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Abstract

This paper proposes a modification in rule induct@gorithms

aimed at improving the interpretability of the disered rules. This
modification is proposed in the context of sparséniiormatics data

sets where the presence of a feature is much tamon than its

absence, so that rule conditions with positive &slof the feature
tend to be more informative than rule conditionghwnegative

values of that feature. The proposed modificatiansists of

inducing only rules having positive values of thatfires, rather than
rules using both positive and negative values effgatures.

1. Introduction

The motivation for this paper came from a caseystmdioinformatics reported in
[6], where a biologist had difficulty in interprag many rules discovered by a data
mining algorithm. In that application the vast méjoof the predictor attributes
denoted whether or not a protein had a certainogichl motif. For each motif
(attribute), the value “present” was much less deeg in the data than the value
“absent”, i.e., the dataset was very sparse. Hemae)e with conditions of the
form “IF a protein has biological motif X" was easito be interpreted by the
biologist than a rule with conditions of the forn“a protein does not have
biological motif X", because the latter is muchdésformative.

The central idea of this paper is to modify twoerahduction algorithms to

discover rules having in their antecedent only d@bms of the form “IF a protein

has biological motif X”, and not conditions of tf@m “IF a protein does not have
biological motif X”, in order to improve the intemgtability of the discovered rules.
Rule interpretability is often important in dataninig [4], [8].

2.  Rulelnduction with Modified CN2 and Ant-Miner

The two rule induction algorithms modified in thigrk are CN2 and Ant-Miner.
CN2 is a well-known rule induction algorithm [2].n&Miner is based on the
relatively new paradigm of ant colony optimisati@if Both CN2 and Ant-Miner
are sequential covering algorithms, where a classibn rule is discovered,
examples covered by the discovered rule are remfyeedthe training set and the
process is repeated until (almost) all training repkes are covered. Both



algorithms construct a classification rule by agdane condition at a time to the
rule, and they discover rules whose antecedentnclimde both conditions of the
form “IF a proteinhashiological motif X" — calledpresent-motitonditions — and
conditions of the form “IF a proteidoes not havéiological motif X" — called
absent-motifconditions. In order to improve the rule interpbélity, we modify
these algorithms to discover rules haviimgsent-motif-onlgonditions.

In the original CN2 and Ant-Miner algorithms the & candidate conditions is
initialized with all conditions of the form (A& V;), where \j is the j-th value of
the i-th attribute,[i,j. By contrast, in the proposed modification (fboth
algorithms) the set of candidate conditions isiatited only withpresent-motif-
only conditions, i.e., conditions of the form (A “present”). Once a condition is
added to a rule, the system removes just that tondrom the set of candidate
conditions to be considered in the next iteratibthe rule construction procedure.
By contrast, in the original algorithms, when a dition like (A = “present”) is
added to a rule, the system has to remove botlctmatition and the condition (A
= “absent”) from the set of candidate rules.

3. Datasetsand Experimental Setup

Experiments were done with four bioinformatics data involving two protein
function prediction problems. The first problem sists of predicting whether or
not a protein has post-synaptic activity, basetherbiological motifs found in the
protein primary sequence [6]. Each example (recocadyesponds to a protein.
Each predictor attribute corresponds to a Prositeep (a biological motif). An
attribute can take on the value “present” or “atisendicating whether or not the
Prosite pattern occurs in a protein. The classbatt is post-synaptic activity,
which can take on “yes” or “no”. The second problisnthe classification of G-
Protein Coupled Receptors (GPCRs). In the 3 GPCRsds used in our
experiments [5], each example (record) correspotodsa protein. However,
different kinds of predictor attributes (motifs) meused in the 3 datasets, viz.:
Interpro entries, Prints motifs, and Prosite pageAll these attributes are binary,
indicating whether or not a protein has a motif.

The datasets used in our experiments are somewbdified versions of the
datasets used in [6], [5], as follows. First, tlstpsynaptic dataset described in [6]
included 2 continuous attributes (sequence length raolecular weight). In our
experiments these 2 attributes were removed — thi@yProsite pattern attributes
were used. Second, in the GPCR datasets descnibgf] ithe classes to be
predicted are arranged in a four-level hierarchyr €&periments involved only the
prediction of classes at the first level of ther&iehy. Third, both the post-synaptic
dataset [6] and the GPCR datasets [5] had a largiwer of attributes. In order to
greatly reduce the time taken by the rule inductdgorithms, we worked only
with the set of the 50 best attributes for eactasktt To perform this attribute
selection we used the attribute selection algorittescribed in [3]. The reduced
post-synaptic dataset had 2081 examples. The XeddGPCR datasets (with
Interpro, Prints and Prosite motifs) had 540, 328 &77 examples, respectively.



We used the default parameters of CN2 [1], [2]. -Miner was used with its
default parameters [7], [9], with the exception tthahe parameter
Max_uncovered_cases was set to 5 in the unordatedet version. All the results
reported in the paper were obtained by performingei-known 10-fold cross-
validation experiment.

4. Computational Results

The results concerning predictive accuracy are shiswTable 1. The numbers
after “+” are standard deviations. Experiments were donie the ordered rule list
[2] and unordered rule set [1] versions of CN2ywadl as the ordered rule list [7]
and unordered rule set [9] versions of Ant-Miner.

Table 1. Comparing predictive accuracy (%) using presentifrooly (Pres.) vs
both present and absent (Pres/Abs) motifs

Dataset

Algor. | Unordered | Pres/Abs | Post- GPCR | GPCR | GPCR
vs. ordered | vs. Pres. | synapt. | Interp. | Prints | Prosite
rules motifs
CN2 Ordered Pres/Abs 96.92 | 90.75 92.25 | 81.13
+0.33 +0.85 | +0.70 | +2.62
Pres 96.88 | 90.71 | 92,56 | 80.75
+0.36 +0.90 | +0.51 | +3.30
Unordered Pres/Abs 96.83 | 90.20 93.20 84.48
+0.37 +0.87 | +0.59 | +2.48
Pres 96.78 | 85.75 93.50 | 63.20
+0.34 +0.70 +0.29 | £1.49
Ant- Ordered Pres/Abs 96.73 | 87.98 87.60 66.13
Miner +0.36 +0.52 | +1.73 | +3.03
Pres 88.23 78.89 85.80 | 49.52
+0.17 +0.45 +1.73 | £2.69
Unordered Pres/Abs 96.44 | 87.02 96.59 79.74
+0.47 +0.65 | +0.56 | +1.49
Pres 96.73 | 86.30 | 92.29 61.67
+0.31 +0.54 | +0.79 +0.57

Out of 16 cases (2 algorithrs2 kinds of rule ordering 4 datasets), there are 7
cases (in bold in Table 1) where the use of presertifs only led to a significant
drop in accuracy, by comparison with the use ohlwesent and absent motifs. A
difference in two accuracy values was considergdifitant if the corresponding
confidence intervals — taking into account the déd deviations — do not overlap.
In the other 9 cases there was no significant idiffee between the accuracies with
present motifs only and the accuracies with bo#s@nt and absent motifs. Results
concerning rule simplicity (measured by the totahiver of conditions in all rules)
are shown in Table 2. In all 16 cases, the useresgmt motifs only led to a
significant improvement in simplicity (reductioninle set/list size).



Table 2. Comparing the total number of conditions in aladivered rules using
Present motif only (Pres) vs. Present and Absees(Rbs) motifs

Dataset
Algor. | Unordered Pres/Abs | Post- GPCR | GPCR | GPCR
vs. ordered | vs. Pres. | synapt. | Interp. | Prints | Prosite

rules motifs
CN2 Ordered Pres/Abs | 50.90 | 31.80 39.00 58.90
+0.40 +0.70 +0.60 | +0.99
Pres 45.80 24.80 28.10 44.20

+0.33 +0.59 +0.46 +0.79
Unordered Pres/Abs | 57.30 | 57.90 68.70 97.10
+0.47 +1.95 +1.46 +2.40

Pres 46.60 32.90 34.60 47.60
+0.31 +0.75 +0.56 +1.13
Ant- Ordered Pres/Abs | 306.91 | 233.50 | 207.30 | 217.60
Miner +10.28 | £6.27 | #6.71 | *11.74
Pres 9.20 3.10 2.00 2.10

+0.20 +0.10 +0.00 +0.10
Unordered Pres/Abs | 355.60| 245.80 | 188.00 | 229.70
+19.20 | #1.11 +0.00 | +5.05
Pres 32.00 6.0 4.00 5.00
+0.00 +0.00 +0.00 +0.00

5. Conclusions

The central idea of the proposed method — aimash@ioving the interpretability
of discovered rules — is to modify rule inductiolyaithms to discover rules
having in their antecedeptesent-motif-onlgonditions.

Concerning the simplicity of the discovered ruléssar lists, the use gfresent-
motif—onlyconditions consistently reduced the size of tisealiered rule set or list
in all cases. In addition to this clear gaindpntactical simplicity, the use of
present motifs only has the important advantageingdroving the semantic
comprehensibility of discovered rules to biologidiecause in general it is easier
for biologists to interpret specific conditions tfie form “IF a protein has
biological motif X” than to interpret much more geit conditions of the form “IF
a protein does not have biological motif X".

Concerning predictive accuracy, unfortunately thee wf present-motif-only
conditions led to a significant drop in accuracyriout of 16 cases. On the other
hand, in the majority (9 out of 16) of the cases significant gains in syntactical
and semantic simplicity were obtained without amgni§icant drop in accuracy.
This is a promising result in applications wherderinterpretability is very
important. However, one should be careful with plméential significant drop in
predictive accuracy in applications where accuiaayery important.



Although we focused on sparse bioinformatics dasasely, the basic idea of the
proposed method is also potentially useful in spdetasets from other application
domains — a possible topic for future research.
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