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Abstract 

Photometry is used as a cheap and easy way to estimate redshifts of 
galaxies, which would otherwise require considerable amounts of 
expensive telescope time. However, the analysis of photometric 
redshift datasets is a task where it is sometimes difficult to achieve a 
high classification accuracy. This work presents a custom Genetic 
Algorithm (GA) for mining the Hubble Deep Field North (HDF-N) 
datasets to achieve accurate IF-THEN classification rules. This kind 
of knowledge representation has the advantage of being intuitively 
comprehensible to the user, facilitating astronomers’ interpretation of 
discovered knowledge.  The GA is tested against the state of the art 
decision tree algorithm C5.0 [Rulequest, 2005] in two datasets, 
achieving better classification accuracy and simpler rule sets in both 
datasets.   

 

1. INTRODUCTION 

1.1 Spectroscopy & Photometry 

Astronomers today face the challenge of needing large amounts of spectroscopic 
telescope time in extremely deep field surveys, to identify high redshift objects 
(where redshift is a shift in frequency of the light towards red; see section 2.1).  
Spectroscopy can prove too time costly to be worthwhile  [Gwyn, 1996].  
Photometry provides a practical and cost-effective method to obtain comparable 
results. Photometry is the measurement of fluxes through broad filters of 
astronomical objects, and from these measurements redshifts can be estimated. 

Current methods for estimating redshift using photometry are unfortunately not 
perfect.  By improving on the accuracy of this one can allow astronomers to take 
more reliable measurements without the cost and time spent on the telescopes. 



1.2 Contribution 

This paper proposes an Evolutionary Algorithm (EA) for discovering classification 
rules – supervised learning problem in machine language terminology. This 
problem is an interesting candidate for Evolutionary Algorithms (EA) because the 
data is inherently noisy and EAs in general are robust to noise.  This work intends 
to explore how EAs can be used effectively to predict the correct classes, identified 
by spectroscopy, with greater accuracy than previously used methods.  In addition, 
this produces comprehensible rules that astronomers can use to gain more insight 
about the data and the application domain.   The discovered rules are expressed in a 
simple IF-THEN structure, as will be described later in section 4, and so they 
provide knowledge that is intuitively interpretable by astronomers, unlike, for 
instance, the output of black box classification algorithms such as standard artificial 
neural networks. 

2. Extragalactic Astronomy 

2.1 What is redshift? 

Redshift is the decrease in frequency (towards the red end of the spectrum) of the 
light from when it was emitted.  This is commonly a result of the emitting and 
receiving locations moving apart from one another, causing the light rays to stretch 
(conceptually similar to the Doppler shift, also a commonly observed effect with 
sound waves).  Redshift (z) is formally defined as: 
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observedz
λ

λ
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where observedλ  is the observed wavelength of the light, and emittedλ is the 

wavelength emitted at the source. 

When observing distant galaxies, the observed shift is not caused by the movement 
of galaxies away from us. The distance is simply too great to be able to discern 
such changes.  Instead, it is the effect of universal expansion being observed, which 
in turn is causing the distance from other galaxies to increase.  The expansion of the 
universe results in a stretching of space, including of the light rays from when they 
were emitted at their source to when they arrive to us.  This stretching means the 
light has a longer, redder wavelength.  The further away the observed astronomical 
objects are, the larger this effect is, as the light travels a greater distance and 
therefore undergoes more prolonged stretching. 

Because of this effect, there is a relationship between distance and the amount of 
redshift; therefore, redshift is often used as a measure of distance to galaxies. 

2.2 Finding high-redshift objects 

Distant objects are very faint and small.  Finding these against the many closer 
small and faint objects is often difficult, involving taking spectra to directly observe 



the redshift of these.  Therefore it can be hard to reliably find and catalogue a large 
number of high-redshift objects.  Inevitably with enough spectra, one will find 
some of the high-redshift objects.  Deep field imaging will therefore find many 
more faint, distant objects than it is practicable to obtain spectra for. 

2.3 Photometric Redshift 

Redshifts of extragalactic objects can be measured via spectroscopy.  Emission and 
absorption lines are identified and wavelengths measured, then compared to known 
rest wavelengths to determine redshift.  

Broadband photometry looks at far wider wavelength intervals, typically 1000Å 
wide, therefore requiring a much shorter exposure time.  Comparisons can then be 
made with predictions from galaxy Spectral Energy Distributions (SED) to 
determine the photometric redshift (Figure 1). Rather than observing narrow 
spectral features of galaxy spectra, the photometric redshift technique concentrates 
on broad features, such as the 4000Å break and the overall shape of a spectrum 
[Gwyn, 1996]. 

One method used takes a training set of measured spectroscopic redshifts and 
derives an empirical relation between these measured redshift and observed 
magnitudes [Connolly et al., 1995].  Another version of this method derives 
redshifts by way of a linear function of colours [Wang et al., 1998]. 

 

Figure 1: An example of photometric redshift determination for a faint galaxy in the HDF-S 

NIC3 field. The filled points are the fluxes measured in the five colours observed with the 

VLT Test Camera (U, B, V, R and I) and in the infrared H spectral band with the NICMOS 

instrument on the HST. The curves constitute the best fit to the points obtained from a 

library of more than 400,000 synthetic spectra of galaxies at various redshifts.  [ESO, 

1998] 



2.4 Deep Field Surveys 

Deep field surveys are becoming more common: examples include the HDF 
(Hubble Deep Field) North and HDF South, the NTT Deep Field, and the FORS 
Deep Field. These were all chosen for the sparseness of highly luminous 
foreground objects [ESO, 1999]. 

One of the major motivations currently in deep field surveys is the measurement of 
colours for all observed galaxies in the field so that photometric redshifts can be 
inferred. 

3. Preparation of the data to be mined 

Data was collected from several sources covering the HDF-N including Team Keck 
Treasury Redshift Survey (TKRS) [Wirth et al., 2004], Hubble's Advanced Camera 
for Surveys (ACS) Great Observatories Origins Deep Survey (GOODS) [Cowie et 
al., 2004] and Fernandez-Soto spectroscopic data set [Fernandez-Soto et al., 1999].  
Merging these catalogues was done based upon the position on the sky. To prevent 
misclassifications of nearby objects the magnitudes are also compared. IDL 
(Interactive Data Language) was used to cross reference and match the entries, 
which was then used to combine the data into one dataset with just the necessary 
parameters for the application.   

This produced a dataset of 4398 records covering a range of wavelengths, including 
the B, V, R, I and Z bands. B, V, R, I and Z bands (also referred to as the UBVRI 
system) are a commonly used set of wideband filters, with a large range in 
wavelengths of near visible light.  

Finally, from these magnitudes two sets of constructed attributes were formed. The 
first set was formed from the differences between the magnitudes (i.e. B-V, V-R, R-
I and I-Z). Magnitudes are proportional to the logarithm of photon flux, so the 
differences between magnitudes are flux ratios.  Colour is a measure of the 
magnitude difference of a star or galaxy in two pass bands, relative to the 
magnitude difference of Vega in the same pass bands.  A colour less than zero 
indicates a temperature hotter (or bluer) than that of Vega (around 10,000K), and 
higher than zero will be cooler (or redder) [Richmond, 2005].  

The second set of attributes was formed from the differences between the colours 
(i.e. (B-V)-(V-R), (V-R)-(R-I) and (R-I)-(I-Z)), this was then added to the colours 
to improve upon the predictive power of that dataset. The differences between 
colours is also described as BzK. BzK photometry is a method used for selecting 
actively star forming galaxies, independently of dust reddening [Daddi et al., 2004; 
Daddi et al., 2005]. Star formation rate (SFR) of galaxies is a challenging area 
within astronomy due to dust absorption and re-radiation which increases the 
wavelength (reddening). Nevertheless, it is an important task for accurately 
observing the processes and mechanisms involved in galaxy formation and 
evolution. 



As a result of data preparation, the constructed data sets have a class attribute 
representing the discretized value of redshift, and continuous real valued predictor 
attributes, these were defined as follows: 

3 classes: C1 (z < 0.8), C2 (0.8 ≤ z < 2.2), C3 (z ≥ 2.2) 

Colour attributes: B-V, V-R, R-I, I-Z. We shall refer to these as BVmag, 
VRmag, RImag, IZmag respectively. 

BzK atrributes: (B-V)-(V-R), (V-R)-(R-I), (R-I)-(I-Z) 

The discretized class values are the same for all datasets. The discretization was 
performed considering the Lyman Break Method [Steidel, Hamilton, 1992; Steidel 
et al, 1995], based upon broad spectral features that can be easily identified. These 
include the Lyman Alpha Break and the Lyman Limits. We observe features at 
wavelengths of 912Å, 1216Å and 4000Å. These are then subtracted from the 
central regions in the photometric magnitude regions used in the Hubble surveys. 
These can be used with photometry to help identify photometric redshift. 

The datasets shall be known as Dataset 1 and Dataset 2 from this point on and are 
defined as: 

Dataset 1: [ BVmag, VRmag, RImag, IZmag,  Class] 

Dataset 2: [ BVmag, VRmag, RImag, IZmag, BVmag-VRmag, VRmag-RImag, 
RImag-IZmag, Class] 

 

4. A Genetic Algorithm for estimating redshifts 

4.1 Individual Representation 

Each individual in the proposed genetic algorithm represents a single classification 
rule. A rule has the form IF (conditions) THEN (class), a commonly used construct 
in data mining. The antecedent (IF part) is a conjunction of conditions, where each 
condition refers to lower and upper bounds for a predictor attribute.  

Recall, in section 3, that the predictor attributes given to the system are colours 
(from the difference in magnitudes B-V, V-R, R-I and I-Z). 

Each rule condition is internally encoded into the individual as a gene. Each gene 
consists of a sextuplet of elements, defined as <LowerValue, Operator, Attribute, 
Operator, UpperValue, Active Flag>. The Attribute element is the name of one of 
the attributes of the data being mined, in particular a colour attribute in Dataset 1 
and a colour or BzK attribute in Dataset 2. In the current version of the GA the two 
Operator elements are both the relational operator less than or equal to “≤”. 
LowerValue and UpperValue are thresholds representing the lower and upper 
values of the attribute. The rule condition encoded by a gene is satisfied by an 
example if and only if the value of the corresponding attribute for that example is 
between the LowerValue and UpperValue thresholds. Finally, Active Flag switches 
on or off this condition of the rule.  The operators are fixed in this version of the 



algorithm but are included into the individual encoding as we intend to explore 
other values for a future version of the algorithm. The individual encoding contains 
one gene for each attribute of the data being mined.  However, only the genes with 
Active Flag set to 1 (“on”) are actually present in the rule decoded from the 
individual. An example of an individual encoding for the target dataset is as follows 
(showing one gene per line to facilitate interpretation): 

0.1200 ≤ BVmag ≤ 0.3000 [1]  
0.1100 ≤ VRmag ≤ 0.2800 [0]  
0.1800 ≤ RImag ≤ 0.3200 [0]  
0.0700 ≤ IZmag ≤ 0.3800 [1] 

 

In this example individual, only the conditions referring to the BVmag and IZmag 
attributes would be present in the decoded rule, so that the decoded rule antecedent 
would be: 

IF 0.1200 ≤ BVmag ≤ 0.3000 AND 0.0700 ≤ IZmag ≤ 0.3800 

The decoded conditions are connected by an AND operator to produce an 
antecedent consisting of a conjunction of conditions. 

Note that the class predicted by the rule (in its THEN part) does not need to be 
encoded in the genome of the individual, since it is fixed throughout the run of the 
GA, as will be explained in section 4.2.  

The values of the genes for each individual are randomly generated when creating 
the initial population. In that initialisation phase, as well as during the entire run of 
the GA, the values of the gene elements LowerValue and UpperValue are subject to 
the restriction that they cannot be smaller than / greater than the minimum / 
maximum value observed for the corresponding attribute in the training set. This 
restriction ensures that all rules generated by the GA are sensible and useful to be 
applied to the test data. 

4.2 Sequential Covering 

Each run of the GA discovers a single rule, so many runs of the GA will be 
required to discover a set of rules covering all training examples.  In order to 
discover a set of classification rules, we use the sequential covering approach. 
Sequential Covering is a technique often used in machine learning and data mining 
to discover all of the rules required to cover the training example set [Witten, 
Frank, 2000].  Each value in the set of discretized classes to be predicted is taken in 
turn as the positive class, the rest collectively become the negative class.  The GA 
then iteratively discovers a rule covering as many positive examples as possible, 
then removes these examples before repeating the process until all positive 
examples are covered. 



 

Figure 2: Sequential Covering.  This shows 3 steps in the process, where the best positive 

class is identified from the population of rules and the positive examples covered by that 

rule are then removed from the data and the GA is run again.  This process iteratively 

builds up a set of rules covering all of the positive examples (which identify just one class to 

be predicted). 

Once all of the positive examples have been classified, and a set of rules has been 
created, the entire process is then repeated using the next class value.  This iterative 
process is summarized in Figure 2. 

Once a set of rules exists covering all of the training examples, they are ordered by 
the classification accuracy of those rules (i.e. their fitness).  In order to classify 
examples that are not covered by any rule, the system enables a last "default rule", 
predicting the class covering most training examples. 

When using these rules on the test set, for each test example, all rules covering that 
example are initially identified.  If all rules covering the example predict the same 
class, the example is simply assigned that class.  If multiple rules covering the 
example predict different classes, the rule with the highest fitness is chosen (i.e. the 
highest rule in the ordered set of rules).  Finally, if no rules cover the example, the 
default rule is chosen, predicting the class which has the most examples in the 
training set. 

4.3 Fitness Function 

The fitness function in the GA measures the predictive accuracy of each individual 
(candidate classification rule).  It first builds a confusion matrix based on the 
predictive accuracy of the rules against the examples in the training set.  Then the 
confidence (also known in the astronomical community as reliability) and 
completeness (or true positive rate) are calculated as shown below, the product of 
these derives the fitness for each rule. 

Confidence = TP/(TP+FP) 
Completeness = TP/(TP+FN) 



Fitness = Confidence * Completeness 

 

where TP, FP, TN and FN refer to the following entries of the confusion matrix: 
True Positive, False Positive, True Negative and False Negative. 

Table 1 shows a confusion matrix for a rule of the form IF A THEN C, each 
quadrant of the matrix has the following definition [Freitas, 2002]: 

TP (True Positives) Number of instances satisfying A and belonging to class C 

FP (False Positives) Number of instances satisfying A but not belonging to class C 

FN (False Negatives) Number of instances not satisfying A but belonging to class C 

TN (True Negatives) Number of instances not satisfying A nor belonging to class C 

 

Table 1: Confusion Matrix 

  Actual 

Class 

  C not C 

C TP FP Predicted 

Class not C FN TN 

 

4.4 Genetic Operators (Crossover and Mutation) 

4.4.1 Crossover 

The crossover operator is used to evolve the current generation of individuals into a 
new set of individuals with parents selected from the current population.  The 
crossover method used in our GA is uniform crossover.  This works by taking each 
gene (or rule condition) in turn and randomly choosing the value of that gene (the 
sextuplet) in one of the parents for one child and the value of that gene in the other 
parent for the other child.  Therefore the two children will be made up from parts of 
the two parents.  The crossover probability used here was 70%. 

Uniform crossover was chosen as there is no positional bias as can be experienced 
using n-point crossover methods [Falkenauer, 1999; Syswerda, 1989].  In the 
application domain of the proposed GA, as well as in the classification task of data 
mining in general, the set of attributes has to be treated as a set in the mathematical 
sense of the term, where there is no ordering between the attributes. Therefore, the 
lack of positional bias associated with uniform crossover is appropriate for this 
application domain. 



4.4.2 Mutation 

Mutation in a GA maintains diversity in the candidate solutions and therefore 
allows greater exploration of the data space.  In our GA, each individual's gene 
elements probabilistically undergo mutation.  The elements of each gene that are 
affected include the upper threshold, the lower threshold and the active flag with a 
mutation probability on each of 0.01%.  Mutation is applied to the upper and lower 
thresholds by increasing or decreasing the attribute values by up to 0.5, and to the 
active flag by flipping it to set whether this particular gene will be active, and 
therefore have that attribute included in the rule.  Hence, the mutation of the active 
flag can effectively add or remove any condition within the current candidate rule, 
contributing to maintain a set of candidate rules with diverse lengths in the 
population.  

4.5 Selection Method 

Selection is the method used to pick parents that will undergo genetic operators 
such as crossover and mutation, in order to generate offspring in the next 
generation.  In the proposed GA tournament selection is used, where five 
individuals are chosen at random and then pitted against each other in a virtual 
tournament.  The best (highest fitness) survives and goes through for mating with 
another individual winner from another tournament. 

5. Computational Results 

In order to evaluate the proposed GA, we compared its performance against the 
performance of C5.0 [RuleQuest, 2005]. C5.0 is an industrial strength state of the 
art commercial decision tree and rule induction product from RuleQuest Research, 
developed by Ross Quinlan as the successor to his very successful and widely used 
ID3 and C4.5 systems. We used the C5.0 implementation available as a built in 
resource within the well-known Clementine data mining tool. 

C5.0 can generate a classification model expressed either as a decision tree or as a 
set of rules. In order to make a direct comparison with the classification rules 
discovered by the GA, we used the rule set mode of C5.0. Both the GA and C5.0 
were evaluated by running a 10-fold cross-validation procedure [Witten, Frank, 
2000], as usual in machine learning and data mining. We used the default 
parameters of C5.0 and of the GA – i.e., we did not try to optimise the parameters 
of the GA, in order to make the comparison with C5.0 as fair as possible. In all runs 
of the GA, the population size was 100 individuals, and the number of generations 
was 10. Although this is a small number of generations, by comparison with values 
typically used in the GA literature, even with this value we found a set of rules 
representing a significant improvement over the set of rules discovered by C5.0, as 
discussed below. The class values used were the same for both datasets and were 
based upon spectral features as described in section 3. The probabilities of 
application of genetic operators were as mentioned in section 4. The results 
reported here are the average classification accuracy rate over the test set (unseen 
during training) across the 10 iterations of the cross-validation procedure. In that 



procedure, the same partition of the data into 10 folds was used by both the GA and 
C5.0, again to make the comparison between the two systems as fair as possible. 

For each of the iterations of the cross validation procedure, the GA was run 10 
times with different random seeds, whilst C5.0 was run just once, since it is a 
deterministic algorithm. The average classification accuracies across the 100 runs 
of the GA and the 10 runs of C5.0 are shown in Table 2: 

Table 2: Classification accuracies for the runs of the GA and C5.0 

 

The results upon Dataset 1 have >99% confidence that they are statistically 
significantly different and not by chance, as measured by a Student t-test. However, 
the difference in the accuracies of the GA and C5 in Dataset 2 are not statistically 
significant as measured by a Student t-test. 

A measure of simplicity was taken of the rules, this is the number of discovered 
rules and the total number of terms, or conditions, for all discovered rules, as usual 
in the data mining literature. The measure of simplicity suggests that the rules 
generated by the GA are considerably simpler, and therefore more easily 
interpretable, than the rules generated by C5.0. The full simplicity results are 
shown in Table 3: 

Table 3: Simplicity of rules generated by the GA and C5.0 

 

The measurements of the number of rules and total number of terms in all rules 
upon Dataset 1 and Dataset 2 have >99% confidence that they are statistically 
significantly different and not by chance, as measured by a Student t-test. 

Work is ongoing to interpret the classification rules discovered by the GA in the 
context of prior astronomical knowledge, such as the passage of known redshifted 
spectral features through the filter passbands. 

Algorithm Dataset 1 Dataset 2 

GA (93.16 +/- 0.46)% (90.4 +/- 3.04)% 

C5.0 (90.73 +/- 0.63)% (89.852 +/- 2.23)% 

Algorithm Dataset 1 Dataset 2 

 Rules Terms Rules Terms 

GA 8.43 (+/- 1.64) 10.01 (+/- 2.66) 8.8 (+/- 1.66) 15.1 (+/- 4.39) 

C5.0 16.5 (+/- 2.58) 41.8 (+/- 5.69) 19.1 (+/- 3.73) 57.9 (+/- 15.61) 



6. Conclusion and Future Research 

The first results of the new GA compared to C5.0 show an improvement in the 
accuracy with the GA performing with an accuracy over 2.4 percentage points 
higher than C5.0 for Dataset 1, a statistically significant difference.  This can be 
considered a very good result, considering that C5.0 is the product of several 
decades of research in decision tree and rule induction, whilst the GA proposed 
here is still in its first version. 

Results using BzK conditions showed a decrease in accuracy for both the GA and 
C5.0.  This was surprising because of the relationship between redshift and SFR in 
galaxies shown in [Daddi et al., 2004]. In our future work we will continue BzK 
tests when we have additional data from other surveys.  

The only attributes used in these runs were the constructed colour and BzK 
attributes. One research direction will be to introduce further attributes, including 
morphological parameters, by building up a more comprehensive catalogue.  
Another research direction will be to use relational conditions in the attribute space 
(e.g. B-V < R-I), which will extend upon our use of BzK relationships. Relational 
conditions are used in astronomy, for example in finding star forming galaxies 
[Daddi et al., 2004]. A third research direction is to perform template matching 
using HYPER-Z [Bolnzella et al. 2000] and to compare the results with the GA. 

One of the main problems with using a χ2 solution, such as HYPER-Z, is that it can 
sometimes confuse spectral features, such as the Balmer and Lyman breaks, 
therefore misclassifying.  With further attributes we intend to build more 
sophisticated rules with the GA which will aim to prevent such misclassifications, 
or identify them as misclassified and correct them. 
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