. This algoritisnmcluded in our experiments to determine
whether or not the hybrid C4.5/GA-Large really “daimes the best of both worlds”, in the

sense of performing better than both C4.5 and GAyé.aeparately.

3. Computational Results

We have performed extensive experiments to comipareffectiveness of the 7 classification
algorithms described in the previous section. Tkgedments used 22 real-world data sets. 12
of these 22 data sets are public-domain data detiseowell-known UCI’'s data repository,

available at: http://www.ics.uci.edu/~mlearn/MLRsjiory.html.
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Table Data sets used in the experiments

Data set No. of examples No. of attributes No.lasses
Connect 67557 42 3
Adult 45222 14 2
Crx 690 15 2
Hepatitis 155 19 2
House-votes 506 16 2
Segmentation 2310 19 7
Wave 5000 21 3
Splice 3190 60 3
Covertype 8300 54 7
Letter 20000 16 26

Nursery 12960 8 5
Pendigits 10992 16 9
ds-1 5690 23 3
ds-2 5690 23 3
ds-3 5690 23 3
ds-4 5690 23 2
ds-5 5690 23 2
ds-6 5894 22 3
ds-7 5894 22 3
ds-8 5894 22 3
ds-9 5894 22 2
ds-10 5894 22 2

The other 10 data sets are derived from a datadfade CNPq (the Brazilian government’s
National Council of Scientific and Technological\B&pment), whose details are confidential.
The database contains data about the scientifiduption of researchers. We have identified,
with the help of the user, five possible classitaites (to be predicted) in this database. These
class attributes involve information about the nemdf publications of researchers, with each
class attribute referring to a specific kind of ficdttion. For each class attribute, we have
extracted two data sets from the database, witmaewhat different set of predictor attributes
in the two data sets. This has led to the extraatiolO data sets, denoted ds-1, ds-2, ds-3, ...,
ds-10. The number of examples, attributes and etafks each of the 22 data sets is shown in
Table 1. The examples that had some missing vakre vemoved from these data sets before
the classification algorithm was applied.

The performance of the seven classification algor# was compared with respect to two
criteria, namely predictive accuracy and simplicifythe discovered rule set. Let us first explain

the methodology used to evaluate predictive acgurac
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All accuracy rates reported here refer to resultthe test set — which was not accessed during
training. In three of the public domain data sétdult, Connect and Letter, we have used a
single division of the data set into a training antkst set. This is justified by the fact that the
data sets are relatively large, so that cross-&tdid is not necessary [17]. In the Adult data set
we used the predefined division of the data setantraining and test sets. In the Letter and the
Connect data sets, since no such predefined divigsias available, we have randomly
partitioned the data into a training and a test.detthe Letter the data set, the training antl tes
set had 14,000 examples and 6,000 examples, regdecin the Connect data set the training
and test sets had 47,290 and 20,267 examplescteghe In the other public domain datasets,
as well as in the 10 data sets derived from the CN&atabase, the accuracy rate on the test set

was estimated by running a well-known 10-fold creakdation procedure [17].

Intuitively, the performance of 4 out of the 7 di#igation algorithms described in section 2
depends on the parametgra threshold on the small disjunct size. (Redsll & decision-tree
leaf is considered a small disjunct if and onlth# number of examples belonging to that leaf is
smaller than or equal to a fixed si2¢ Hence, we did experiments with four differeatues of

S namelyS= 3, 5, 10 and 15. We use the term “experimentefer to all the runs performed

for all algorithms and for all the above-mentior#idata sets, for each valueSf

The values ofS used in our experiments are approximately withia tange of values of this
parameter previously used in the literature — seg, [19], [24], [11]. Note that a value &f
significantly larger than 15 does not seem to makeh sense, at least if we take into account
the natural meaning of the teismall disjunct. In addition, most of the algorithms intigated

in this paper assume that C4.5 is adequate to atlyrrelassify examples belonging to large
disjuncts. If a leaf node of the tree produced By5thad many more than 15 examples, it seems
safe to assume that that leaf node would make iabtelprediction of the class of a new
example. Otherwise C4.5 would not have generatat léaf node — it would, instead, have

further expanded the tree, transforming that leadeninto an internal one and creating new
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branches and children nodes. In any case, we maldaim that the values @& used in our
experiments are “optimal”. They just represent asomable range of different values of this
parameter. Finding the “optimal” value 8fmight be done in future research, but it would be
even more computationally expensive (our curremiearents with four values & already
involve more than 15,000 algorithm runs in totaldahe result would probably be data set-

dependent.

There was a small difference in the number of atigors which were run in some experiments,
as follows. FoiS= 10 andS= 15 we have run the 7 above-mentioned algoritlfosS = 3 and

S =5 we have run 6 out of the 7 algorithms. Theyagorithm which was not evaluated in
these two experiments was C4.5/GA-Small. The re&stmat, forS= 3 andS = 5, each of the
training sets that would be used by GA-Small wdwdde a very small cardinality. Intuitively,
this small cardinality would hinder the performarmafeGA-Small, making it very difficult to
discover reliable classification rules that geneealvell from such a small number of examples.
This intuition was indeed confirmed by our preligin experiments with GA-Small. Note that,
although the IB1 component of C4.5/IB1 uses theesamall training sets as used by GA-
Small, in general IB1 does not have any problenh Wit value$S= 3 andS= 5. The reason is
that IB1 does not try to generalize from the srsall of examples to discover a classification

rule. It performs classification by using the exd&sghemselves.

In all the experiments, whenever a GA (GA-SmalG#-Large) was run, that GA was run ten
times, varying the random seed used to generatmitied population of individuals. The GA-
related results reported below are based on amagtic average of the results over these ten
different random seeds. Therefore, GA-Large’s amdSBnall's results are based on average
results over 100 runs (10 seeds x 10 cross-vadiddtlds), except in the Adult, Connect and
Letter data sets, where the results were averagadl® runs (10 seeds). In all the experiments
GA-Small and GA-Large were always run with a pofiata of 200 individuals, and the GA

was run for 50 generations. In addition, in all theeriments GA-Small and GA-Large used
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one-point crossover with a probability of 80%, citioth mutation with a probability of 1%, and

tournament selection with tournament size of 2.

In the next two subsections we report the resduilis respect to predictive accuracy and rule set
simplicity, respectively. A subset of these reshlis been previously published in [4], [5], [6],
[7]. This paper differs from those previous pagarsvo ways, as follows. On one hand, those
previous papers explained in detail some of theordlgns investigated in this paper (in
particular the algorithms involving GAs), whilstishpaper presents just a brief summary of
those algorithms. On the other hand, this papetagosm more extensive computational results
than those previous papers. More precisely, thigepaontains results for more data sets and
more values of the parametgrresults for two other algorithms (namely GA-Lamgene and
C4.5/1B1) and extensive results about rule set koityg The latter extension is particularly

important in the context of data mining — see sec8.2.

Furthermore, this paper reports — in section 4 w neeta-learning results that have not been
published yet in the literature. These results weful to predict which algorithm tends to

obtain the best performance, depending on the cteaistics of the data set being mined.
3.1 Computational Results Evaluating Predictive Acgracy

The detailed results of the experimentsS$or 3, 5, 10, and 15 are reported in Tables A.1, A.2
A.3 and A.4 (in the Appendix), respectively. Thégkles are put in the Appendix because they
contain a large amount of detail. Hence, in thigisa we present and discuss only a summary
of the results reported in Tables Al. to A.4. Tiniproves the readability of the paper and is
also supported by the fact that results were qiadély similar across the four values®(3, 5,

10 and 15), i.e., across Tables A.1, A.2, A.3 artl Alence, our analysis of the results focus on

the overall performance of each algorithm takirtg iccount the four values 8f

A summary of the results of Tables Al to A.4 isaeed in Table 2. This table shows, for each

value ofS, two indicators of the performance of each alfanit First, the columns titled “win”
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indicate in how many data sets each algorithm pbthia predictive accuracignificantly
higher than the accuracy of default C4.5, which was use@ baseline method. Second, the
columns titled “loss” indicate in how many datasseach algorithm obtained a predictive
accuracysignificantly lowerthan the accuracy of default C4.5. The definitadrsignificantly

higher (lower) performance is explained in the Afgtiz.

In Table 2 the columns associated with the reailts4.5/GA-Small forS = 3 andS = 5 have
an N/A (Not Applicable) flag, since this algorithwas not used with these small values of the

small disjunct size threshold — as discussed eattiis is a limitation of this algorithm.

Table 3ummary of predictive accuracy results

C4.5 without C45/ C45/
pruning Double C4.5 | GA-Large C4.5/1B1 GA-Small GA-Large
Win | Loss | Win | Loss| Win | Loss| Win| Loss Win Loss Wip dso
0 7 8 1 11 8 1 N/A| N/A| 9 2
0 7 6 3 1 11 1 N/A| N/A| 8 2
10 0 7 4 4 1 11 8 1 7 4 9 2
15 0 7 7 4 1 11 10 1 7 3 8 3

Note that in Table 2 the number of “wins” and “lessfor C4.5 without pruning and GA-Large
is constant for all values & This is a consequence of the fact that theseaitligts do not use
the threshold siz8& to identify small disjuncts — i.e., they classifly the examples without any
distinction between large disjuncts and small disfs. Let us now analyze the performance of

each algorithm in turn.

(a) C4.5 without pruning — This algorithm obtained bad results. It did notns#figantly
improved classification accuracy in any data set] & significantly reduced classification

accuracy (with respect to the baseline C4.5 witlnjmg) in 7 out of the 22 data sets.

(b) Double C4.5 —This algorithm performed considerably better. Mprecisely, for three
values ofS, namelyS = 3, 5 or 15, double C4.5 significantly improvddssification accuracy
more often than it significantly reduced it. In tbéner value ofS (10) double C4.5 obtained a

“neutral” result (neither good nor bad), i.e.,igrgficantly improved classification accuracy as
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often as it significantly reduced it.

(c) GA-Large — This algorithm obtained the worst results. It siigaintly improved

classification accuracy (with respect to the baseliefault C4.5) in just 1 data set, and it
significantly reduced classification accuracy inddta sets. This result is not very surprising,
considering that GA-Large was designed to classifly small-disjunct examples, rather than

classifying all the examples.

(d) C4.5/1B1 —This hybrid algorithm obtained very good resultsr three values df, namely
S=3, 5 or 10, it significantly improved classifi@n accuracy in 8 data sets, and significantly
reduced classification accuracy in only 1 data Redlid even better whes = 15, where it
significantly improved classification accuracy i data sets, and significantly reduced

classification accuracy in only 1 data set.

(e) C4.5/GA-Small =This hybrid algorithm obtained good results. Itngfigantly improved the
classification accuracy in 7 data sets, wheresigitificantly reduced it in only 4 or 3 data sets,

whenS= 10 or 15, respectively.

(f) C4.5/GA-Large — This hybrid algorithm obtained very good results. significantly
improved classification accuracy in 8 or 9 data,sahd it significantly reduced classification

accuracy in only 2 or 3 data sets, depending ondhee ofS,

To summarize, the 6 solutions (algorithms) for piheblem of small disjuncts evaluated in this
paper can be divided into three groups, with resfgeclassification accuracy. The first group
consists of the most successful algorithms, nant@y5/IB1 and C4.5/GA-Large. These

algorithms can be considered very good solutionthé&o problem of small disjuncts — with

respect to classification accuracy. The second mmansists of double C4.5 and C4.5/GA-
Small. Although these two algorithms were succéssfu the sense of performing better
(overall) than the baseline default C4.5, they weseso successful as C4.5/IB1 and C4.5/GA-

Large. Finally, the third group consists of C4.5heut pruning and GA-Large alone. These two



20

algorithms obtained bad results, considerably wtirar the results of the baseline default C4.5.

It is interesting to note that there was only omadset in which both the best algorithms
(C4.5/IB1 and C4.5/GA-Large) consistently obtairedredictive accuracgignificantly worse
than default C4.5 in all the four values®# i.e., in Tables A.1, A.2, A.3 and A.4. The ds¢a

in question is Segmentation. The explanation fiwr phenomenum seems to be that this data set
contains a considerable degree of class noise.iJ kiise to the fact that the class labels for this
data set were produced by manually labeling eagiomeof an image — where the regions were
previously identified by a segmentation algorithiithis kind of manual labeling tends to
introduce a significant degree of class noiselfideed, [20] reports a significant improvement
on predictive accuracy in this data set by usingm@semble technique particularly designed for
coping with noisy data. Although class noise is ifficdlt problem for any classification
algorithm, the problem tends to be more serioualgorithms designed for discovering small
disjuncts than in (conventional) algorithms foradigering large disjuncts. The reason is that the
latter have a bias in favor of discovering moreegahrules, and so they tend to treat small-
disjunct examples as noise data. Such a bias tertols appropriate to very noisy data sets. By
contrast, algorithms designed for discovering shigjuncts have a bias in favor of discovering
more specific rules, which seems appropriate ifda& contains many small-disjunct examples
that represent true exceptions in the data, rathan noisy data. As a result, algorithms
designed for coping with small disjuncts seem paldirly sensitive to high levels of class

noise.

It is also important to observe how the performantsome algorithms varied for different
values of the paramet& the size threshold used to identify small disfan®ecall that this

parameter is used by four algorithms — namely, to@#.5, C4.5/IB1, C4.5/GA-Small and
C4.5/GA-Large. Overall, these algorithms turned twube quite robust to different values of

this parameter, as can be observed in Table 2.

3.2 Computational Results Evaluating Simplicity othe Discovered Rules
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Rule set simplicity is important in the contextdzta mining [12], [16], [32] because it allows
the user to validate discovered knowledge and tuseedombined with his/her own background
knowledge — to make an intelligent decision. Initold, if discovered knowledge is so complex

that the user does not understand it, then thewifierot trust it [18].

Hence, we have also measured the simplicity of rille set discovered by each of the
algorithms investigated in this paper, with the eption of the hybrid C4.5/IB1. The latter

classifies small-disjunct examples by using théaimse-based learning paradigm, which does
not produce comprehensible classification rulesteNbat the sizes of decision trees and rule
sets are not directly comparable, because they tiffezent structures. Hence, we converted
the decision trees into rule sets, as described, m@)order to make the comparison of the
simplicity of the discovered rules among the altponis as fair as possible. The simplicity of the
discovered rule set was measured by the numberded and the average number of conditions

per rule. These measures were computed for eachithly, as follows.

In the case of default C4.5 and C4.5 without prgnfirst the induced tree is converted into a
set of rules in the usual way. That is, each patimfthe root to a leaf node is transformed into a
rule, whose antecedent consists of the conditionshe attribute values specified along that
path and whose consequent is the class predictédiedgaf node. Hence, the number of rules is
the number of leaf nodes in the tree. Next we apm@imple purely syntacticapost-processing
method to the set of rules, with the goal of redgdhe size of the rulesithout changing its
coverage or predictive accuracyhis post-processing method just merges all dmelitions of

a rule referring to the same attribute (which oft&ppens with continuous attributes) into a
single equivalent condition. For instance, supptteg C4.5 generated a rule including the
conditions “age > 21" and “age > 25". These two ditians are converted into a single
equivalent condition “age > 25". Once this simptestpprocessing has been done, the average
number of conditions per rule is simply computedhastotal number of conditions (in all rules)

divided by the number of rules.
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In the case of double C4.5, C4.5/GA-Small and @6Large, the number of discovered rules
is computed as follows. The first step is to idgnith the tree generated by C4.5 the leaf nodes
that are considered large disjuncts. Each path fterroot node to one of these leaf nodes is
converted into a rule, as described earlier. kgt be the number of large-disjunct rules created
in this step. The second step is to determine tineber of small-disjunct rules (calleg.&) and

the number of rule conditions in those rules. |Ip ttase of double C4.5, these values are
obtained by converting the tree generated by thergkexecution of C4.5 (i.e., from the second
training set) into a set of rules, using the sanethod as used for standard C4.5 and C4.5
without pruning, as described earlier. In the ca6€4.5/GA-Small and C4.5/GA-Large, the
number or small-disjunct rules ) and the number of conditions in those rules anply the

number of rules and conditions discovered by thecG#ponent of the hybrid method.

For each of these three algorithms (double C4.55/GA-Small and C4.5/GA-Large) the total
number of discovered rules is the number of langg+dct rules (g¢) — which is the same for

the three methods — plus the number of small-ditjunles discovered by the algorithm in
guestion. The average number of conditions perisullee total number of conditions (in large-

disjunct rules or in small-disjunct rules) divideyl the total number of rulesu{ge + rsma-

In the case of GA-Large alone, the system justtha®unt the number of discovered rules and
the corresponding average number of conditions;esithis algorithm does not distinguish

between large-disjunct and small-disjunct rules.

As explained earlier, C4.5/GA-Small discovers aydéarnumber of rules than default C4.5,
because, for each small disjunct identified inttlee generated by C4.5, the GA component of
this hybrid algorithm discovers severales. However, double C4.5 and C4.5/GA-Large db no
have this disadvantage. These two algorithms cscoder a total number of ruleg.{ + rsman)
considerably smaller than the number of rules disted by standard C4.5. This is due to the
fact that these two methods use a relatively lasgmnd training set, which provides them with

an opportunity to discover few rules — each of tivéith a large coverage — in order to cover the
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small disjunct examples.

The number of discovered rules and average numbeoralitions per rule was computed for
each algorithm (except C4.5/IB1, as mentioned erih each of the 22 data sets, for each of
the previously-mentioned values of the param&enamelyS = 3, 5, 10 and 15 (except
C4.5/GA-Small forS = 3 andS = 5, as explained earlier). Since the full setesults would
occupy too much space of this paper, we presert aesummary of these results, shown in
Table 3. Note that, when comparing two rule sets not easy to determine which rule set is
simpler when one rule set has a smaller numbeule§ but a larger number of conditions per
rule. In order to avoid this problem and simplifyetanalysis of the results, Table 3 was
generated by considering that the simplicity ofike rset R$is better than the simplicity of a
rule set Rgif and only if RS dominates RSin the following sense (inspired by the concept of
Pareto dominance often used in the literature ottigbjective optimization [9]): RShas a
significantly bettersimplicity than RS in at least one of the two simplicity criteria (nber of
rules and average number of conditions per rule); RS is not significantly worsehan RS in
any of the two simplicity criteria. The meaningsignificantly better/worséere is the same as
in the discussion of the predictive accuracy res(gee Appendix), i.e., a difference in the
number of rules or conditions discovered by twoodtgms is deemed significant if the

corresponding intervals (taking into account tlendard deviations) do not overlap.

Table 3 shows, for each value $ftwo indicators of the performance of each alfonit First,
the columns titled “win” indicate in how many dadats each algorithm discovered a rule set
significantly simplertthan the rule set discovered by default C4.5, wkias used as a baseline
method. Second, the columns titled “loss” indicatehow many data sets each algorithm

discovered a rule ssignificantly more complethan the rule set discovered by default C4.5.
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Table 3: Summary of rule set simplicity results

C4.5 without C45/ C4.5/
pruning Double C4.5 | GA-Large GA-Small GA-Large
Win | Loss | Win | Loss| Win | Loss| Win| Loss Win Loss
0 12 4 0 17 0 N/A| N/A
0 12 4 0 17 0 N/A| N/A| 6
10 0 12 5 0 17 0 0 13 15
15 0 12 3 1 17 0 0 13 18

Note that in Table 3, analogously to Table 2, thenber of significant “wins” and “losses” for
C4.5 without pruning and GA-Large is constant fibvalues ofS. Again, this is a consequence
of the fact that these algorithms classify all €gxamples without any distinction between large

disjuncts and small disjuncts. Let us nhow analyegerformance of each algorithm in turn.

(a) C4.5 without pruning — This algorithm significantly degraded simplicityy(lzomparison
with the baseline default C4.5 with pruning) in A& of the 22 data sets. Of course, this bad

result was expected, since an unpruned tree tertuks ¢onsiderably larger than a pruned tree.

(b) Double C4.5 —This algorithm obtained reasonably good simplicégults. More precisely,
for S= 3, 5 or 10 double C4.5 generated a rule setfgigntly simpler than default C4.5 in 4 or
5 data sets, and its discovered rule set was goifisantly more complex than default C4.5’s
rule set in any data set. Wh&n= 15 the performance of double C4.5 was not salgbat it

still obtained a “positive” performance (3 wins ag 1 loss).

(c) GA-Large — This algorithm obtained very good simplicity resullt discovered a rule set
significantly simpler than default C4.5's rule $etl7 out of the 22 data sets. Unfortunately,
however, this algorithm obtained bad predictiveuaacy results, as shown earlier. Hence, this
algorithm by itself seems too much biased towangsdiscovery of general rules, with a high
coverage. One should recall, however, that thigrédlgn was not designed to be used as a stand

alone classifier. It was designed to discover amhall-disjunct rules, as mentioned earlier.

(d) C4.5/GA-Small— This algorithm obtained bad simplicity resultis.discovered a rule set
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significantly more complex than default C4.5’s rgkg in 13 out of the 22 data sets. This kind
of result was expected, since, as explained eattierGA component of this hybrid algorithm
discovers several rules for each leaf node of ithe built by C4.5 that is considered a small

disjunct.

(e) C4.5/GA-Large —This algorithm obtained, overall, very good simii results. For the
four values ofS there was no data set where this algorithm des@ala rule set significantly
more complex than the one discovered by defaulb.dd.addition, this algorithm discovered a
rule set significantly simpler than the one disaedeby default C4.5 in 2, 6, 15 or 18 data sets,

for the values 06 = 3, 5, 10, or 15, respectively.

To summarize, overall the five algorithms analyaedhis section can be ranked as follows,
with respect to the simplicity of the rule setscdigered by them. The three best algorithms are,
in this order, GA-Large, C4.5/GA-Large and doubke 5. The performance of the second best
algorithm (C4.5/GA-Large) is about as good as thedgsmance of the best algorithm (GA-
Large) for the two largest values 8fviz. S= 10 or 15; and the performance of C4.5/GA-Large
is about as good as the performance of the thisl akgorithm (double C4.5) for the two
smallest values @, viz. S= 3 or 5. In the fourth and last position of theking we can include
both C4.5 without pruning and GA-Small, since bathtain very similar and very bad

performances with respect to rule set simplicity.

4. Meta-Learning Results

The extensive set of computational results reparigitie previous section has motivated us to
apply a “meta-learning” algorithm to those resuitsprder to learn rules predicting which of
the previously-discussed algorithms will obtain Highest predictive accuracy for a given data

set. These new meta-learning experiments werescaorit as follows.

A meta-learning data set was created containingr&tlictor meta-attributes, a class meta-

attribute and 88 meta-examples. Each of the 88-matmples corresponds to one combination



26

of data set and value of the param&¢22 data sets x 4 values 8fF 88 meta-examples). For
each meta-example, the meta-class attribute valtieiname of the algorithm that obtained the
highest predictive accuracy for the correspondiaitg det and value & Hence, there are seven
meta-class values, namely: default C4.5, C4.5 withwuning, double C4.5, GA-Large alone,
C4.5/IB1, C4.5/GA-Small and C4.5/GA-Large. The Igdictor meta-attributes were defined

as follows.

a) Error in small disjunct classification (SD-error) — This is a continuous meta-attribute. Its
value is given by the formula: (x/y)100, where xtie number of training examples (in the base
data set) belonging to small disjuncts wrongly siféed by C4.5 and y is the number of training

examples belonging to small disjuncts (identifigdrlonning C4.5), for a given value &f

b) C4.5's error rate (C4.5-error) — This is a continuous meta-attribute whose vaiuée error

rate obtained by default C4.5 in the training set.

¢) Number of small disjuncts (Num-SD)- This is a continuous meta-attribute, whose vadue

simply the number of small disjuncts in the tragset.

d) Average size of small disjuncts (SD-size} This is a continuous meta-attribute, whose

value is the average number of examples per snslingt of the training set.

e) Percentage of examples in small disjuncts (SD+jg§ — This is a continuous meta-attribute,
whose value is the ratio of the number of trainex@mples belonging to a small disjunct

divided by the total number of training examples.

f) Number of examples (Num-Examp)- This is a categorical meta-attribute indicatingttthe

number of examples in the training set is in onehef following categories: very small (less
than 1,000 examples), small (between 1,000 andd%88mples), medium (between 5,000 and
20,000 examples), and large (20,000 or more exanplehese thresholds were manually
chosen. Of course, the term “large” has to be [m&ted in the context of the size of the data

sets used in the experiments, rather than in thal s&nse of the term in data mining.
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g) Number of classes (Num-Classes) a continuous meta-attribute. This and the nepdeth

meta-attributes have a self-explained meaning.
h) Number of categorical attributes (Num-Cat-Att) — a continuous meta-attribute.
i) Number of continuous attributes (Num-Con-Att) — a continuous meta-attribute.

j) Total Number of attributes (Num-Att) — a continuous meta-attribute, whose value is given

by the summation of the values of the two previmesa-attributes.

k) Imbalance of Class Distributions (Class-Imbal)— This is a categorical meta-attribute
indicating that the degree of imbalance of classrithutions in the base data set belongs to one
of the following categories: strongly imbalancedpalanced, and balanced. The category to be
assigned to a particular data set is computed éyaltowing procedure (again, the thresholds

were manually chosen):

IF ((FregMaj — FregMin) > 70%) OR (FregMin < 1%)
THEN “strongly imbalanced”
ELSE IF ((FregMaj — FreqMin) > 25%)
THEN “imbalanced”
ELSE “balanced”

Where FregMaj is the relative frequency of the migjalass (in %) and FreqMin is the relative

frequency of the minority class (also in %).

Note that the values of SD-error, Num-SD, SD-sizé &D-perc are directly dependent on the

value ofS. The values of the other meta-attributes are iaddent of the value &

The values of the previously-defined attributesevesmputed for each combination of data set
and value ofS used in our experiments, giving a total of 88 nmestamples, as mentioned
before. Once this meta-data set is available, wédcapply any classification algorithm to it. In
this work we applied the five algorithms that obtal at least reasonable results in the
experiments reported in the previous section, default C4.5, double C4.5, C4.5/GA-Large,

C4.5/GA-Small and C4.5/IB1. (The only two algorithmot tried were C4.5 without pruning
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and GA-Large alone, which obtained bad resultshim previous sections.) In these meta-
learning experiments we also applied those fiverdlygms with the same four different values

of Sas used in the previous section (%=, 3, 5, 10, 15).

Table 4 reports the predictive accuracy in the sestmeasured by a 10-fold cross-validation
procedure. As can be seen in the table, for eaktle &t S the best result was obtained by the
C4.5/GA-Large algorithm — whose results are shawhdld. That algorithm also obtained the
best results concerning the number of discovertas rand the number of conditions per rule,
for each value of5, as shown in Tables 5 and 6. The results in tiwsetables were also

measured by 10-fold cross-validation.

Table 4: Accuracy rate (%) on the test set in meta-le@reixperiments

Algorithm S=3 S=5 S=10 S=15
Default C4.5 77.62 77.62 77.62 77.62
Double C4.5 79.45 73.83 63.44 63.44

C4.5/GA- 81.82 84.11 79.97 79.97

Large
C4.5/GA- 76.19 75.61 77.02 74.80
Small
C4.5/1B1 77.75 73.40 72.92 72.92
Table 5 Number of discovered rules in meta-learning eixpents

Algorithm S=3 S=5 S=10 S=15
Default C4.5 19 19 19 19
Double C4.5 13 17 23 23

C4.5/GA- 12 13 17 17

Large
C4.5/GA- 25 33 41 41
Small
Table 6. Number of conditions per rule in meta-learningenments

Algorithm S=3 S=5 S=10 S=15
Default C4.5 4.7 4.7 4.7 4.7
Double C4.5 2.6 2.5 2.2 2.2

C4.5/GA- 3.9 3.7 3.5 3.5

Large
C4.5/GA- 5.3 4.9 5.2 5.2
Small
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Since the best predictive accuracy among all thdesnin Table 4 was obtained by running
C4.5/GA-Large withS= 5, we have run this algorithm with this valuettoé paramete® in the
entire meta-data set (with the 88 meta-examples)rder to produce the final set of rules to be
analyzed as a means of getting insight into thiicdlf problem of predicting which algorithm
(among the seven ones investigated in this papéirpltain the highest predictive accuracy in

a given data set. This final rule set is shownigufe A.1 in the Appendix.

As can be observed in that rule set, overall, Wee rheta-attributes with the greatest predictive
power were Num-SD and Num-Examp. Indeed, Num-SDakasen by C4.5 as the attribute to
label the root node of the tree, and it was alsmdus 6 out of the 9 rules discovered by GA-
Large. Num-Examp appears in a tree level right wetloe root in all the subtrees shown in

Figure A.1, and it appears in 8 out of the 9 rdissovered by GA-Large.

Another point to be noted is that in total there &rrules predicting that the algorithm with
highest predictive accuracy will be C4.5/IB1 andules predicting that the algorithm with
highest predictive accuracy will be C4.5/GA-Largée other algorithms have fewer rules
predicting their superiority. This is, of coursegnsistent with the fact that C4.5/IB1 and
C4.5/GA-Large were most often the winners — withpeet to predictive accuracy — in the
experiments reported in section 3.1. More precjsahalyzing Tables Al to A4 we find that

C4.5/IB1 was the winner in 17 cases and C4.5/GAzeavas the winner in 37 cases.

Since the two most successful algorithms with resfmepredictive accuracy were C4.5/IB1 and
C4.5/GA-Large, it is important to analyze in moretall the rules discovered in this meta-
learning experiment predicting when each of these d@lgorithms will be the winner. The 3

rules predicting that the winner will be C4.5/1Be as follows:

IF Num-SD > 444 THEN CA4.5/IB1 (8)

IF Num-SD < 307 AND Num-Examp in {Large,Medium} A ND Num-Classes >= 3
THEN C4.5/I1B1 (11/6)
IF Num-SD >= 196 AND Num-Examp = Large AND Num-cl asses <9

THEN C4.5/IB1 (5)
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The first above rule is a large disjunct rule dissred by C4.5, whereas the other two rules are
rules 8 and 9 discovered by GA-Large, as shownigurE A.1. By contrast, the 4 rules

predicting that the winner will be C4.5/GA-Largeas follows:

IF Num-SD <= 141 AND Num-Exampl in {Medium,Small} AND C4.5-error > 4.6%
AND SD-error <= 56.24% AND SD-perc > 1.06%
THEN C4.5/GA-Large (17/2)

IF 141 < Num-SD <= 353 AND Num-Examp in {Medium,S mall} AND
4.6% < C4.5-error < 39.3% AND SD-perc > 8.49% AND SD-error > 47.93%
THEN C4.5/GA-Large (7)

IF Num-SD <= 444 AND Num-Examp = VerySmall AND C4 .5-error > 7.1% AND
SD-error <= 51.52
THEN C4.5/GA-Large (6/2)

IF Num-SD <= 298 AND Num-Examp in {VerySmall,Medi um} AND Num-Classes <= 13
THEN C4.5/GA-Large (24/16)

The first three rules are large disjunct rules alieced by C4.5, whereas the fourth rule is the
rule 6 discovered by GA-Large, as shown in Figuré.Adere we have simplified the rules
extracted from the decision tree, by merging twffedént conditions referring to the same
attribute (in the same rule) into a single rulediton. For instance, in the second above rule
the conditions C4.5-error > 4.6% and C4.5-erro®<3% were merged into the single condition

4.6% < C4.5-error < 39.3%.

In general, the rules predicting C4.5/IB1 suggeat this algorithm will tend to be the winner in
relatively large data sets, where the value of tieta-attribute Num-Examp is Large or
Medium, or where the number of small disjuncts (N8B) is large. In particular the first rule
predicting C4.5/IB1 has only a single conditionuieilng that Num-SD > 444. This rule covers
8 out of the 88 meta-examples of the meta-dataasetall those 8 meta-examples are correctly
covered by this rule. In addition, the third ruleeglicting C4.5/IBI as the winner has two
conditions requiring that Num-SD >= 196 and Num-Bpa= Large. This rule also correctly
classifies all the 5 examples that it covers. Quhe 3 discovered rules predicting C4.5/IBI as a
winner, the only one that does not require a lamgmber of small disjuncts or examples is the
second one, which requires that Num-SD < 307 ANDmMNExamp in {Large,Medium}.

However, this rule is less reliable than the otiaar rules predicting C4.5/IB1, since the former



31

is misclassifying 6 out of the 11 meta-examples itheovers.

By contrast, in general the rules predicting C4%&41Grge suggest that this algorithm will tend
to be the winner in relatively small or medium-sizéata sets, where the value of the meta-
attribute Num-Examp is Very Small, Small or Mediuamd where the number of small
disjuncts (Num-SD) is not so large. In particuldrput of the 4 discovered rules predicting
C4.5/GA-Large specify conditions of the form Num-SB t, where t is a threshold, and just
one rule specifies the condition 141 < Num-SD <=3.3Blo discovered rule predicting
C4.5/GA-Large specifies a condition of the form N@BD >t — unlike, for instance, 2
discovered rules predicting C4.5/IB1. In addition,discovered rule predicting C4.5/GA-Large
has a condition specifying Num-Exampl = Large (ae€n Largeor another value), unlike 2
discovered rules predicting C4.5/IB1. Another enicke that C4.5/GA-Large tends to be the
winner in small data sets is the fact that, inrtteta-learning experiments reported here — which
certainly involve a very small meta-data set — &/ Large was the winner, as shown in

Table 4.

5. Conclusions

As mentioned earlier, the goal of this paper wastaontroduce a new algorithm. Rather, the
goal of this paper was to investigate the perforeanf 6 different kinds of algorithm — namely,
two versions of a decision-tree (DT) induction aition; two versions of a hybrid DT/genetic
algorithm (GA) method; one GA; and one hybrid D$tance-based learning (IBL) algorithm —

as potential solutions to the problem of smalludisis.

The algorithms were evaluated in extensive experimwith 22 data sets. In total, taking into
account all the iterations of the cross-validafioocedure, all the different runs of the GAs with
different random seeds (since GAs are stochastifiods), and the different values of the

parametefs (small-disjunct threshold size), the number obalpm runs was 15,247.

Overall, taking into account the results of allgbheexperiments, the best predictive accuracy



32

was obtained by the hybrid DT/IBL (C4.5/IB1) algbrn, and the second best predictive
accuracy was obtained by a hybrid DT/GA (C4.5/GAgeg. Hence, in general these two
algorithms seem suitable for mining data sets wittall disjuncts, at least with respect to the

goal of maximizing predictive accuracy.

However, with respect to rule set simplicity, théhd C4.5/IB1 has the disadvantage that IB1
(and the paradigm of IBL in general) does not disccany comprehensible rule, whilst the
hybrid C4.5/GA-Large has the advantage of discogea rule set considerably simpler than the

rule set discovered by standard C4.5 alone.

Hence, the general conclusion of the experimergallts is as follows: If one wants to
maximize predictive accuracy only, then the hyl@#l5/IB1 seems to be the best choice among
the algorithms evaluated in this paper. On the rottend, if one wants to maximize both
predictive accuracy and rule set simplicity — whighusually the goal in data mining — then the

hybrid C4.5/GA-Large seems to be the best choice.

We have also performed a meta-learning experiniemt,der to predict which algorithm would
obtain the best predictive accuracy in a given dsgd by taking into account some
characteristics of the data set at hand — includimgracteristics related to the occurrence of
small disjuncts. The results of this meta-learnéxgeriment were prediction rules indicating
that, in general: (a) C4.5/IB1 tends to be the winim relatively large data sets, with a large
number of examples or small disjuncts; (b) C4.5/Gakge tends to be the winner in relatively
small or medium-sized data sets, with a small odiova humber of examples and with a not

very large number of small disjuncts.

To the best of our knowledge, this is the firstgra perform such an extensive investigation
of 6 different solutions to the problem of smalsjdncts, and the first paper to report meta-

learning results for the problem of small disjuncts

An interesting research direction involves anothde quality criterion: rule surprisingness
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(novelty, unexpectedness). The motivation for thiterion is that many rules that have a high
predictive accuracy and are highly comprehensitdg tme uninteresting for the user, because
they represent an obvious pattern in the data. classic example is the rule “IF patient is

pregnant THEN gender is female”.

Small disjuncts have a good potential to represevel, surprising knowledge to the user,
because they tend to represent exceptions in tiae lokacontrast with the most general patterns
in the data that are probably already known byuger. Hence, it is interesting to investigate the
quality of the rule set discovered by the algorishosed in this paper with respect to rule

surprisingness as well. We are currently investiggathis research direction.
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Appendix

In Tables A.1 to A.4 the first column indicates tih&a set, and the other columns report the
corresponding accuracy rate in the test set (imBtdined by the algorithm indicated at the title
of the column. Note that the accuracy rates ofuefa4.5, C4.5 without pruning and GA-Large
alone in Tables A.1, A.2, A.3 and A.4 are exacllg same, since the accuracy rates of these
algorithms do not depend on the value&of

The numbers after thet® symbol denote standard deviations. For each detathe highest
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accuracy rate among all the algorithms is showioild. In each column containing the results
of an algorithm (except the column with the resoltglefault C4.5, the baseline algorithm) we
indicate, for each data set, whether or not theiracy rate of that algorithm is significantly
different from the accuracy rates of default C4Bis allows us to evaluate the extent to which
each algorithm can be considered a good solutiorthfe problem of small disjuncts. More
precisely, the cases where the accuracy rate df algorithm is significantly better (worse)
than the accuracy rate of default C4.5 is indicatgdthe “+” (“-“) symbol. A difference
between two algorithms is deemed significant when dorresponding accuracy rate intervals
(taking into account the standard deviations) doowerlap.

Tabdel: Accuracy rate (%) on the test set &« 3

Data Set Default C4.5 CA4.5 withouDouble C4.5| GA-Large| C4.5/I1B1 C4.5/GA-
pruning alone Large

Connect 72.6@ 0.5 | 72.05£0.5 78.06 £ 0.6|74.40 £ 0.6 { 78.13+ 0.5+| 77.86 + 0.1 H
Adult 78.62+ 0.5 77.00£0.5- 81.19+0.5/#8.90+0.3 | 85.87+ 0.5+|85.45+ 0.1 H
Crx 91.79+ 2.1 9245+1.9 9257+1.2 78.04+£1.2- 92975 |93.69+1.2
Hepatitis 80.7& 13.3 | 77.50+11.3] 78.95+6.9 81.28 £11.95.84+8.3 |89.25+9.5
House-votes | 93.62+3.2| 9350+1.7 97.32+2(A7.63+1.6 |[96.22+3.1 | 97.18+2.5
Segmentation| 96.86 £+ 1.1 |96.30+0.9 | 76.62+2.8} 7242+4.6- 81.452-1|81.46+1.1-
Wave 75.78+19 | 754 +2.1 68.18+ 3.7 - 66746 - | 83.81+ 2.0+ 83.86 + 2.0 +
Splice 65.68+1.3 | 66.54+1.3 5565+6.0- 6&5.0 | 70.54+8.9 |70.62+8.6
Covertype 71.61+19 70.34+£19 72.88 £14.4 46%3.1-| 73.03+13.973.04+1.2
Letter 864 11 [86.30+1.1 83.82+10r 7580+0.3- 86.17%1)84.26+0.2-
Nursery 954 £1.2|96.40+09 |9555+0.6 82.13+44} 9548+0.6 95.35+1
Pendigits 96.39+0.2| 96.36+£0.3 97.43+0.380.01+0.5-| 97.41+0.2+97.54 + 0.3 +
CD-1 60.71+3.0 | 58.26+2.8/62.75+0.6 [61.40+0.3 | 6255+3.5| 62.53+1.Q
CD-2 65.55+1.5 | 63.22+1.6(6895+4.8 [62.95+51 | 68.44+4.7| 68.44+2.3
CD-3 75.65+2.4 71.64+£1.3- 80.47+2.169.24+22-| 80.26+1.9+80.54 £0.9 +
CD-4 92.97+09 [89.47+0.8-| 927514 89.7+£29 92.72+101272+1.1
CD-5 82.7 £2.8 78.71+£1.9 89.74+£24#2.31+£22-| 90.15+£2.6|90.17 +£2.5H
CD-6 57.78+2.1 55.36+2.3 59.72+2.4 59.37A& 3] 59.78+£ 2.5 |59.65+1.2
CD-7 65.18+1.0 | 60.68+1.41-69.94+1.5+6590+1.6 | 69.75+ 1.4+ 69.66*0.7
CD-8 75.57+14 70.30+£1.7[-80.52 £ 2.3+ 73.69+ 1.9 80.45+ 2.0+ 80.41+ 2.0
CD-9 93.00+£0.5 | 89.67+1.4] 93.72+0.7 87.49%-| 93.86+15 |93.87+14
CD-10 828017 78.45+2.2|- 85.89+0.5%43.89+1.4-| 8580+1.3+85.90+1.2H
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Data Set Default C4.5 C4.5 withouDouble C4.5| GA-Large| C4.5/IB1 C4.5/GA-
pruning alone Large
Connect 72.60t 0.5 [72.05+0.5 |[77.0%* 0.6+ [74.40+0.6 +78.19+0.5+ [77.85+ 0.2 +
Adult 78.62+0.5 |77.00+0.5- |79.2A 0.5 [78.90+0.3 [85.94+ 0.5+ 85.50+ 0.2 +
Crx 91.79+2.1 |(9245+19 |92.0% 1.0 |78.04+1.2-| 9254 1.2 [93.06+1.6
Hepatitis 80.78+ 13.3 |77.50+11.3 |75.6& 17.1 |81.28+11.2| 86.5810.0 [89.48+9.7
House-votes | 93.62 3.2 |93.50+x1.7 |93.5439 [97.63+x1.6 [97.04+ 1.1 |97.4429
Segmentation/96.86 £ 1.1 [96.30+0.9 |74.4%3.4- |7242+46-| 80.221.0- |80.4% 1.0 -
Wave 75.78+£19 |754+2.1 65.5% 4.4- |66.74+4.6-| 85.382.1+ [85.37+24 +
Splice 65.68+ 1.3 |66.54+1.3 |57.4% 8.7 60.26 £ 5.0 70.378.2 [|70.44+7.8
Covertype 71.6¥ 1.9 70.34: 1.9 71.34t 144 |65.40+3.1-| 71.6814.3 |71.66x1.3
Letter 86.4+ 1.1 86.30+ 1.1 |83.62+1.0- |75.80+0.3-[88.15+1.1 (83.28+0.2-
Nursen 95.4+ 1.2 96.40: 0.9 [96.57+0.7 [82.13+4.4-|96.3230.6 [96.250.9
Pendigits 96.32 0.2 96.36: 0.3 97.21% 0.4+ |89.01 £+0.5-97.86+ 0.3 + [96.72+ 0.5
CD-1 60.71+ 3.0 58.26+ 2.8 63.7# 3.7 61.40+0.3 63.264.1 63.83+1.2
CD-2 65.55+ 1.5 632216 (71.06£5.1 1[62.95+5.1 70.26 5.2 70.5# 2.4 +
CD-3 75.65+ 2.4 7164 13- (81.4A 17+ |69.24+22-| 81.1%¥1.9+ 81.69+0.9 +
CD-4 02.97+0.9 [89.47+0.8- |92.58 1.0 [89.7+2.9 92.861.0 |92.84t1.1
CD-5 82.7+ 2.8 78.7®19 |86.6819 |7231+22-| 87.081.8 [87.19+2.1
CD-6 57.7& 2.1 |55.36:2.3 |60.50+£2.3 [59.37+3.7 |60.2&82.2 |60.24 1.2
CD-7 65.18+ 1.0 60.68 1.4- (70.741.8+ |65.90+£1.6 70.951.9+ [71.34+£ 1.2 +
CD-8 7557+ 1.4 7030 1.7- (81.18+21+ [73.69+1.9 |81.1* 2.0+ |80.98 2.1 +
CD-9 93.00+ 0.5 |89.6A1.4- |93.8%*0.8 |[87.49+29-| 93.871.3 [93.98+1.3+
CD-10 82.80t 1.7 78.4%2.2- 86.25+1.1+ |73.89+1.4-| 86.081.5+ (858314
Table A.3Accuracy rate (%) on the test set &r 10
Data Set| Default |C4.5 withou{ Double C4.5 GA-Large | C4.5/IB1 | C4.5/GA- | C4.5/GA-
C4.5 pruning alone Small Large
Connect | 72.6@ 0.5|72.05+ 0.5 |76.19% 0.6+[74.40 + 0.6 478.05+ 0.5 +{76.87+ 0.0+(76.95+ 0.1 +
Adult 78.62+ 0.5|77.00% 0.5 -[76.06+ 0.5—(78.90 = 0.3 [80.94+ 0.5 +80.62+ 0.0 +{80.04+ 0.1+
Crx 91.79+2.1192.45+1.9 [90.78+ 1.2 |78.04+1.290.61+1.1 |90.8% 1.3 (91.66+1.8
Hepatitis | 80.78 13.3[77.50 + 11.382.36+ 18.7 |81.28 + 11.2 88.948.8 |94.40t 6.2 [95.05+ 7.2
House 93.62 3.293.50+ 1.7 |89.16: 8.0 97.63+1.6 97.45+1.7 |96.8Qt 1.7 [97.65+ 2.0
Segmentaf6.86+ 1.1 (96.30 £ 0.9 |72.93t 5.5—-(72.42 £ 4.6 {78.42+ 1.2 - [79.00+ 1.0—[78.68+ 1.1—
Wave 75.781.9|754+2.1 |64.93 3.9-66.74 £4.6 -83.24+ 1.9 +[79.86+ 4.2 |83.95+ 3.0+
Splice 65.68 1.3 |66.54+ 1.3 [61.5%+ 6.6 |60.26 £5.0| 67.486.5 |67.044.2 (70.70+6.3
Covertype71.61+ 1.9 [70.34+ 1.9 |68.64+ 14.8 |65.40 + 3.1 {67.34+ 16.8 |69.43 15.9 68.71+ 1.3




38

Letter 86.40+ 1.1 {86.30+ 1.1 |82.7A 1.0—(75.80 £ 0.3 89.24+ 1.1 +81.15+ 0.0—(79.24+ 0.2—
Nursery [95.40+ 1.2|96.4G:t 0.9 (97.23+1.0 (82.13+4.4-97.13+0.8 |96.93 0.6 (96.74 0.7
Pendigits | 96.32 0.2 |96.36+ 0.3 |96.86t 0.4 [89.01 + 0.5 {97.91+ 0.3 +94.96+ 1.0—[95.72+ 0.9
CD-1 60.71+ 3.0 |58.26t 2.8 |63.82 5.2 [61.40+0.3 | 63.284.3 [64.53+4.5 [63.43+1.4
CD-2 65.55+ 1.5|63.22 1.6 (725259 [62.95+5.1| 72.745.7 |73.52 5.0+ (73.77£ 2.5+
CD-3 75.65+ 2.4 |71.64 1.3 -|82.27+ 1.3+(69.24 + 2.2 -81.99+ 2.2 +83.16+ 1.8+(84.15+ 0.9 +
CD-4 9297+ 0.9|89.4A4 0.8-92.58+£1.0 [89.7+29 | 92.680.9 [93.14+0.9 92.72+1.0
CD-5 82.7+28 |78.71+x19 |83.0k1.9 |72.31+2.283.15+1.8 [84.38x2.1 [83.36%£2.1
CD-6 57.782.1|55.36t 2.3 |60.68: 3.2 |59.37 +3.7 | 60.682.9 |60.91+2.9 |61.69+1.6 +
CD-7 65.18+ 1.060.68t 1.4 - [70.29+ 2.4+165.90 + 1.6 | 70.6* 2.4 +82.77£ 2.0 +[71.27+ 1.6+
CD-8 7557 1.4170.30t 1.7 -81.03£ 1.9+(73.69+1.9 | 81.3% 1.6 +81.78+ 2.0+ 82.63+£ 1.9 +
CD-9 93.00t 0.5|89.64* 1.4-193.72+ 1.2 |87.49+2.993.48+1.3 [87.33:1.8—-93.80+1.4
CD-10 |82.80t1.7|78.452.2-85.60+ 1.4 |73.89+1.485.28+1.3 |86.76t 1.5+86.88+ 1.6 +
Table A.Accuracy rate (%) on the test set & 15
Data Set| Default |C4.5 withouj Double C4.9 GA-Large | C4.5/IB1 | C4.5/GA- | C4.5/GA-
C4.5 pruning alone Small Large

Connect | 72.6& 0.5|72.05+£ 0.5 [74.95 0.6+(74.40 £ 0.6 477.91+ 0.5 +{76.13+ 0.0 +| 76.0 0.3+
Adult 78.62+ 0.5|77.00+ 0.5 -{74.29+ 0.5- {78.90 £ 0.3 [80.37+ 0.5 +{79.97+ 0.0 +{79.32 0.2+
Crx 91.79+2.1/92.45+1.9 [90.02+ 0.8 |78.04 +1.2 {89.46+ 1.1 |88.94t 2.3 (90.40t 2.4
Hepatitis | 80.78 13.3[77.50 + 11.3|66.16+ 19.1 |{81.28 + 11.285.21+ 7.8 [79.36+ 23.4 |82.52+ 7.0
House 93.62 3.2 (93.50+ 1.7 |88.53 8.4 [97.63+1.6 [95.68+ 1.7 |94.88 2.4 [95.91+2.3
Segment. (96.86+ 1.1 (96.30 £ 0.9 |73.82: 5.8- [72.42 £ 4.6 {76.86+ 1.7 - [77.00+£ 1.7 -|{77.11+ 1.9-
Wave 75.781.9|75.4+2.1 |65.53 4.0- 66.74 +4.6 -82.43+ 1.7 +[76.39+£ 5.0 82.65+ 3.7+
Splice 65.68 1.3 |66.54+ 1.3 (64.35+ 4.7 |60.26 +5.0 | 66.685.5 |66.53t4.9 |[70.62+5.5
Covertypeg71.61+ 1.9 (70.34-1.9 |68.87+ 15.1 65.40 + 3.1 -64.32+ 17.1 |68.51 16.3 [66.02+ 1.3—
Letter 86.40t 1.1|86.30+ 1.1 (81.3% 1.0—(75.80 + 0.3 -[89.30+ 1.1 +/80.04+ 0.0—[76.38+ 0.6—
Nursery [95.40+ 1.2 96.40t 0.9 [97.66+ 0.8 +82.13 + 4.4 -97.26+ 0.5 +/97.34+ 1.2 |96.64t 0.7
Pendigits | 96.32 0.2 |96.36+ 0.3 |96.86t 0.4 [89.01 +0.5{97.98+ 0.3 +95.71+ 1.5 |95.01 1.2
CD-1 60.71+ 3.0 |58.26t 2.8 |63.34: 4.9 |61.40+0.3 | 63.364.0 |63.68 4.4 [63.92+1.2
CD-2 65.55+1.5|63.22 1.6 |72.9%* 4.8+62.95+5.1 | 73.22 4.8 +{74.36% 3.9+ [74.75+£ 2.1 +
CD-3 75.65+ 2.4 |71.64+ 1.3 -81.92+ 2.7+(69.24 £ 2.2 -81.78+ 2.3 +83.00+ 2.0+ 83.06+ 1.0 +
CD-4 92974+ 0.9|89.4#0.8-92.75+1.4 [89.7+29 | 9299 1.3 |93.28 1.2 [(93.48+1.3
CD-5 82.7+2.8 |78.7+ 1.9 |82522.0 |72.31+2.281.21+ 1.8 [82.61+2.3 [82.81+2.3
CD-6 57.78t 2.1|55.36t 2.3 |61.5%# 3.1 [59.37+3.7| 60.442.5 |61.78 3.0 [62.07+1.6 +
CD-7 65.18+ 1.0 |60.68t 1.4 - [70.11+ 2.6+(65.90 + 1.6 | 70.1% 2.6 +72.09+ 3.1 +{70.44+ 2.0+
CD-8 7557+ 1.4|70.30t 1.7 - 80.88+£ 1.3+(73.69+1.9 | 81.43 1.2+ 83.20£ 1.7 +[81.79+ 2.2+
CD-9 93.00+ 0.5|89.6/4# 1.4 -93.60+£ 0.5 [87.49+299358+1.1 |87.12 1.6—93.67+1.3
CD-10 82.80t 1.7 |78.45% 2.2 - 85.59+ 0.5+(73.89+ 1.4 -84.92+ 1.6 86.71+1.8 +{85.70+ 2,0
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Figure A.1 shows the final set of rules derivedrirthe meta-learning experiments described in
Section 4. This rule set consists of two parts fitst part contains the part of the decision tree
built by C4.5 specifying large disjuncts. This udés all the leaf nhodes covering more than 5
meta-examples (sinc@was set to 5) and the tree branches necessanyfite gmach of those
large disjuncts. Each leaf node is followed by andaation of the form (x / y), where x is the
number of meta-examples belonging to that nodeyarsdthe number of misclassified meta-
examples belonging to that node. When y = 0 theevaf y is omitted from the notation, which

is simplified to the form (x). This is the stand#@d.5 annotation for leaf nodes.

The second part of the rule set contains the dikeovered by the GA-Large component of the
hybrid C4.5/GA-Large algorithm, mining the smalsginct meta-examples. Each rule is
followed by the same annotation (x / y) used inléef nodes of the tree discovered by C4.5,

for the sake of uniformity.



*rxkklarge disjuncts in the decision tree built b4, Sxrxskkskrrx

Num-SD > 444 : C4.5/IB1 (8)

Num-SD <= 141:

| Num-Exampl in {Medium,Small} :

| | C4.5-error>4.6% :

| | | SD-error <=56.24% :

| | | | SD-perc>1.06% : C4.5/GA-Large (17 12)

Num-SD <= 444 :
| Num-Examp in {Medium,Small} :
| | Num-SD >141:

| | | SD-perc <=8.49% :

| | | | C4.5-error>24.3% : Double-C4.5 (8 12)

um-SD <= 353 :

Num-Examp in {Medium,Small} :

| C4.5-error > 4.6% :

| | Num-SD > 141:

| | | SD-perc>8.49% :

| | | | C4.5-error<=39.3%:

| | | | | SD-error>47.93% : C4.5/GA -Large (7)

Num-SD <= 444 :

| Num-Examp = VerySmall :
||

(I

N
I
I
I
|
I

C4.5-error > 7.1% :
| SD-error <=51.52 : C4.5/GA-Large (6/2)

Feweeaa* rules discovered by GA-Large from small disjuncts *xerx
Rule 1

IF Num-SD <= 7 AND Num-Examp = VerySmall AND SD-err or <= 39.48%
THEN GA-Large (4)

Rule 2
IF Num-SD < 146 AND Num-Examp in {Medium,Small} AND C4.5-error < 3.1%
THEN Default-C4.5 (4/1)

Rule 3
IF SD-error > 58.44% AND SD-size > 0.2882 AND Num-A tt<=8
THEN Default-C4.5 (1)

Rule 4
IF Num-SD < 118 AND Num-Examp = Large AND Num-class es<8
THEN Double-C4.5 (4/1)

Rule 5
IF Num-Examp = VerySmall AND SD-error > 40%
THEN C4.5-without-pruning (3/1)

Rule 6
IF Num-SD <= 298 AND Num-Examp in {VerySmall,Medium } AND Num-Classes <= 13
THEN C4.5/GA-Large (24/16)

Rule 7
IF C4.5-error < 38% AND Num-Examp = Medium AND Num- Classes < 8
THEN C4.5/GA-Small (8/2)

Rule 8
IF Num-SD < 307 AND Num-Examp in {Large,Medium} AND Num-Classes >= 3
THEN C4.5/I1B1 (11/6)

Rule 9
IF Num-SD >= 196 AND Num-Examp = Large AND Num-clas ses<9
THEN C4.5/IB1 (5)

Figure A.1: Rule set produced by C4.5/GA-Large w8k 5 in the entire meta-data set
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