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Abstract Longitudinal datasets of human ageing studies usually have a high vol-
ume of missing data, and one way to handle missing values in a dataset is to replace
them with estimations. However, there are many methods to estimate missing val-
ues, and no single method is the best for all datasets. In this article, we propose
a data-driven missing value imputation approach that performs a feature-wise se-
lection of the best imputation method, using known information in the dataset to
rank the five methods we selected, based on their estimation error rates. We eval-
uated the proposed approach in two sets of experiments: a classifier-independent
scenario, where we compared the applicabilities and error rates of each imputation
method; and a classifier-dependent scenario, where we compared the predictive ac-
curacy of Random Forest classifiers generated with datasets prepared using each
imputation method and a baseline approach of doing no imputation (letting the
classification algorithm handle the missing values internally). Based on our results
from both sets of experiments, we concluded that the proposed data-driven missing
value imputation approach generally resulted in models with more accurate esti-
mations for missing data and better performing classifiers, in longitudinal datasets
of human ageing. We also observed that imputation methods devised specifically
for longitudinal data had very accurate estimations. This reinforces the idea that
using the temporal information intrinsic to longitudinal data is a worthwhile en-
deavour for machine learning applications, and that can be achieved through the
proposed data-driven approach.

Keywords Longitudinal datasets - Missing Value Imputation - Supervised
Machine Learning - Class Imbalance
1 Introduction

Longitudinal studies take repeated measures of a set variables, from the same
group of subjects, over time several points. The longitudinal datasets derived from
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these studies are prone to high amounts of missing data, mainly due to attrition
(for example, subjects dropping out) (Engels and Diehr, 2003), which can have a
significant effect on the analysis of the data.

When a longitudinal dataset with missing data is used in a machine learning
(ML) application, the missing values can be handled in different ways. Instances
or features with missing values can be removed from the dataset (with the draw-
back of losing data), ignored (i.e., the ML algorithm has to handle them during
its execution), or replaced by an estimated value (missing value imputation). Nat-
urally, when replacing a missing value for an imputed one, it is desirable to make
estimations close to what the real value would be.

There are several methods to estimate the value to impute in place of a missing
value in the dataset, usually based on information from its known values, and
different methods may perform better (achieve estimations closer to the real value)
for different situations (Diggle, 2002; Hu et al., 2017; Mallinckrodt, 2013). The
performance (i.e., error rate) of a missing value imputation (MVI) method depends
on several factors, such as: a) the data distribution (Santos et al., 2017); b) how
the missing data appears in the dataset (missing completely at random, missing
at random, or missing not at random) (Diggle, 2002; Mallinckrodt, 2013); c) the
proportion of instances with missing values; d) the availability of information that
can be used to make better imputation.

Typically, statisticians decide how to handle missing data based on assumptions
about how the missing values were introduced into the dataset, and based on data
distribution and characteristics. However, these assumptions cannot be proven if
we do not have all the information about the data collection process, which is the
case for most classification problems. That challenge is even greater for longitudinal
data, where there are additional ways we can extract information from the dataset
to make the estimations.

Instead of making a decision directly, we can choose the best approach based
on the data itself. A data-driven approach would avoid additional human bias.
Thus, letting the data dictate what is the best approach to estimate its missing
values is a viable choice, for ML applications. In this article, we expand on that
notion by having this data-driven choice be made separately for each feature in
the dataset, as the characteristics of different variables might lead to different MVI
strategy choices.

As the main contribution of this work, we propose a novel data-driven approach
to select the best method for imputing the missing values in a longitudinal dataset,
out of five selected candidate MVI methods. Our aim is to ensure that the MVI
method that best fits the characteristics of each feature the dataset is used for that
feature. In our approach, the MVI methods are ranked for each feature (variable)
in the dataset, and used from best to worst ranked until no missing values remain
or no methods can be used.

Our proposed data-driven MVI approach was evaluated using 10 longitudinal
datasets created for the ML task of classification. Such datasets are composed of
instances (the subjects to be classified) and features, which are variables describing
each subject, usually with repeated measures for each time point (called wave) in
the dataset. Classification algorithms aim to predict the value of a nominal class
variable for an instance, based on the values of its features. These algorithms use
training data (a set of instances with known class values) to create a model for
predicting the class of previously unseen instances (test data).
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The longitudinal datasets were created using data from the English Longitudi-
nal Study of Ageing (ELSA) (Banks et al., 2019). The ELSA study interviews its
core participants (who are at least 50 years old) repeatedly, over the years prior to
their retirement and beyond, collecting data on health, social, wellbeing and eco-
nomic circumstances. In our datasets, which focus on biomedical data, the overall
proportion of missing values is 38.5%. This is a strong motivation to investigate
the effectiveness of several missing value imputation methods.

To evaluate the performance of our proposed data-driven MVI approach, we
performed experiments using our ELSA datasets as a benchmark to compare its
effectiveness against five missing value imputation methods. These six methods
were compared in two scenarios: a scenario independent from any classifier (ex-
panded from the experiments reported in (Ribeiro and Freitas, 2019)), and another
scenario where a Random Forest (RF) classifier was trained with datasets with es-
timated missing values.

In the classifier-independent comparison, the six MVI methods are compared
based on their applicability (ratio of missing values for which the method can
be used) and estimated average error rate. To calculate this error rate, we use
each method to estimate known-data in the dataset and compare the estimated
and real values. As expected, the proposed data-driven MVI approach performed
overall the best in this comparison, with small error rates and 100% applicability
(i.e., all missing values replaced). We also observed that the MVI methods devised
specifically for longitudinal data yielded very precise estimations, although they
had low applicability.

In the classifier-dependent scenario, we evaluate the impact that the strategy
to handle missing values had on the predictive accuracy of a RF classifier. We
compared the six methods from the scenario above, adding a baseline approach
of doing no imputation, and letting the classifier handle the missing values during
its execution. We report on the Sensitivity, Specificity and Accuracy of the mod-
els generated for each of the 10 datasets, and apply a non-parametric statistical
test to determine whether the classifiers’ performances significantly changed. The
proposed Data-Driven approach and the K-Nearest-Neighbour approach had the
best results in these experiments.

Overall, the contributions of this article can be summarised as follows. We
propose the aforementioned data-driven approach that automatically selects the
best MVI method (out of a set of predefined candidate methods) for each feature in
the dataset. In this paper the data-driven approach was used to select the best out
of 5 MVI methods, but the basic idea of the data-driven approach can be used with
any set of MVI methods chosen by the user. We concluded that the proposed data-
driven MVI approach was the best performing MVI method in our experiments,
based on two evaluation scenarios (depending on whether or not a classifier is used
to evaluate the results) and several performance criteria: applicability and error
rates, when not using a classifier; and a classifier’s predictive performance, when
a classifier is applied to the data whose missing values were imputed by the MVI
methods.

In addition, our experiments reinforced the notion that no MVI method outper-
forms all others in all occasions, and showed that it is worthwhile to use information
in the known data to select the best MVI method for each feature. Furthermore,
our results with the MVI methods devised for longitudinal data highlight a need
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for developing techniques that handle the unique characteristics of this type of
data, which is prominent in long-term health studies.

This article is organised as follows. In Section 2 we describe the dataset cre-
ation process for our ELSA datasets. Section 3 describes background and related
works on missing value imputation, as well as the missing value imputation meth-
ods used in our experiments. Section 4 presents our proposed data-driven MVI
approach. Section 5 describes our methodology for evaluating the proposed ap-
proach, and the experimental results are presented in Sections 6 and 7, for the
classifier-independent and classifier-dependent scenarios, respectively. Finally, Sec-
tion 8 presents our conclusions and future work suggestions.

2 Longitudinal Dataset Creation for the Classification Task

The English Longitudinal Study of Ageing (ELSA) is currently one of the most
prominent populational studies of ageing (Banks et al., 2019). The study has, in
each of its waves, thousands of respondents from inhabitants of United Kingdom
households, which are visited and interviewed every two years (the time interval
between two consecutive waves). The study is intended for 50 years of age or older
respondents, because it aims to follow the participants for years prior to their
retirement and beyond (Banks et al., 2016).

A series of questionnaires are used to collect biomedical data every 2 waves (i.e.,
roughly every 4 years) in ELSA, when a professional nurse visits the respondents
in their home and performs a face-to-face interview and a series of tests. The
results of these nurse visits are recorded in separate files in the ELSA database.
Currently, the datasets from the nurse-data questionnaires for waves 2 (2004), 4
(2008), 6 (2012) and 8 (2016) are published, so we used data from these files to
create the features for our datasets. However, the ELSA data was not collected for
machine learning purposes, and so we had to create features and class variables
suitable for the classification task of machine learning, as described in the following
subsections.

A total of 10 datasets were created with the raw data files from the ELSA nurse-
data questionnaires, one for each of the 10 age-related diseases we are interested in
predicting. The class variable in each dataset refers to the presence or absence of a
positive diagnose for an age-related disease for each instance (ELSA respondent)
in wave 8. Although the 10 datasets have different class variables (representing
different age-related diseases), all 10 datasets have the same set of features, as
explained in more detail later.

2.1 Preparing a Base Dataset

First of all, we discuss the creation of a base dataset — which has been used for
creating the 10 nurse-data datasets used in our experiments — and the steps we took
to convert the raw ELSA data into datasets suitable for machine learning. These
steps included filtering the features and instances of the datasets, representing the
different types of missing values (as discussed in Section 2.2) as a single missing
value symbol (’?’), and creating the class variables using data from wave 8. This
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data preparation process is similar to the one applied by Pomsuwan and Freitas
(2017), with a few differences in the feature selection process.

In order to have class values for all instances, we only utilised data from respon-
dents that participated in the ELSA’s 8th wave (the wave of the class variables).
In cases where a respondent did not participate in any of the other waves with
nurse data (waves 2, 4 or 6) in the dataset, the values for that wave’s features
were set as missing for that respondent. For instance, if a respondent was added
to the study in wave 6, and participated in wave 8, we kept their record, filling in
the values for waves 2 and 4 features with the missing value symbol “?”.

After fusing all nurse-data datasets (waves 2, 4, 6 and 8), and removing the
participants who did not take part in wave 8, each dataset has 7097 instances.

2.2 Feature Selection and Creation

After the previously described base dataset creation, the next step was to filter
out features that were irrelevant to our classification task, from the initial set of
1041 features (from the 4 nurse-data datasets in ELSA’s waves 2, 4, 6 and 8). Most
of these features refer to metadata about the tests performed by the nurse when
visiting the ELSA respondent in their household. For example, there are features
recording reasons for unreliable or missing measurements, features recording the
specific time of the nurse visit, and multiple measurements of the same variable
in the same wave. The latter type of features (e.g., multiple recordings of blood
pressure per wave) were merged into a single averaged measurement per wave, to
reduce the dimensionality of the dataset. The large number of metadata features
is also due to many variables with multiple answers, e.g.: there are four different
features used to store reasons for not obtaining a height measurement of a pa-
tient, as up to four different reasons could apply simultaneously to a patient. Such
metadata features clearly have no relevance for the classification task of machine
learning, and so they were all removed.

After this feature selection and creation process, each created dataset has a
unique identifier for each instance, as well as 140 features (including the gender
and age of the participant in wave 8) and the target (class) variable. The 140
features are divided into 44 “conceptual features”, where a conceptual feature
may have several measurements of the same basic variable taken over the 4 waves
in the dataset. The features in our datasets are briefly described in Appendix A.
For each feature, we indicate the waves in the study it appears in, and the data
type of its values.

The ELSA nurse-data database has multiple representations for the partici-
pant’s responses that are not one of the expected values, including, e.g., a code
for “not applicable” and another code for “refusal to answer”. All such codes were
unified and coded as “?”, which is the standard missing value symbol for the Weka
tool — the machine learning tool used in our experiments.

2.3 Creating Class Labels

For each dataset that we created from the ELSA nurse-data dataset, the binary
class variable represents the presence or absence of a positive diagnose for each



6 Caio Ribeiro, Alex A. Freitas

ELSA respondent in wave 8, for one of 10 age-related diseases or conditions. This
information is not represented directly by any of the variables in the ELSA files,
so we combined information about the diagnosis of each of these diseases or con-
ditions, present in several variables of the ELSA core data questionnaire, to create
our class labels.

The class labels represent diagnoses for Angina, Arthritis, Cataract, Dementia,
Diabetes, High blood pressure, Heart attack, Osteoporosis, Parkinson’s Disease,
and Stroke. In wave 8 of the ELSA study, each respondent was asked questions
regarding the diagnosis of these diseases and conditions, and using the answers for
these questions we infer a class label for that respondent, in that wave. All of these
questions have binary answers (yes or no), and we label an instance as “0”, meaning
no diagnosis or “1”, meaning the disease was diagnosed for that respondent, on
wave 8, based on whether any of the questions regarding the diagnosis of that class
was answered with a ”yes” by the individual.

As an example, for the class Heart Attack, two questions are asked in the ELSA
core questionnaire regarding its diagnosis, represented by two variables: Hedacmi
(Whether the respondent confirms a heart attack diagnosis from a previous wave)
and Hediami (Whether the respondent newly reported a heart attack diagnosis).
Thus, the rule for creating the class label Heart Attack for each instance I in wave
8 is as follows:

IF Hedacmi, for instance I, in wave 8 = “Yes” (1)

OR Hediami, for instance I, in wave 8 = “Yes” (1)

THEN HeartAttack_8 for instance I = “Yes” (1)

OTHERWISE HeartAttack_8 for instance I = “No” (0)

Recall that all instances included in the dataset represent subjects who partici-
pated in the latest wave 8, which means that no instance in the created datasets has
a missing class label. The nurse-data datasets were then created by distributing the
10 class variables across the 10 datasets, so that each dataset has a different class
variable (age-related disease or condition) to be predicted. However, as mentioned
earlier, all 10 datasets have the same instances and the same predictive features.
This approach for dataset creation was also used by Pomsuwan and Freitas (2017).

3 Background and Related Works
3.1 Missing Value Imputation

One of the challenges of analysing longitudinal data is that studies that follow a
set of individuals for a long period can encounter several issues with obtaining data
across all waves. A participant may not be reached for one or more waves of a study
for several reasons, or the data collection process might not be completely executed
(for example, only part of an interview is done) in a given wave. Therefore, it is
common that longitudinal studies face a high number of missing values in their
datasets, and there are several strategies that can be used to address this issue,
some of them taking advantage of the longitudinal nature of the data. For the
ELSA datasets used in this article, 38.5% of the values across all features and waves
are missing, which makes the approach to simply drop instances (or features) with
missing values inadvisable. Hence, we follow the alternative approach of replacing
every missing value with some estimated value.
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There are many ways to estimate missing values (some particular to longitu-
dinal datasets), and selecting the best imputation method is challenging. That
is because, both in theory and in practice, no method for calculating imputation
values is the optimal choice for all types of features and datasets (Diggle, 2002;
Hu et al., 2017; Mallinckrodt, 2013). The relative performance of a method de-
pends on several factors, such as: a) the data distribution (Santos et al., 2017);
b) how the missing values occur in the dataset (missing completely at random,
missing at random, or missing not at random) (Diggle, 2002; Mallinckrodt, 2013);
¢) the proportion of instances (records) with missing values; d) the availability of
information that can be used to make better imputation.

3.2 The Chosen Missing Value Imputation Methods

Our experiments use five missing value imputation methods (Gad and Abdelkhalek,
2017; Mallinckrodt, 2013; Albridge et al., 1988), described in Subsections 3.2.1 to
3.2.5; as well as a proposed Data-Driven approach combining these five methods,
to be described in Section 4. Most missing value replacement methods, including
the proposed Data-Driven approach, were implemented by extending the program
code from the Weka! toolkit, an open-source machine learning toolkit. The meth-
ods devised specifically for longitudinal data, Prev and PrevNext, were completely
implemented by us, as currently the Weka toolkit does not handle longitudinal data
directly.

In the following, F; + denotes the value of feature F; at wave ¢, and I denotes the
instance where the missing value is being imputed. Furthermore, we specify how
each method copes with training and testing datasets. This distinction is important
in the aforementioned classifier-dependent scenario, although it is irrelevant for
the classifier-independent scenario (see the Introduction for a discussion of these
scenarios).

3.2.1 Global Mean/Mode

One standard statistical approach is to replace the missing values in feature Fj ¢
by the mean or mode (for numeric or nominal features, respectively) of F; ; over
all instances with known values for it in the training set. For this method, the
estimated mean/modes are calculated from training instances and used to replace
the missing values of F;; in each instance I, in both the training and test sets.

This method has the advantage of simplicity, but it has important limitations.
Unconditional mean/mode imputation frequently underestimates the variability
represented in the real data, skewing the values towards a more even distribution,
which can lead to false interpretations (Little and Rubin, 2019, Chapter 4). The
more variability a feature’s values have in reality, the more bias this method adds
to the data.

3.2.2 Age-Based Mean/Mode

As an extension of the global mean/mode method, the age-based method uses
the age feature to group instances in a way they are intuitively more likely to be

1 Available at: https://www.cs.waikato.ac.nz/ml/weka,/
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similar. Naturally, the age of an individual impacts their overall health, so it is
expected that, in general, ELSA participants with the same age would have more
similar feature values than ELSA participants with different ages. As mentioned
earlier, unconditional mean/mode imputation often misrepresents the variability
of the feature’s values, thus adding the age value of the respondent as a condition
for guiding the imputation process is are likely to be a more effective approach, as
long as the features’ values are correlated with age.

The method works as follows. For each instance I with a missing value on
a feature Fj ¢, the method defines a set A of measurements of F;, taken from
instances with the same age value that I had on wave ¢, in any wave. Thus, the F;
values in A all correspond to measurements of the same feature with the missing
values, from individuals who, at the time of that measurement, had the same age
as the current instance I at the time t. Then, the missing value is replaced by
the mean/mode (for numeric or nominal features, respectively) of the values in A.
Note that this method assumes that the age value of an instance is always known,
in every wave. This is the case in our datasets, where there are no missing values
for the age variable.

For example, if a respondent was 60 years old on wave 4, and their correspond-
ing instance had a missing value for feature F; 4, this method would replace that
missing value by the mean/mode of all values of F; related to respondents who
were 60 years old, at any time of measurement (at any wave), regardless of the
wave where that measurement was obtained. For instances in the test set, as their
age value is still known, the method is applied normally, using only values from
training instances to create the set A. A similar approach has been used in Zhao
et al. (2018), which replaced missing values with the median from individuals with
the same age and sex.

3.2.8 Previous Observation Carried Forward (Prev)

In a longitudinal dataset, a feature typically has repeated measurements through-
out different waves, and it is common to replace a missing value in a certain wave
by its most recent known value from previous waves. This method is known as
Last Observation Carried Forward, and is often used on studies using longitudinal
datasets (Engels and Diehr, 2003; Zhu, 2014; Minhas et al., 2015; Gad and Ab-
delkhalek, 2017). We chose to include methods devised specifically for longitudinal
data, such as this, in our study to investigate the impact of using temporal infor-
mation in estimating missing data. However, as in our ELSA nurse datasets there
is a gap of 4 years between each pair of adjacent waves, we decided to consider
only values from the previous wave as viable for imputation.

Therefore, for the Prev (Previous Observation Carried Forward) method, if the
value of feature Fj ; is missing for instance I, the method inputs the value of F; ¢
for I in the previous wave, Fj;;_1, if known. If F;;_; is unknown for I, the Prev
method is not applicable. Because it uses information from the current instance
with a missing value, it is unavoidable to use information from the feature values
of test set instances when applying the Prev method to them. Note, however, that
the class values of test set instances are never used in this method. Note also that,
because this method requires a feature to have been measured in the previous wave
of the dataset, it is inapplicable for the first measurement of a feature F;, which
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includes all features in the first wave of the created datasets (wave 2 of the ELSA
nurse data).

3.2.4 Previous and Next Observations Combined (PrevNext)

As an extension of the Prev method, we also included a method that combines
information from both the previous measurement of a feature and its next measure-
ment, increasing the amount of information used in the estimation of the missing
values.

In the PrevNext (Previous and Next Observations Combined) method, when
the value of feature F;; is missing for instance I, if both the values of Fj ;11 and
F; +—1 are known for instance I, the missing value is replaced by: a) for numeric
features, the mean of Fj +1 and F; ;1 for instance I; b) for nominal features, the
method only replaces the missing value if both values of F; ;1 and F;;_1 are the
same (in this case, repeat that value for Fj ;).

As with the Prev method, because of the 4-year time gap between waves in
the nurse-data datasets, only values from the nearest waves are considered viable
for imputation. This avoids imputations based on values too far into the future or
the past, which are likely inaccurate. For test set instances, the PrevNext method
works the same way, as it uses only information about features of the current
instance I — without using any class information. This method requires known
values for F; for the current instance I, in both the previous and the next waves of
the dataset (for nominal features, these values also need to be the same). Because
of these restrictions, the PrevNext method is inapplicable in many cases, including
all features in the first and last waves of the created datasets (waves 2 and 8 in
the ELSA nurse data).

3.2.5 K-Nearest Neighbours (KNN)

This method uses the K-Nearest Neighbours (KNN) algorithm, which is a well-
known supervised machine learning algorithm to estimate missing values in a more
sophisticated way than previously described imputation methods. The KNN algo-
rithm determines the K training instances most similar to the one with a missing
value to be replaced (instance I), and calculates the mean/mode of Fj; in that
set of nearest neighbours, using that mean/mode as an estimation of the missing
value. K, the number of neighbours, is a user-defined parameter. Note that the
previously described age-based method can be seen as a particular case of the
KNN method where the similarity between instances is measured using only the
age feature; whereas in the general KNN method any set of features can be used
to define the similarity (or distance) measure between instances.

Importantly, any distance-based algorithm such as KNN can be affected by
the so-called ’curse of dimensionality’ (Kouiroukidis and Evangelidis, 2011), where
instances appear to be more similar as the number of features (dimensions) used
for the distance calculation increases, making the task of determining an instance’s
neighbours considerably harder. To avoid this issue, we made the KNN algorithm
only consider as features (for distance calculations) the subject’s age, gender, and
the values of F; in every wave other than ¢ (the wave with the missing value to
be replaced) where the F; value is not missing. Even though the age and gender
values are available for all instances in the dataset, if a feature has been measured
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in only one wave, or the value of F; was missing in all of the waves other than ¢
for the current instance, we considered this method could not be applied.

Our initial experiments with the KNN algorithm used only the values of Fj
at waves other than ¢ to calculate distances, but it was common to have several
instances with the same distance to the current instance, especially for nominal
features. This is an issue as the furthest neighbour within the set of K nearest
neighbours could be randomly chosen out of several instances with the same dis-
tance to the current instance I. This would lead to an undesirable stochastic effect
in the choice of K nearest neighbours. To reduce this issue, we added the age and
gender features into all the distance calculations, which reduced the occurrence of
this issue to under 1% of the instances, for K = 7.

The KNN algorithm is used as an imputation method as follows: replace the
missing value of a feature F; ;, by the prediction of the KNN algorithm with K =7
(this method will be referred to as 7NN from here on). The prediction is given by
the mean or the mode value of F;; of instance I's K nearest neighbours, for
numeric and nominal features respectively. For nominal features, if two or more
values are tied with the highest frequency among the K nearest neighbours, one
of those values is randomly chosen as the mode. We evaluated different K values
(1,3,5,7,9) in preliminary experiments, and observed little difference in the average
error values, with K = 7 producing the best results overall. Naturally, 7NN chooses
the nearest neighbours exclusively from training instances, as it cannot have access
to test set instances for that choice.

3.2.6 A Conceptual Comparison Between the Five Imputation Methods

When selecting which methods to compare in our experiments (reported later in
Sections 6 and 7), we aimed to have representations of different types of meth-
ods for missing value imputation. We started with one of the most simplistic ap-
proaches, the Global mean/mode method, representing methods from basic statis-
tics that are often used as a baseline method. However, the assumption that the
mean/mode value over all known values can accurately replace every missing value
is over optimistic, and it may mask characteristics of the data by adding noise (i.e.,
making the data seem more evenly distributed than it is in reality). Then, we chose
to adapt this method to make it somewhat more sophisticated and related to our
specific problem, adding to our experiments the Age-based mean/mode method,
which we hoped would provide more accurate estimates for the ELSA dataset.

In addition, we also selected for our experiments two methods devised specif-
ically for longitudinal data, the Prev and PrevNext methods. These methods use
longitudinal information from known values of feature F; at other time points
(waves) in the current instance I to make their estimations, so each estimated value
is arguably more related to the current instance, in comparison to the Global and
Age-based mean/mode methods. One important disadvantage of the Prev and
PrevNext methods is that they require a known value of Fj in the previous or
both the previous and next waves to t (wave with the current missing value to be
replaced), which may not be available.

Finally, there are approaches for estimating missing values that are more so-
phisticated and more computationally demanding. To represent those, we selected
the 7NN method, which is a supervised machine-learning algorithm that outputs
estimated values computed from instances considered most similar to the current
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instance with a missing value, which are intuitively likely to have a similar value for
the current feature. The 7NN method requires O(n?) distance calculations to com-
pute its distance matrix (where n is the number of instances in the dataset) when
performing cross-validation, and has the added challenge of the curse of dimension-
ality, where using too many features to calculate the distance between neighbours
hinders the effectiveness of the method (Beyer et al., 1999). Our implementation
of 7NN greatly reduces the number of features used in the distance calculation, by
only considering measurements of the current feature F; at waves other than the
current wave t, as well as the age and gender features, to calculate the distance.
Thus, it can be considered a longitudinal missing value imputation method (akin
to the Prev and PrevNext methods), as it uses time-related information to find
the nearest neighbours.

3.3 Related Works

Several studies have compared multiple missing value imputation methods. How-
ever, these studies are usually more focused on specific aspects of handling missing
data, usually working with only one type of feature (categorical, numeric or bi-
nary), having fewer features in the dataset, and using artificial datasets or datasets
with artificially included missing data. There are two main approaches to evalu-
ate the performance of missing value imputation methods. The first is to evaluate
how missing value imputation changes the accuracy of a classification/regression
model (Minhas et al., 2015; Hu et al., 2017). The results of such evaluations are
dependent on the algorithm used to create the model. The second approach is
to replace known values in a synthetic (Zhu, 2014; Gad and Abdelkhalek, 2017)
or real (Engels and Diehr, 2003; Belger et al., 2016) dataset, and compare the
estimated values to the ground-truth, calculating the error rate. We use both ap-
proaches: firstly, we use real data from the ELSA and estimate every known value
in the dataset using the six imputation methods, then we employed the Random
Forests (RF) classification algorithm to evaluate the models generated by datasets
prepared with each method. To the best of our knowledge, our study is the first
one that combines the classifier-dependent and classifier-independent evaluation
of MVI methods, making for a more complete analysis of the performance of our
proposed data-driven approach.

Table 1 contains characteristics that describe the cited related works, for com-
parison with our own study (described in the last row of this table). Regarding
the proportion (%) of missing values in the datasets, as mentioned earlier, it is
common for longitudinal datasets to have a high proportion of missing values, and
that is observed in all studies that mentioned the ratio of missing values. One
important characteristic that sets our approach apart from the related works is
the number of features in our datasets. The cited studies performed experiments
using datasets with very few (Belger et al., 2016; Gad and Abdelkhalek, 2017;
Zhu, 2014) or between 16 and 48 features (Engels and Diehr, 2003). The ELSA
dataset used in our experiments has 45 longitudinal features, with their repeated
measures across time totalling 138 features with missing values, for each dataset.
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Table 1 Number of waves (time points), features and percentage of missing values in the re-
lated works about comparing missing value imputation methods for longitudinal datasets. The
names in the rows refer to the first authors in the references used in the comparison, respec-
tively: (Engels and Diehr, 2003; Minhas et al., 2015; Belger et al., 2016; Gad and Abdelkhalek,
2017; Zhu, 2014; Hu et al., 2017).

Number of Features Missing Type of

Reference | Waves Numeric | Nominal | Total Values Datasets
Engels 10 40 0 40 21.8% Real
Minhas 6 16 0 16 30% Real

Belger 4 1 0 1 10-40% Artificial

Artificial

Gad 6 1 1 2 45.6% and Real

Zhu 5 2 0 2 4-22% Artificial
Hu 2 ? ? 48 ? Real
This study 4 99 39 138 38.5% Real

The missing value imputation methods compared in each of the aforementioned
studies are shown in Table 22, for comparison with our work. As shown in this
table, the mean imputation and previous observation (usually LOCF) methods are
the most common approaches for estimating missing values; and among the more
sophisticated methods, the Linear Regression and KNN algorithms are often used.

As discussed in Section 3.2, our study contains methods representing different
strategies for estimating missing values. These include statistics-based methods
(Global mean/mode, Feature-based input using Age as the feature), methods de-
vised for longitudinal data (Prev, PrevNext), and more sophisticated methods,
based on machine learning (KNN) and our proposed Data-Driven approach, com-
bining these 5 imputation methods. This selection of methods was made to include
representative methods from very different approaches to missing value estimation
in our experiments. In addition, among the studies mentioned in Table 2, this cur-
rent study is the only one to include the proposed Data-Driven approach, which
automatically selects the best imputation method for each feature specifically,
among a set of candidate methods.

Among the cited related works, (Engels and Diehr, 2003) has the most similar
approach for evaluating imputation methods. However, in (Engels and Diehr, 2003)
the imputation methods were evaluated on just 4 longitudinal features, whereas
in this work the methods are evaluated in 45 longitudinal features, representing a
wider diversity of feature types and distributions. In addition, our work includes
39 nominal features, which are treated differently from the numeric features by
our imputation methods. In their conclusion, Engels and Diehr mention that a
method able to select the best-fitting imputation method for each feature in a
dataset would likely provide better estimations. We have proposed such a method
in our Data-Driven approach, discussed in Section 4.

To summarise, most of the related works discussed in this section have used
relatively small number of features to evaluate Missing Value Imputation (MVI)
methods, and most works evaluated MVI methods on numerical features only.
By contrast, in this current work we use a larger number of features, including

2 In Table 2, the studies were categorised by the types of methods employed to handle the
missing values, so similar methods, such as our Prev (previous observation carried forward)
and the LOCF, were considered part of the same category.
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Table 2 Missing value imputation methods used in the related works. The names in the
columns refer to the first authors in the references used in the comparison, respectively: (Engels
and Diehr, 2003; Minhas et al., 2015; Belger et al., 2016; Gad and Abdelkhalek, 2017; Zhu,
2014; Hu et al., 2017).

Method /Reference Engels | Minhas | Belger
Case deletion X X
Random value

Mean input
Class-based input
Feature-based input

Previous observations

Posterior observations

Previous and posterior

observations
Multiple imputation X X X
Monte Carlo Markov
Chains
Expectation maximisation
Linear Regression X
K-nearest neighbours X
Data-driven method
. X
selection

Zhu | Hu | This study
X
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both numerical and nominal features. In addition, each study evaluated several
MVT methods, but each method was separately applied to the data. That is, no
related work has proposed to apply multiple MVI methods to each feature and
automatically select the best method for each feature in a data-driven fashion, as
proposed in this work.

4 The Proposed Data-Driven Missing Value Imputation Approach

In addition to the five selected missing value imputation methods discussed in
Section 3.2, we propose an approach that selects these methods dynamically, on
a feature-wise basis, ranking the methods based on information contained in the
dataset itself. This approach, referred to as the Data-Driven approach from here
on, can be implemented with any set of missing value imputation methods, in
principle. This approach works as follows.

Consider a set of n missing value imputation methods S = {Mj, ..., My}, and
a dataset with a set of d features {F, ..., Fq}. For each feature F; at wave ¢t (Fj ;)
in a dataset, the Data-Driven approach creates a subset of the original dataset,
composed of all the instances with known values for Fj ; (removing instances where
F; +’s value is missing). This subset is hereafter called the known data subset for
F; ¢. Then, each method from S has its average estimation error rate measured in
a 5-fold cross-validation performed in that known data subset. That is, the known
data subset for the current feature Fj; is randomly partitioned into 5 folds of
about the same size, and each imputation method is executed 5 times, each time
using a different fold as a held-out “validation” subset, and the other four folds as
the “estimation” subset. This process is summarised in Figure 1.

In the validation subset, the known values of F; ; are temporarily hidden from
the imputation method being evaluated, and the method uses all instances in the
estimation subset to determine the best value to be imputed for each instance
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4, Use the estimation and wvalidation =2et= to measure the guality of each missing value
imputation method. Repeat step 3 until each fold has been used as the validation get. Rank the
methods based on their average error rates. Then, return to step1 and select a new F,, until the
methods are ranked for every feature.

Fig. 1 Cross-validation approach to evaluate missing value imputation methods.

in the validation subset. The estimated values are then compared with the true,
known values of Fj: in the validation set, and an error measure is computed. If
F; ¢ is nominal, the error value, for each instance is 0 or 1, depending on whether
or not the estimated value matched the known value. If F;; is numeric, the error
is the absolute value of the difference between the estimated and known values of
F; ;. The estimation error associated with each imputation method is the average
of its errors over the instances for which the method could be applied. If a method
cannot be applied to any given instance in the validation set, we assigned the
maximum average error value of 1 for that instance. Note that information in
the validation sets is not used to calculate estimated values, except for the Prev,
PrevNext and 7NN methods, which use information about the feature values in
the current instance I, but not its known Fj; value, of course.

The imputation methods are then ranked based on their average error, where
the smallest-error method is assigned rank 1 and the largest-error method is as-
signed the worst rank (5). If two methods have the same average error, they share
a rank (e.g., if two methods tie for the first place, both get a rank of 1.5).

For each feature F; ., the Data-Driven approach performs the imputation of
missing values (in the data subset where the F;; value is really unknown) using
the imputation methods’ rankings obtained for F; ;. First, it tries to use the first-
ranked method to estimate the missing value. If that method cannot be applied
to the current instance, it then tries the second-ranked method, and so on, until
it either finds a method that can estimate a value for the current instance or runs
out of imputation methods to try. In our experiments, the latter case is not an
issue as the Global mean/mode method can be applied to any instance. However,
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with a different set of imputation methods, the Data-Driven approach may fail to
replace a missing value, if none of the methods can be used to replace it.

In summary, the Data-Driven approach uses the data to calculate an approx-
imation of how accurate each of the available methods will be to estimate the
missing values of a feature, then ranks these methods and applies the best-suited
method (for that feature) to make its estimation. Naturally, this process is costly,
especially if one or more of the imputation methods is computationally expensive
(such as the 7NN algorithm in our experiments). However, intuitively the Data-
Driven approach’s estimations are more flexible and sophisticated, and make use
of the different advantages provided by each method. As there is no “one-size-
fits-all” approach when imputing missing data (i.e., no imputation method is the
best for all features), a method that is able to make feature-wise decisions is in-
tuitively more effective. However, this effectiveness depends on the reliability of
its computed ranking of missing value imputation methods, and for features with
few known values, the Data-Driven approach might be misled into selecting a poor
imputation method.

5 Methodology for Evaluating the Proposed Data-Driven Imputation
Method

There are two main approaches to evaluate the performance of missing value im-
putation methods, in the area of supervised machine learning (classification or
regression tasks). The first is to use an imputation method to estimate the miss-
ing values in a data preprocessing phase, and then evaluate how that imputation
changes the performance of the classification/regression model trained with the
imputed values. The results of such evaluations, referred to as classifier-dependent
evaluations from now on, are dependent on the algorithm used to create the model,
but provide a direct measure of the impact of a missing value handling method on
the predictive accuracy of a particular classification model.

The second approach, classifier-independent evaluation, is to use an imputation
method to replace known values in a synthetic or real dataset, and comparing the
estimated values to the ground-truth, calculating estimation quality metrics such
as the error rate. This type of evaluation provides a comparison that is unrelated
to how the chosen machine learning algorithm handles missing values, but it has
the advantage of providing a more generic measure of how accurate the imputation
methods are at estimating ’artificial’ missing values (as it is not possible to compare
estimations of real missing values to a ground-truth).

In our study, we use both approaches: firstly, we use data from our ELSA
dataset and estimate every known value in the dataset using six imputation meth-
ods, and rank them for each feature in the dataset, based on their average esti-
mation error (classifier-independent evaluation). Then, to implement the classifier-
dependent scenario, we employed the Random Forest (RF) classification algorithm
(Breiman, 2001) to evaluate models generated by datasets prepared with each im-
putation method. We also compared the results of this approach against the base-
line approach of performing no imputation in a preprocessing step (letting the RF
algorithm use its own internal method for handling missing values).

The RF algorithm was chosen for these experiments because it has been shown
to be among the best classification algorithms in general in terms of predictive
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performance (Ferndndez-Delgado et al., 2014; Zhang et al., 2017), and it is also
relatively fast — being much faster in general than other algorithms with high
predictive performance, like support vector machines and neural networks.

6 Experiments Comparing MVI Methods on a Classifier-Independent
Scenario

We performed a series of experiments to evaluate the estimation accuracy of the six
Missing Value Imputation (MVI) methods (the five methods described in Section
3.2 and the proposed Data-Driven missing value imputation approach described
in Section 4) in the classifier-independent scenario. The setup used in these exper-
iments can be replicated for comparing any number of missing value imputation
methods, even outside of the area of classification. The experiments presented in
this Section are an expansion of results discussed in our previous work (Ribeiro
and Freitas, 2019), with the addition of the Data-Driven approach we propose in
this study as one of the methods being compared.

For each imputation method we compute: (a) its applicability, i.e., for which
proportion of the missing values in the dataset the method can be applied; and (b)
its normalised average error rate, for nominal and numeric features separately, and
over all features. The error values reported in Table 3 were computed by running
a nested cross-validation procedure, with an external 10-fold cross-validation and
an internal 5-fold cross-validation procedure, as follows.

For the external cross-validation, the instances with known values of each fea-
ture are divided into 10 data subsets (folds), and each fold is used as a validation
fold in turn, by hiding the values of the feature in that fold, whilst the other 9
folds are combined into estimation sets, which are used to estimate these hidden
values using each of the MVI methods. The estimated values are then compared
against the known (previously hidden) values values in the validation sets, in order
to compute the estimation error. This external 10-fold cross-validation is enough
to measure the error of the individual MVI methods, but a further internal 5-fold
cross-validation procedure (applied to each of the 10 estimation sets) is needed to
implement and measure the error of the data-driven approach.

For the internal cross-validation, the instances in the current estimation set
are divided into 5 folds, and each fold is used as an inner-validation fold in turn,
by hiding the values of the feature in that fold, whilst the other 4 folds are used
to estimate these hidden values using each of the 5 MVI methods. The estimated
values are then compared against the known (previously hidden) values values in
the inner-validation sets, in order to compute estimation errors used to rank the
MVTI methods, as required by the data-driven approach. Note that the ranking of
MVI methods is produced from the estimation set only, without accessing the (ex-
ternal) validation set. This was done to avoid providing the data-driven approach
with more information than what is used by the other MVI methods. The ranking
is then used to select the best applicable MVI method for the current feature,
when imputing values in the validation set; and again the estimated values are
compared against the known (previously hidden) values values in the validation
sets, in order to compute the estimation error. The final error for the data-driven
approach is computed by averaging over the errors on the 10 validation sets.
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Regarding the applicability of each method, the 7NN method could not be
applied to features that did not have repeated measurements in other waves (2
out of the 138 features with missing values), or to instances where all of the other
measurements for the current feature (whose missing value is being replaced) had
missing values. The Global mean/mode method can be applied to every missing
value in the dataset. The Age-based method was not applicable in relatively rare
cases where there were no known values of the current feature for any subjects
with the same age of the current instance’s subject.

The PrevNext and Prev methods, however, could not be applied in many cases,
since the Prev method requires the current feature to have a known value in the
previous wave, and the PrevNext method requires the current feature to have a
known value in both the previous and the next waves in the dataset, which is even
less common. By definition, Prev is inapplicable for features in the first wave, and
PrevNext is inapplicable for both the first and last wave features (note that, in the
datasets used in our experiments, there are only four waves). In addition, in many
other cases these two methods are potentially applicable for a feature, but cannot
be applied in practice because the current instance does not have the required
known values.

The applicability percentage (over all missing values in the dataset, how many
could be replaced using the method) of each method is shown in the last but one
row of Table 3. This Table also presents the mean error rate over the nominal
features, the mean absolute error over the numeric features and over all features,
for each imputation method. The mean error of a method is calculated considering
only the instances where it could be applied, so for features where only some of
the missing values could be replaced, the average error was calculated only over
those values.

Note that every numerical feature in the dataset has had its values normalised
before the missing value imputation methods were applied. The normalisation
method used was min-max, where each feature value is divided by the difference
between the minimal and maximum values observed for that feature in the entire
dataset, producing values in the [0..1] range. Therefore, the average error values
were also in this range, as nominal features had 0 or 1 error values (for a match
and non-match, respectively), and numerical features had the difference between
the estimated and real value as the error.

Table 3 Error rates (in [0..1]) of the imputation methods, computed by 5-fold cross-validation,
considering only instances where the methods were applicable. For nominal features each value
represents the mean error rate (over 39 features) and for numeric features each value is the
mean absolute error (over 99 features). The last two rows show the applicability (%) and run
time (minutes) of each method. The best result for each row is shown in boldface font.

Feature type (number) TNN Age-based | Global mean Prev PrevNext | Data-Driven
Nominal (39) 0.049 0.078 0.068 0.055 0.048 0.048
Numeric (99) 0.083 0.083 0.082 0.078 0.075 0.077

All features (138) 0.077 0.082 0.078 0.07 0.068 0.068
Applicability 81.79% 97.08% 100.00% 35.57% 2.95% 100.00%
Run Time (mins) 9.77 0.3 0.1 0.02 0.02 57.5

As shown in Table 3, when considering only numeric features, the PrevNext
method has the smallest mean average error, very closely followed by the Data-
Driven and Prev methods. When considering either only numeric features or all
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features together, the PrevNext and Data-Driven method are tied for the small-
est mean error. However, these values need to be interpreted together with the
applicability of each method.

The Prev method had low error values, but low applicability, meaning it was
only able to estimate feature values for 35.57% of the missing values in the dataset.
This was even worse for the PrevNext method, which was able to estimate only
2.95% of the missing values. As mentioned earlier, this is due to the fact that these
methods require a known value of the current feature in the previous (Prev) or
in both the previous and next (PrevNext) measurements (waves) of that feature,
and those values may not exist (if there is no previous or next wave) or also be
missing for some instances in the dataset.

It is worthwhile to mention that, although it did not obtain the best results,
the 7NN method also performed well. The 7NN method has longitudinal charac-
teristics in our specification, as it calculates the distance between instances using
measurements of the current feature in different waves. This shows that the more
complex strategy adopted by 7NN paid off in its results, when compared to sim-
pler approaches such as the Age-based mean/mode and Global mean/mode meth-
ods, and also when compared to the Prev and PrevNext methods, which achieved
smaller mean error rates but had greatly reduced applicabilities (35.6% and 2.95%,
respectively). Note that, by contrast, 7NN achieved an applicability of 81.78%.

The Data-Driven approach has an applicability of 100%, because it ranks every
method and, if the first-ranked method is unable to estimate the current missing
value, it tries the next method in the ranking, and so on, until an applicable method
is found or all methods have been tried. Hence, the fact that the Global mean/mode
method has applicability of 100% guarantees that the Data-Driven approach also
has an applicability of 100%. That, allied to the Data-Driven approach’s low error
values, clearly sets it as the best approach in the classifier-independent comparison.
In summary, the Data-Driven approach makes use of the advantages presented by
different methods, and is able to reliably choose, in a feature-wise manner, which
out of a set of missing value imputation methods is the most effective.

Finally, we measured the time required to run the classifier-independent exper-
iment with each of the methods. The run times reported in the last row of Table 3
are the time taken by the 10-fold cross-validation to be run for the entire dataset,
for each method. These run times were measured on a computer with an AMD
Ryzen 5 3600x 6-Code Processor, with 3.80GHz and 8GB of RAM memory, run-
ning Java 8 on Windows 10. As can be seen in Table 3, as expected, 7NN is more
time consuming than the other individual missing value replacement methods,
with the former taking about 10 min, whilst each of the other individual methods
took less than a minute. The time taken by the data-driven approach was as ex-
pected much larger, about 57 min. This can be explained by the fact that, in order
to select the best individual missing value replacement method, in each fold of the
external cross-validation procedure (i.e. for each pair of estimation and validation
sets), the data-driven approach performs an internal 5-five cross-validation proce-
dure on the estimation set where each individual method is run 5 times. So, the
total run time of the data-driven approach is intuitively approximately 5 times
larger than the sum of the run times taken by the individual methods, which is
roughly dominated by the 10 min taken by KNN (since all the other individual
methods together take just about 0.5 min).
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7 Experiments Comparing MVI Methods on a Classifier-Dependent
Scenario

In this Section, we evaluate the effect of using each of the missing value handling
methods, discussed in Sections 3.2 and 4, on the predictive accuracy of Random
Forest (RF) classifiers, using 10-fold cross-validation.

For all experiments in this Section, each Missing Value Imputation (MVI)
method was used in a data preprocessing phase, before training the classifier,
using only training set instances to compute replacement values for every missing
value in the training and test datasets. The Prev, PrevNext and 7NN methods
are exceptions, in the sense that they use feature values (but not class labels)
of the current instance in the test set, as mentioned earlier. In addition to the
MVI methods compared in the classifier-independent scenario (Section 6), for the
experiments in this current Section with the Random Forest (RF) classifier we
added a baseline approach of not using any of the MVI methods. Thus, the baseline
consists of not changing the missing values in a preprocessing step, and instead
let the RF algorithm handle them during its execution.

We used the RF implementation in Weka, which uses the C4.5 algorithm’s
(Quinlan, 1993) technique to cope with missing values when building its decision
trees, as follows. Initially, each instance is assigned an instance weight of 1. When
an instance has a missing value for a feature which is a candidate to be selected
for the current tree node, for the purpose of computing that feature’s information
gain (or other feature evaluation measure, depending on the RF implementation),
the weight of that instance is distributed across the child nodes, based on the
distribution of the known values of that feature in the local training set associated
with the current node. To clarify, suppose that a binary feature f;; has 70% of
its known local samples valued as 0 and the remaining 30% valued as 1. The 0
and 1 child nodes of f;: would receive, for each instance with a missing value of
that feature, a fractional instance with weights 0.7 and 0.3, respectively. The same
fractional distribution of the instance is performed during the testing phase, when
the built tree is used to classify previously unseen test instances.

As mentioned earlier, the other MVI methods compared in this Section are
each of the five methods described in Section 3.2 and our Data-Driven approach
(Section 4), where the methods are ranked for each feature based on their mean er-
rors, calculated using an internal cross-validation on the training set (i.e., without
using the test set). We emphasise that the Data-Driven approach, in this scenario,
ranks the methods for the current feature based on an internal cross-validation,
iteratively dividing the training set instances into its estimation and validation
sets, to avoid using test set instances in its decision-making process.

7.1 Class Imbalance Handling

Our created datasets exhibit the problem of class imbalance, where for each class
variable (disease), the number of instances of the positive class (meaning the sub-
ject was healthy in the sense of not having a disease) is substantially greater than
the number of instances of the negative class (meaning the subject had a disease).
Because of this class imbalance problem, before comparing the MVI methods we
needed to decide on a strategy to reduce the bias towards the majority class in
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our datasets. Thus, we performed experiments with two random undersampling
methods that bring the ratio of positive to negative instances in the training set
down to a 1:1 ratio — i.e., for each instance of the minority class in the training set,
only one instance of the majority class is kept. This 1:1 ratio is a default approach
adopted by several studies (Lépez et al., 2013; Weiss and Provost, 2003), including
a study that used similar datasets to the ones used in our experiments (Pomsuwan
and Freitas, 2017).

There are two intuitive ways of applying undersampling to Random Forest
classifiers: (a) removing instances from the majority class in a preprocessing step,
then performing the bootstrapping for every tree in the forest with the same pool
of training instances, or (b) undersampling the majority class when creating each
bootstrap sample of instances to be used to learn each tree of the RF, so that
undersampling is performed within the RF algorithm.

The first method, which we are calling Undersampling Before Bootstrapping
(UBB), is simpler to implement, since it does not require any modification of the
standard RF algorithm. When applying the UBB method, the decision trees in the
RF are built from bootstrap samples of a training set with balanced class propor-
tions, and the majority class instances that were discarded in the undersampling
process are never seen by the RF.

The second method of applying undersampling to RFs is the Balanced Random
Forest (BRF) algorithm (Chen et al., 2004). The BRF receives the entire imbal-
anced training set as input. Then, for each tree in the forest, it draws a bootstrap
sample of minority class instances, and randomly draws the same number of in-
stances from the majority class instances, meaning the subset of instances used to
generate the tree has the desired ratio (1:1) of instances in each class. The rest
of the RF algorithm remains unchanged. In this method, all training instances
of the majority class have a chance of being used in the creation of the model,
increasing the variability of training instances, a desirable characteristic for the
RF algorithm.

Because of this increased variability, intuitively the BRF method would gen-
erate classifiers that are less overfitted to a part of the training set than classifiers
generated with the UFF. In order to confirm that intuition, we report the results
of experiments comparing the UBB and BRF methods in Section 7.2. Next, we
move on to comparing the MVI methods using the BFR method (which performed
better) in Section 7.3.

In all result Tables reported in this Section, the datasets are ordered based on
their class Imbalance Ratio (IR), calculated by dividing the number of instances
in the majority class by the number of instances in the minority class. Classifiers
trained from datasets with higher IR values usually have decreased performance,
due to an added bias for classifying instances in the majority class (to artificially
increase the overall accuracy).

The RFs were trained and tested using the Weka toolkit, with the default
parameters nitrees = 100 (number of decision trees) and mtry = [log2(d)|+1 =8
(number of features randomly sampled to be used as candidate features at each
tree node), where the total number of features is d = 140, and |z ] is the “floor”
of x, i.e., the biggest integer which is smaller than or equal to .

The RF classifiers were evaluated based on the following metrics: Sensitivity
(True Positive Rate), Specificity (True Negative Rate), and Accuracy (percentage
of correct classifications). These metrics were chosen based on (Malley et al., 2011,
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Chapter 4), who claim that for imbalanced biomedical data, models should have
their results analysed using metrics that consider their ability to predict each class
separately (i.e., Sensitivity and Specificity) and at least one “global” measure of
performance considering both classes — in our case, we chose Accuracy, which
is the complement of the Error measure suggested by the authors. We chose to
use Accuracy rather than Error so that all 3 metrics are to be maximised, for
consistency in the analysis of the results.

7.2 Comparing the UBB and BRF methods for class balancing

In this Section we compare the predictive performance of the UBB and BRF un-
dersampling methods for Random Forests (RF) in our ELSA nurse-data datasets.
For each of the 10 classes (age-related diseases), with different Imbalance Ratios
(IR), we created RF classifiers using the UBB and BRF undersampling methods.

The IR measure, as mentioned earlier, is calculated by dividing the number of
majority class instances (individuals not diagnosed with a disease) by the number
of minority class instances (individuals diagnosed with a disease). The IR value
is an indication of how imbalanced the class distribution of a dataset is, and our
10 datasets have very different levels of class imbalance, with IR values ranging
from 1.35 (Arthritis) to 160.3 (Parkinson’s Disease), depending on how rare the
age-related disease is.

Tables 4 and 5 show the average Sensitivity (True Positive rate) and Specificity
(True Negative rate) of the RF models, over a 10-fold cross-validation. In the last
row of the Tables, we report how many times each class-balancing method (UBB
and BRF) got a higher value (i.e., was the winner) across the 10 datasets — equal
values, with 3 decimal places being considered, mean that each method got 0.5
'win’ points.

Table 4 Average Sensitivity values for RF with the UBB and BRF undersampling methods
for each dataset/imputation method combination, over a 10-fold cross-validation. The last row
contains the number of wins of each method, and the best value in each row is in boldface.

Dataset (IR) Baseline Globalmean Agebased Prev PrevNext TNN Data-Driven
UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF
Arthritis (1.35) 0.695 0.703 0.664 0.659 | 0.678 | 0.678 0.665 0.674 0.644 0.658 | 0.681 0.674 0.679 | 0.679
High BP (1.49) 0.652 0.653 0.692 0.697 | 0.705 0.694 0.647 | 0.647 | 0.644 | 0.644 | 0.700 0.694 0.697 0.699
Cataract (2.06) 0.660 0.662 0.673 0.671 0.669 0.675 0.659 0.677 | 0.630 0.641 | 0.676 0.668 0.672 | 0.671
Diabetes (6.5) 0.654 0.661 | 0.765 0.763 0.752 0.762 0.680 0.687 | 0.653 0.666 | 0.782 [ 0.782 | 0.781 | 0.773
Osteoporosis (9.85) 0.632 0.644 0.688 0.702 | 0.700 0.693 0.638 0.648 0.630 0.648 0.685 0.706 | 0.689 0.695
Stroke (15.86) 0.616 0.603 0.699 0.705 | 0.705 0.704 0.623 0.616 0.574 0.570 0.697 0.713 | 0.691 0.703
Heart Attack (16.7) 0.627 0.646 0.699 0.717 0.696 0.700 0.615 0.625 0.624 0.630 0.702 0.718 | 0.719 0.727
Angina (26.51) 0.611 0.627 | 0.698 0.695 0.694 0.698 | 0.633 0.610 0.611 0.610 0.689 0.698 | 0.702 0.710
Dementia (46.96) 0.703 | 0.706 | 0.745 | 0.745 | 0.755 | 0.752 0.675 | 0.679 | 0.671 | 0.682 | 0.764 | 0.768 | 0.753 | 0.748
Parkinson’s (160.3) 0.567 | 0.601 | 0.656 | 0.670 | 0.664 | 0.681 | 0.541 0.581 | 0.537 | 0.562 | 0.660 | 0.677 | 0.633 0.649
N of “Wins” 1 9 2.5 7.5 4.5 5.5 2.5 7.5 2.5 7.5 3.5 6.5 3.5 6.5

Table 4 shows a noticeable trend for higher Sensitivity values when using the
BRF method. For every MVI method, BRF outperformed UBB for the majority of
the datasets, with the greatest difference being observed for the Baseline approach,
where BRF won 9 out of 10 times.

On the other hand, as seen in Table 5, overall higher Specificity values were
observed when using the UBB method, although the difference was not as clear.
The number of wins for UBB was greater than the number of wins for BRF for
4 out of the 7 MVI methods, with the greatest difference being observed in the
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Table 5 Average Specificity values for RF with the UBB and BRF undersampling methods
for each dataset/imputation method combination, over a 10-fold cross-validation. The last row
contains the number of wins of each method, and the best value in each row is in boldface.

Dataset (IR) Baseline Globalmean Agebased Prev PrevNext TNN Data-Driven
UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF
Arthritis (1.35) 0.548 0.533 0.511 0.524 0.502 0.507 | 0.546 | 0.546 0.556 0.561 0.502 0.506 | 0.506 0.518
High BP (1.49) 0.701 0.702 | 0.629 0.618 0.601 0.604 | 0.666 0.655 0.680 0.691 0.600 0.605 | 0.610 0.616
Cataract (2.06) 0.674 | 0.674 | 0.601 0.593 0.595 0.587 0.636 0.621 0.693 0.676 0.595 0.589 0.599 | 0.580
Diabetes (6.5) 0.795 0.793 0.700 0.710 | 0.657 0.654 0.803 0.802 0.825 0.812 0.660 0.707 | 0.686 | 0.680
Osteoporosis (9.85) 0.715 0.710 0.603 0.583 0.598 0.591 0.670 0.662 0.702 0.674 0.623 0.589 0.576 0.597
Stroke (15.86) 0.725 | 0.725 0.597 0.599 | 0.573 0.516 0.695 0.725 | 0.735 0.733 0.580 0.602 | 0.560 0.570
Heart Attack (16.7) [ 0.718 0.699 0.562 0.572 0.581 0.612 | 0.740 0.723 0.705 0.716 | 0.588 0.574 0.605 | 0.592
Angina (26.51) 0.741 | 0.691 | 0.590 | 0.541 0.501 | 0.564 | 0.667 | 0.713 | 0.730 | 0.706 | 0.573 | 0.542 | 0.576 0.622
Dementia (46.96) 0.790 | 0.761 0.670 | 0.642 | 0.679 | 0.655 | 0.787 | 0.771 0.742 | 0.746 | 0.638 | 0.665 | 0.610 0.667
Parkinson’s (160.3) 0.625 | 0.687 | 0.602 | 0.449 | 0.584 | 0.531 0.690 | 0.624 0.633 | 0.687 | 0.586 | 0.411 0.522 | 0.512
N of “Wins” 7 3 6 4 6 4 7.5 2.5 5 5 5 5 4 6

Prev method, where the UBB had a higher Specificity value in 7.5 out of the 10
datasets.

The opposing results between Sensitivity and Specificity measures are ex-
pected, since these performance metrics evaluate the classifier’s abilities to predict
different classes, and usually the prediction of one class can be improved, but
in detriment of the other class. It is important to note, however, that the BRF
method still managed to get better Specificity values in some cases, achieving the
same number of wins than UBB for the PrevNext and 7NN methods, and even
winning 6 out of 10 times for the Data-Driven approach.

As a global measure of the RF models’ performances, their average Accuracy
values are reported in Table 6.

Table 6 Average Accuracy values for the UBB and BRF undersampling methods for each
dataset /imputation method combination, over a 10-fold cross-validation. The last row contains
the number of wins of each method, and the best value in each row is in boldface.

Dataset (IR) Baseline Globalmean Agebased Prev PrevNext 7-NN Data-Driven
UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF | UBB | BRF
Arthritis (1.35) 0.672 | 0.673 | 0.667 | 0.665 | 0.664 | 0.658 | 0.655 | 0.650 0.658 | 0.663 | 0.660 | 0.658 0.662 | 0.666
High Blood Pressure (1.49) | 0.632 | 0.630 0.599 | 0.602 | 0.603 | 0.605 | 0.614 0.620 | 0.607 | 0.616 | 0.605 | 0.602 0.606 | 0.611
Cataract (2.06) 0.665 0.666 | 0.649 0.646 0.645 0.646 0.652 0.659 0.651 0.652 | 0.650 0.642 0.648 0.641
Diabetes (6.5) 0.673 | 0.679 | 0.756 | 0.756 | 0.739 | 0.747 | 0.696 | 0.703 | 0.676 | 0.686 | 0.766 | 0.772 | 0.768 | 0.761
Osteoporosis (9.85) 0.639 | 0.650 | 0.680 | 0.691 | 0.691 | 0.683 0.641 0.649 | 0.636 | 0.650 | 0.679 | 0.695 | 0.679 | 0.686
Stroke (15.86) 0.615 | 0.629 | 0.694 | 0.689 0.687 | 0.692 | 0.634 | 0.614 0.615 | 0.614 0.684 0.692 | 0.697 | 0.707
Heart Attack (16.7) 0.623 | 0.610 0.693 | 0.698 | 0.697 | 0.693 [ 0.627 | 0.622 | 0.584 | 0.580 0.690 [ 0.706 | 0.683 | 0.695
Angina (26.51) 0.632 0.648 0.692 0.709 0.689 0.694 0.622 0.630 0.629 0.635 0.695 0.710 0.712 0.720
Dementia (56.96) 0.704 | 0.707 | 0.743 | 0.743 | 0.754 | 0.750 0.677 | 0.681 | 0.672 | 0.683 | 0.761 0.766 | 0.750 | 0.746
Parkinsons (160.3) 0.568 | 0.601 0.655 | 0.668 | 0.663 | 0.679 | 0.542 | 0.581 0.537 | 0.563 | 0.658 | 0.674 | 0.632 | 0.647
Number of “Wins” 2 8 4 6 4 6 3 7 2 8 3 7 3 7

In the Accuracy analysis, the BRF method again performs better than the
UBB method, getting the highest number of wins (between 6 and 8 out of 10
datasets) for all missing value imputation methods.

Therefore, when analysing the performance of the RF models, both on a class-
based analysis (measuring Sensitivity and Specificity) and considering the global
measure of Accuracy, the BRF method was overall superior to the UBB method.
This trend can be explained by the notion that, in the UBB method, the model
overfits more on the positive instances (the majority class, of healthy individu-
als), as it is trained with a dataset having less variability of positive instances.
Conversely, when applying the BRF method, the model is trained with a wider
variety of positive class instances due to the undersampling happening inside each
bootstrapping process (for each tree in the RF), so different decision trees in the
RF are likely to learn to detect different aspects of the majority class.
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In conclusion, overall the BRF method performed better than the UBB method
in our experiments, and is intuitively better due to using more varied training in-
stances of the majority class, so from here on all our experiments will be performed
with datasets where the majority-class instances are undersampled using the BRF
method.

7.3 Comparing the Missing Value Imputation Methods

Once we have chosen the BRF undersampling as the method for handling the class
imbalance in our datasets, based on the results reported in the previous Section, in
this Section we analyse which of the Missing Value Imputation (MVI) methods is
the most adequate for our datasets. The Sensitivity and Specificity results obtained
by each MVI method (with BRF undersampling) are presented in Tables 7 and 8,
respectively. For this analysis, we ranked all 7 methods from the best (rank 1) to
the worst (rank 7) based on each of the measures, using three decimal places, and
having tied methods share the same average rank — e.g., if two methods are joint
first, each is assigned a rank of 1.5.

Table 7 Average Sensitivity (True Positive Rate) values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods. The last row
contains the average rank of each method, and the best value in each row is in boldface.

D(aItla{s)et Baseline | Globalmean | Agebased | Prev | PrevNext | 7-NN | Data-Driven
Arthritis (1.35) 0.702 0.66 0.678 0.674 0.658 0.674 0.679
High Blood Pressure (1.49) 0.653 0.697 0.695 0.647 0.644 0.694 0.699
Cataract (2.06) 0.662 0.671 0.675 0.677 0.64 0.667 0.67
Diabetes (6.5) 0.661 0.763 0.762 0.687 0.666 0.781 0.773
Osteoporosis (9.85) 0.644 0.702 0.693 0.648 0.648 0.706 0.695
Stroke (15.86) 0.603 0.705 0.704 0.616 0.57 0.713 0.703
Heart Attack (16.7) 0.645 0.717 0.7 0.625 0.63 0.718 0.727
Angina (26.51) 0.627 0.695 0.698 0.61 0.61 0.698 0.71
Dementia (56.96) 0.706 0.745 0.752 0.679 0.682 0.768 0.748
Parkinson’s (160.3) 0.601 0.67 0.681 0.581 0.562 0.677 0.648
Average Rank 5.2 3.2 2.85 5.35 6.5 2.4 2.5

Table 8 Average Specificity (True Negative Rate) values for the Random Forest algorithm,
over a 10-fold cross-validation, using different missing value handling methods. The last row
contains the average rank of each method, and the best value in each row is in boldface.

D?It;{s)e': Baseline | Globalmean | Agebased | Prev | PrevNext | 7-NN | Data-Driven
Arthritis (1.35) 0.533 0.524 0.507 0.546 0.56 0.505 0.518
High Blood Pressure (1.49) 0.702 0.618 0.604 0.655 0.691 0.605 0.616
Cataract (2.06) 0.676 0.593 0.587 0.623 0.677 0.589 0.58
Diabetes (6.5) 0.794 0.71 0.655 0.804 0.813 0.708 0.684
Osteoporosis (9.85) 0.709 0.581 0.59 0.662 0.673 0.589 0.598
Stroke (15.86) 0.724 0.599 0.52 0.722 0.734 0.601 0.568
Heart Attack (16.7) 0.698 0.571 0.608 0.721 0.716 0.574 0.591
Angina (26.51) 0.69 0.539 0.55 0.721 0.709 0.547 0.62
Dementia (56.96) 0.764 0.635 0.642 0.764 0.73 0.669 0.655
Parkinson’s (160.3) 0.652 0.409 0.5 0.606 0.636 0.394 0.485
Average Rank 2.05 5.5 5.7 2.25 1.7 5.6 5.2

Regarding the Sensitivity values (Table 7), the 7NN method obtained the low-
est average rank (2.4) and 4 best values across the 10 datasets, closely followed
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by the Data-Driven method with the second lowest average rank (2.5) and 3 best
values.

As expected, the trade-off for this is observed in the Specificity (Table 8)
values, which show lower values for the 7NN and Data-Driven methods. The Prev,
PrevNext and Baseline methods have the best Specificity results, with PrevNext
achieving the lowest average rank (1.7) and the highest number of best Specificity
values (4 out of 10). It is worth noting, however, that the success of the Prev
and PrevNext methods is largely due to the success of the baseline approach for
handling missing values embedded in the RF algorithm. This is because Prev and
PrevNext have a low rate of applicability, as discussed in Section 6, and for the
missing values where these methods cannot be applied, the RF’s baseline approach
is used.

For the analysis of global predictive performance, we present the models’ Ac-
curacy results in Table 9.

Table 9 Average Accuracy values for the Random Forest algorithm, over a 10-fold cross-
validation, using different missing value handling methods. The last row contains the average
rank of each method, and the best value in each row is in boldface.

D?Itl:s)et Baseline | Globalmean | Agebased | Prev | PrevNext | 7-NN | Data-Driven
Arthritis (1.35) 0.63 0.602 0.605 0.62 0.616 0.602 0.611
High Blood Pressure (1.49) 0.673 0.665 0.658 0.65 0.663 0.658 0.666
Cataract (2.06) 0.666 0.646 0.646 0.659 0.652 0.642 0.641
Diabetes (6.5) 0.679 0.756 0.747 0.703 0.686 0.772 0.761
Osteoporosis (9.85) 0.65 0.691 0.683 0.649 0.65 0.695 0.686
Stroke (15.86) 0.61 0.698 0.693 0.622 0.58 0.706 0.695
Heart Attack (16.7) 0.648 0.709 0.694 0.63 0.635 0.71 0.72
Angina (26.51) 0.629 0.689 0.692 0.614 0.614 0.692 0.707
Dementia (56.96) 0.707 0.743 0.75 0.681 0.683 0.766 0.746
Parkinson’s (160.3) 0.601 0.668 0.679 0.581 0.563 0.674 0.647
Average Rank 4.15 3.6 3.6 5.4 5.45 2.8 3

Accuracy values reflect how well a model predicts both positive and negative
class instances. Note, however, that the proportion to which each class contributes
to the accuracy value is dependent on the proportion of instances of each class in
the dataset. As the Accuracy values are calculated by dividing the sum of true
positive and true negative predictions by the total number of predictions, and the
positive class represents the majority of instances, the number of true positive
predictions has a bigger impact on the accuracy value than the number of true
negative predictions.

In the Accuracy results the 7NN method has the smallest average rank (2.8),
followed by the proposed Data-Driven approach (average rank of 3), repeating the
trend observed when analysing Sensitivity (Table 7). When considering Accuracy,
the Baseline models (learned from datasets without any missing value imputation)
were outperformed by both the 7NN and Data-Driven methods for 7 out of the 10
datasets. These results corroborate the conclusions of our classifier-independent
comparison of the missing value imputation methods (Section 6), where the 7NN
and Data-Driven methods had overall the best results considering both their ap-
plicability and average estimation error rates.

To further investigate the difference between the RF models’ performances,
we compared their results using two non-parametric statistical significance tests,
as follows. First, we performed the Friedman’s test, a rank-based non-parametric
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version of ANOVA with repeated measures (Friedman, 1940). The Friedman’s test
can be used to compare the performance of several classification models simulta-
neously, and infer whether their results are statistically equivalent or not. In the
latter case, a second, non-parametric, post-hoc statistical test would be required
to determine whether or not different pairs of models have equivalent performance.

We chose non-parametric rank-based tests as, due to the small sample size (10
datasets), we could not assume a normal distribution of the data (Higgins, 2004,
Chapter 4), which is necessary for several other statistical tests that could be used
to compare classifier results.

We applied the Friedman’s test to the Accuracy results for the 7 missing value-
handling techniques, with the usual significance level of @ = 0.05. The test resulted
in a p-value= 0.022774, which meant there was enough evidence to reject the null
hypothesis (that the models’ performances were equivalent).

Therefore, we applied a post-hoc non-parametric test to compare the best
ranked method (7NN) to each of the other imputation methods, adjusting the «
values using Holm’s procedure for multiple tests (Holm, 1979). The test’s results
showed that 7NN can be considered significantly superior to the Prev (p-value=
0.0015 compared against adjusted @ = 0.0083) and PrevNext methods (p-value=
0.0019 compared against adjusted a = 0.01), and equivalent to all other methods.

8 Conclusions

In this article we proposed a Data-Driven missing value imputation approach, and
performed two sets of experiments comparing it to different strategies to handle
missing values in 10 longitudinal datasets. The datasets were created for the task of
classification, using real data from the English Longitudinal Study of Ageing, with
10 age-related diseases as target variables and 140 features (mostly biomarkers,
with numeric, nominal and binary values), and a proportion of 38.5% missing
values.

The proposed Data-Driven approach performs a feature-wise ranking of a set
of missing value imputation methods, based on a calculation of their average esti-
mation error for the known values of each feature. Then, it applies these methods
to replace the missing values in each feature, starting from the best ranked one
(lowest estimation error) up until no missing values remain, or no more methods
can be used. We chose five missing value imputation methods for our experiments
in this study, but any set of methods can be used by the Data-Driven approach.
The chosen methods were Global Mean/mode and Age-based Mean/Mode, Pre-
vious Observation Carried Forward, Previous and Next Observations Combined,
and K-Nearest Neighbours Mean/Mode. This set of methods includes representa-
tives of standard statistics methods, methods devised specifically for longitudinal
data, and a more sophisticated method that uses a machine learning algorithm.

The proposed approach has been evaluated in two sets of experiments. First, we
compared the five imputation methods to the Data-Driven approach on a classifier-
independent evaluation where we calculated their applicabilities and average error
rates. Then, we trained Random Forest classifiers with each of these methods and
a baseline of doing no imputation, in a classifier-dependent approach where we in-
vestigated how the chosen method to handle missing data affected the performance
of the resulting classifiers.
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For the classifier-independent evaluation, the experimental results showed that
each of the six tested imputation methods was the most accurate for some features
in the datasets, which corroborates the notion that no single imputation method
is the best for every feature. The most sophisticated method, the proposed Data-
Driven approach, was considered the best-performing method overall, due to its
100% applicability rate and low mean error values.

The two methods devised specifically for longitudinal data (Prev and Pre-
vNext) had very low applicability (35.57% and 2.95%, respectively). However,
they had the small average error rates both considering the numeric features and
considering all features in the dataset, with PrevNext having the smallest average
error over all methods. That, together with the good performance of the KNN
method (which also had longitudinal characteristics), shows the value of consid-
ering the often ignored temporal aspect of the data when handling missing values
in a longitudinal dataset.

For the classifier-dependent scenario, first we performed a series of experiments
with two undersampling approaches, to decide on the one that best fitted our
datasets, and chose the Balanced Random Forest approach. Then, we compared
the effects of employing seven different approaches to handle missing values in
our longitudinal datasets. These strategies were using the five selected methods
and the proposed Data-Driven approach to replace as many missing values as
possible in the dataset, as well as the baseline approach of not replacing the missing
values — letting the classification algorithm handle them internally. We analysed
the performances of RF models trained with datasets created with each approach
using three metrics: Sensitivity, Specificity and Accuracy.

The 7NN and Data-Driven methods achieved the best results for this set of
experiments, with one of these two methods obtaining the highest Sensitivity and
Accuracy values in 7 out of 10 datasets, and both methods obtained the two
best (lowest) average ranks for both metrics. Although the 7NN approach slightly
outperformed the Data-Driven approach in this classifier-dependent evaluation,
the latter has the advantage of guaranteeing that every missing value will be
replaced, whereas the TNN method was applicable to only 81.79% of the missing
values in the datasets.

Future work may involve additional experiments with the proposed Data-
Driven approach, both with different longitudinal datasets and different sets of
missing value imputation methods. As a general recommendation, we highlight
the inclusion of methods devised for longitudinal data in machine learning appli-
cations for this type of dataset, given the good results these methods obtained in
our experiments.
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Appendix A: Feature Description Table

Table Al: Description of the features in the ELSA nurse-data dataset.

Present
Conceptual s s .
Description in waves Type
Feature
2 4] 6
sex Gender of the participant Not applicable Binary
sysval Mean systolic blood pressure X | X X Numeric
diaval Mean diastolic blood pressure X | X X Numeric
pulval Pulse pressure X | X X Numeric
mapval Mean arterial pressure X | X X Numeric
Mean grip strenght with .
mmgsd_avg dominant hand X | X X Numeric
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Table A1l continued from previous page

mmgsn_avg nMoila:rcllogrillill)n ;Bieﬁiﬁg with X | X X Numeric

Blood sample: whether .
clotb has clotting disorder XX X Binary
cfib Blood fibrinogen level (g/1) X | X X Numeric
chol Blood total cholesterol x | x X Numeric

level (mmol/1)

Blood High-density lipo- .
hdl protein (HDL) level (mmol/1) | & | X | X | Numeric
trig Blood triglyceride level < | x X Numeric

(mmol/1)
1dl Blood LDL cholesterol level x| x x Numeric

(mmol/1)

Blood glucose level while .
fglu fasting (mmol/L) X | X X Numeric
rtin Blood ferritin level (ng/ml) X | X X Numeric

Blood C-reactive protein .
hscrp (CRP) level (mg/]) X | X X Numeric
heb ](Bgl;)(ci)l(; haemoglobin level x| x x Numeric
hbale Blood glycated haemoglobin x | x x Numeric

level (mmol/mol)
htval Height (cm) X | X X Numeric
wtval Weight (Kg) X | X X Numeric

Body mass index grouped
bmiobe according to World Health X | X X Nominal

Organization definitions
wstval Mean waist (cm) X | X X Numeric
hipval Mean hip (cm) X | X Numeric
whval Mean waist/hip ratio X | X Numeric

Whether had abdominal
hasurg or chest surgery in the X | X X Binary

past 3 months

Whether have a detached
eyesurg retina or had eye or ear X | X X Binary

surgery in the past 3 months

Whether been admitted to
hastro hospital with a heart X | X X Binary

complaint in the past month

Lung function: Whether
chestin had any respiratory infection X | X X Binary

in last 3 weeks

LUNG: Highest technically
htfve satisfactory value for Forced X | X X Numeric

Vital Capacity

LUNG: Highest technically
htfev satisfactory value for Forced X | X X Numeric

Expiratory Volume

LUNG: Highest technically
htpf satisfactory value for Peak X | X X Numeric

Flow
mmssre sotZE(ziome of side-by-side X | X X Nominal
mmstre Outcome of semi-tandem X | X X Nominal

stand
mmftre2 Outcome of full tandem X | X X Nominal

stand according to age
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Table A1l continued from previous page

mmlore Leg raise (eyes open): X | X X Nominal
Outcome
mmlsre Leg raise (eyes shut): X | X X Nominal
Outcome
mmcrre Single chair rise outcome X | X X Nominal
Outcome of multiple .
mmrroc chair rises, split by age XX X Nominal
. Blood insulin-like growth .
igfl factor (IGF-1) level (nmol/1) X X Numeric
White blood cell count .
whe (x 10”9 cells/litre) X X Numeric
Blood mean corpuscular .
meh haemoglobin level (pg/cell) X X Numeric
Blood apolipoprotein E .
apoe (apoE) level (mmol/1) X Numeric
Blood dehydroepiandrosterone .
dheas (DHEAS) level (umol/1) X Numeric
vitd Vitamin D level (unit) X Numeric
indager Respondent age X Numeric




