
Improving the cAnt-MinerPB Classification
Algorithm

Matthew Medland, Fernando E. B. Otero and Alex A. Freitas

School of Computing, University of Kent, Canterbury, Kent, UK
{mm443,F.E.B.Otero,A.A.Freitas}@kent.ac.uk

Abstract. Ant Colony Optimisation (ACO) has been successfully ap-
plied to the classification task of data mining in the form of Ant-Miner.
A new extension of Ant-Miner, called cAnt-MinerPB, uses the ACO pro-
cedure in a different fashion. The main difference is that the search in
cAnt-MinerPB is optimised to find the best list of rules, whereas in Ant-
Miner the search is optimised to find the best individual rule at each
step of the sequential covering, producing a list of best rules. We aim to
improve cAnt-MinerPB in two ways, firstly by dynamically finding the
rule quality function which is used while the rules are being pruned, and
secondly improving the rule-list quality function which is used to guide
the search. We have found that changing the rule quality function has lit-
tle effect on the overall performance, but that by improving the rule-list
quality function we can positively affect the discovered lists of rules.

1 Introduction

Data mining is the automatic search for useful, usable, and preferably interesting
patterns in data [3, 13]. These patterns are used by anyone with an interest in
what their data holds—e.g., businessmen or scientists. There are multiple data
mining tasks, of which classification is the most studied.

The classification task seeks to create a model that places objects (exam-
ples) into groups. A class value (group name) is then assigned by analysing
common traits (attributes’ values) between objects of that class. Classification
problems can therefore be viewed as optimisation problems, where the intended
outcome is to find the best model that represents the predictive relationships
in the data. There are many different ways to represent these models, such as
‘black-box’ models produced by support vector machines (SVM) and artificial
neural networks, which are difficult to interpret, and ‘white-box’ decision tree
and classification rule models, which are more readily interpreted [11]. ‘White-
box’ methods have the advantage of being easier to comprehend, and so they are
used to provide further understanding of the data. This enhanced understanding
leads to a greater degree of trust in the models produced and enables decision
makers to make the best possible decisions.

Ant Colony Optimization (ACO) algorithms have successfully been applied
to the classification task in the form of Ant-Miner [2, 10]. Ant-Miner seeks to
extract a list of classification rules of the form IF antecedent THEN consequent

from a data set, where the antecedent is composed by predictor attribute-value
conditions, and the consequent corresponds to the class value to be predicted.

Several extensions of Ant-Miner have been proposed in the literature and
have been reviewed in [8]. The majority of these extensions maintain the overall
structure of the algorithm—i.e., the algorithm employs an ACO-based procedure
to create individual rules which are joined to create a complete classification
model (list of rules). This strategy to produce a list of classification rules is known
as sequential covering (or separate-and-conquer), where each rule is discovered
individually. An improved strategy has recently been proposed in the cAnt-
MinerPB algorithm [9], where an ACO-based procedure is used not to construct
individual rules, but a full list of rules. One of the main differences between the
cAnt-MinerPB and Ant-Miner algorithms is that in cAnt-MinerPB the search is
performed and optimised to find the best list of rules, whereas in Ant-Miner (and
its extensions) the search is performed and optimised to find the best individual
rule at each step of the sequential covering, resulting in the list of best rules.
In other words, in cAnt-MinerPB the search is governed by the quality of a
candidate list of rules, while in Ant-Miner the search is guided by the quality of
an individual rule.

One of the main components of Ant-Miner is the rule quality function used
to guide the search. The use of different rule quality functions in sequential
covering algorithms has been studied in [5, 7] and in Ant-Miner algorithm in
[12]. Improving the rule quality function of sequential covering algorithms tends
to improve the overall performance of the algorithm. Although the search in
cAnt-MinerPB is guided by the quality of a list of rules, the algorithm uses a
rule quality function to prune (i.e., remove irrelevant terms) from a candidate
rule. Therefore, there are two quality functions involved in the search for the best
list of rules in cAnt-MinerPB: the rule quality function used during pruning and
the rule-list quality function used to guide the search (i.e., update pheromones).

In this paper we propose to improve the search of the cAnt-MinerPB algo-
rithm by (1) allowing the algorithm to dynamically choose a rule quality evalu-
ation function for a candidate rule and (2) using a new rule-list quality function
to guide the search. The extension (1) is possible since the rule quality function
has a smaller role in cAnt-MinerPB—it is only used during pruning—and it is
not used as a criterion to compare different rules. A dynamic rule quality func-
tion selection would not be possible in Ant-Miner, as the rule quality function
needs to be consistent throughout to ensure that the algorithm is comparing
like-to-like. The extension (2) aims at preventing overfitting—the case where
the list of rules is too tailored to the training set and has poor generalisation
performance. We evaluate the effect of these extensions using 14 data sets from
the UCI Machine Learning repository [4] in terms of both predictive accuracy
and size of the discovered classification model.

The remainder of this paper is organised as follows. In Section 2 we discuss
the differences in the search strategy of Ant-Miner and cAnt-MinerPB algorithms.
In Section 3 we discuss our proposed improvements to cAnt-MinerPB. Then we
present and discuss our results in Section 4. Section 5 then concludes this paper.

2 Background

Separate-and-conquer, also known as sequential covering, classification algo-
rithms are data mining algorithms that employ two steps to create a classifi-
cation model. First, the algorithm classifies part of the dataset (conquer) and
then removes the classified data from the dataset (separate). This process is re-
peated until the number of unclassified examples falls below a set threshold. At
each stage, the data which is classified depends on the classification rule cho-
sen, and which classification rule is chosen depends on the quality of possible
rules. To calculate this, a rule quality function is used and it is this function
which determines the success of most sequential covering algorithms. There are
multiple aspects of a rule which can affect its quality. For example, a rule may
never misclassify an example (high consistency) but only cover a small subset of
examples (low coverage). Deciding which rule quality function to use always has
the problem of finding an effective trade-off between consistency and coverage.

The Ant-Miner algorithm follows a sequential covering strategy using an
ACO procedure to create individual rules. First, a construction graph is created
where each node is a value for a given attribute, with every attribute-value pair
from the data set represented. Each ant then moves from a start node (with an
empty rule) and stochastically chooses a vertex with a probability based upon
the pheromone value and a heuristic value. The visited vertex is a rule term as
a [attribute, value] pair. The ant will continue to add new terms until either
all attributes have been used or adding another would decrease the number of
covered examples below a predefined threshold. After a rule has been created, a
pruning algorithm removes irrelevant terms from the newly created rule. Once
every ant in the colony has traversed the graph, the best rule based on a quality
function is selected and the pheromone levels are adjusted. The pheromone on
the terms included in the best rule increase and the pheromone on the others
(unused terms) decrease. After a rule has been created by the ACO procedure,
all of the examples which it covers are removed from the data set and the next
rule is created. The algorithm finishes once the training set has less than a
predefined number of training examples remaining and the list of best rules is
returned as the discovered classification model. Most of the proposed extensions
of Ant-Miner follow this same strategy to create a list of rules [8].

cAnt-MinerPB is an ACO classification algorithm that employs a different
search strategy than Ant-Miner. Rather than searching for the list of best rules
as Ant-Miner does, cAnt-MinerPB instead searches for the best list of rules. This
change may sound minor, but it has a dramatic effect on the algorithm. In Ant-
Miner each ant creates an individual rule, whereas in cAnt-MinerPB each ant
creates an entire list of rules. Once the best candidate list of rules has been
created, the pheromones are updated which affects the lists that will be created
in the future iterations. The best list of rules chosen throughout the execution
of the algorithm is returned as the discovered classification model.

The high-level pseudocode of cAnt-MinerPB is presented in Figure 1. At each
iteration, an ant in the colony starts with an empty list and the full training
set. An ant then creates a rule, prunes the rule using the rule quality function,

Input: training examples
Output: best discovered list of rules
1. InitialisePheromones();
2. listgb ← {};
3. m← 0;
4. while m < maximum iterations and not stagnation do
5. listib ← {};
6. for n ← 1 to colony size do
7. examples← all training examples;
8. listn ← {};
9. while |examples| > maximum uncovered do

10. ComputeHeuristicInformation(examples);
11. rule ← CreateRule(examples);
12. Prune(rule);
13. examples← examples− Covered(rule, examples);
14. listn ← listn + rule;
15. end while
16. if Quality(listn) > Quality(listib) then
17. listib ← listn;
18. end if
19. end for
20. UpdatePheromones(listib);
21. if Quality(listib) > Quality(listgb) then
22. listgb ← listib;
23. end if
24. m← m+ 1;
25. end while
26. return listgb;

Fig. 1: High-level pseudocode of the cAnt-MinerPB algorithm [9].

and removes all of the covered examples from the training set. The ant then
repeats these steps until the number of remaining examples lies below a prede-
fined threshold. It is important to note that at no point are rules compared to
each other, and that the only time the rule quality function is used is during
the pruning stage. The list of rules created by the ant is then compared to the
current best list of rules and if it is better than the current best, it replaces it
as the current best. Once all ants in the colony have finished creating candidate
list of rules, the pheromones are updated. This entire process repeats until ei-
ther the maximum number of iterations has been reached or until the algorithm
converges.

There is a clear difference in the search strategy between Ant-Miner (and its
extensions) and cAnt-MinerPB algorithms. The search in Ant-Miner is guided
by the quality of the individual rules, as in (traditional) sequential covering
algorithms. The best rule found is always used, regardless of how it affects the
list of rules. The search in cAnt-MinerPB algorithm, however, is not concerned
by the quality of the individual rules as long as the quality of the complete list
of rules is improving, since the entire list is created at once and the best list is
chosen to guide the search. Therefore, the rule quality function has a smaller
role—only used to decide whether or not to prune a rule—and the rule-list
quality function guides the search.

3 Proposed Improvements to cAnt-MinerPB

This paper presents two extensions of the cAnt-MinerPB algorithm in order
to improve the search for the best list of rules. The first extension consists
of allowing the algorithm to dynamically choose the rule quality function to be
used during the pruning procedure (per rule fashion), where different rules can be
pruned using different rule quality functions. As has been previously studied [5, 7,
12], rule quality functions have different bias and capture different aspects of the
rule (e.g., some might favour consistency over coverage). The second extension
consists of using a pessimistic error rate rule-list quality function to evaluate a
candidate list of rules and, consequently, to guide the search.

3.1 Dynamically choosing rule evaluation functions

In cAnt-MinerPB, ants find routes through a fully connected graph of all possible
rule terms (attribute-value pairs) in order to construct rules. Our initial approach
to dynamically choose the rule quality function was based around adding extra
vertices to the construction graph containing the candidate rule terms to repre-
sent the available rule quality functions, resulting in one large graph. This simple
approach had the benefits that it was an easy concept to grasp and it fits very
nicely into cAnt-MinerPB with very few modifications to the existing algorithm.
However, we have found that using this approach, the same rules can be created
by the pruning procedure but with different rule quality functions. This affected
the convergence of the algorithm, since the choices of the rule quality functions
were not unique and, consequently, there was no selective pressure towards a
particular rule quality function. This meant that the algorithm would rarely
converge.

These results led us to realise that the convergence tests had to purely rely
upon the terms selected to create the rules. To enable this behaviour, we used
two separate construction graphs: one purely consisting of different rule quality
functions, and the other consisting of rule terms. When creating a rule, an ant
will first visit the rule quality functions graph to select an evaluation function,
and then visit the rule terms graph to create the rule.

This process can be implemented adding only a few lines to the algorithm
presented in Figure 1. The first addition would be the creation of a rule qual-
ity functions graph and initialise its pheromones (line 1). Next, each ant would
choose the rule quality function before creating a rule (line 11), and then store
the rule quality for later use in the pruning stage (line 12). The selection of the
rule quality function is only based on pheromone levels, no heuristic informa-
tion is used. Once the iteration-best list of rules has been determined, the two
pheromone matrices would be updated (line 20) to reflect the chosen rule quality
functions as well as the list of rule terms used in the list of rules.

Though the rule quality functions and rule terms graphs are independent,
the pheromones in cAnt-MinerPB are retained in sequence. In other words, the
first rule being chosen in a list has a list of pheromones which is saved and
updated across iterations, as does the second and so forth. This means that the

IF petal-width <= 0.8 THEN Iris-setosa USING F-measure function

IF petal-width > 1.75 THEN Iris-virginica USING Error-based function

IF sepal-length <= 6.15 THEN Iris-versicolor USING M-Estimate function

IF <empty> THEN Iris-virginica

Fig. 2: An example of a list of rules with associated rule quality functions. The
default rule (with an empty antecedent) does not have a function associated.

first rule is now converging to the list of terms, which was affected by the choice
of the rule quality function, both of which may be vastly different to the terms
and quality function used by the second rule. Convergence is only determined
by analysing the rule terms graph, since different rule quality functions can lead
to the same rule and the choice of the rule quality function does not affect the
quality of the list of rules (as long as they produce the same rules). Figure 2
presents an example of a list of rules with associated rule quality functions.

In order for our dynamic rule quality function selection process to be of
any use we needed a wide selection of different rule quality functions. We have
selected previously used rule quality functions described in [7, 12], as well as the
original rule quality function used in cAnt-MinerPB (Sensitivity × Specificity)
and a rule quality function based on C4.5’s error-based measure [11, p. 41]. The
chosen functions can be found in Table 1. For the parametric quality functions,
we have used their default parameter values [7] (shown in the ‘Parameter’ column
in Table 1). In the function definitions we make use of a series of shorthands to
condense the formulae. These are defined as below:

TP The number of examples covered by the rule that belong to the class pre-
dicted by the rule (true positives).

FP The number of examples covered by the rule that do not belong to the class
predicted by the rule (false positives).

TN The number of examples not covered by the rule that do not belong to the
class predicted by the rule (true negatives).

FN The number of examples not covered by the rule that belong to the class
predicted by the rule (false negatives).

S The total number of training examples (TP + FP + TN + FN).

3.2 Error-based Rule-List Function

After a candidate list of rules is created in cAnt-MinerPB, its quality is measured
in terms of predictive accuracy in the training set. It is expected that a list of
rules that perform well in the training set will also perform well in the test set
(the set of unseen examples). However, the use of the predicted accuracy can
lead to overfitting—the case where the list of rules created is too tailored to the
training set and does not generalise well, i.e., it has a lower predictive accuracy

Table 1: The rule quality functions used in the dynamic selection process.

Function Name Parameter Formula

Accuracy - TP+TN
TP+FP+TN+FN

Confidence + Coverage - TP
TP+FP

+ TP
S

Cost Measure c = 0.437 (c · TP)− ((1− c) · FP)

F-measure β = 0.5
(1+β2)· TP

TP+FN
· TP
TP+FP

β2· TP
TP+FN

+ TP
TP+FP

Jaccard - TP
TP+FP+FN

Klösgen ω = 0.4323
(
TP+FP

S

)ω · (TP
TP+FP

− TP+FN
S

)
M-Estimate m = 22.466

TP+m·TP
S

TP+FP+m

C4.5’s Error-based function* - UCF(FP, TP + FP)

Relative Cost Measure cr = 0.342 (cr · recall)− ((1− cr) · FP
FP+TN

)

Sensitivity × Specificity - TP
TP+FN

· TN
TN+FP

*The UCF function corresponds to the upper limit of the probability of an error (FP) over the
examples covered by a rule (TP + FP). More details can be found in [11, p. 41]

in the test set. In order to mitigate the possibility of overfitting, we propose the
use of a function based on C4.5’s pessimistic error rate (UCF) to measure the
quality of a candidate list of rules, given by

1 −

L∑
r=1

(TPr + FPr) · UCF(FPr, TPr + FPr)

S
, (1)

where FPr and TPr are the number of false positives and true positives of the
r-th rule, respectively, L is the number of rules in the candidate list and S is
the number of training examples. According to (1), the quality of a list of rules
corresponds to 1 minus the sum of the predicted errors (the number of examples
classified by a rule times its associated UCF error rate [11, p. 41]) of the rules
divided by the number of examples in the training set—the lower the sum of
predicted errors, the higher the quality of the list.

4 Results

In order to evaluate the proposed extensions of the cAnt-MinerPB algorithm, we
have selected 14 datasets from the UCI Machine Learning repository [4]. Table
2 presents a summary of the data sets used in our experiments. We have eval-
uated four different variations of cAnt-MinerPB: the original cAnt-MinerPB; the

Table 2: Summary of the data sets used in the experiments.

Data set # Attributes # Classes # Examples

Nominal Continuous

balance-scale 4 0 3 625
breast-l 9 0 2 286
breast-w 0 30 2 569
credit-a 8 6 2 690
dermatology 33 1 6 366
glass 0 9 7 214
heart-c 6 7 5 303
hepatitis 13 6 2 155
ionosphere 0 34 2 351
iris 0 4 3 150
liver-disorders 0 6 2 345
parkinsons 0 22 2 195
wine 0 13 3 178
zoo 16 0 7 101

cAnt-MinerPB with the proposed dynamic rule quality function selection (de-
noted with a ‘[D]’ marking); the cAnt-MinerPB with the proposed error-based
rule-list quality function (denoted with a ‘[E]’ marking); and cAnt-MinerPB with
both dynamic rule quality function selection and error-based list quality func-
tion (denoted with a ‘[D+E]’ marking). We carried out a tenfold cross-validation
procedure and the cAnt-MinerPB default parameters were used [9]: colony size
of 5, maximum number of iterations of 500 and evaporation factor of 0.90 (i.e.,
the evaporation rate is equal to 1 − factor, therefore the pheromone values are
decreased by 10% during evaporation). Since cAnt-MinerPB is a stochastic algo-
rithm, it was run 10 times for each of the cross-validation folds.

The results of our experiments are presented in Table 3, for predictive accu-
racy, and Table 4, for the size of the discovered model (measured as the total
number of terms in the list of rules). A value on those tables corresponds to
the average value measured over the tenfold cross-validation. Table 5 presents
the results of the non-parametric Friedman statistical test with the post-hoc
Hommel’s test [1, 6]. The information presented in Table 5 corresponds to the
average rank (first column), where the lower the rank the better the algorithm’s
performance, and the adjusted pHomm value. Statistically significant differences
among the algorithm with the highest rank (the control ‘(c)’ algorithm) are de-
termined by the pHomm value: if the p value is less than 0.1, the difference in
the rank is statistically significant at the α = 0.1 level; if the p value is less than
0.05, the difference in the rank is statistically significant at the α = 0.05 level.

The use of the dynamic rule quality function selection combined with the
error-based rule-list quality function (cAnt-MinerPB [D+E]) led to an overall
improvement in predictive accuracy and achieved the highest average rank, al-
though the differences are not statistically significant according to the Friedman

Table 3: Average predictive accuracy (average ± standard error) measured over
tenfold cross-validation. The highest predictive accuracy for a given data set is
shown in bold.

cAMPB cAMPB [E] cAMPB [D] cAMPB [D+E]

balance-scale 76.83 ± 0.24 76.26 ± 0.29 76.69 ± 0.17 76.28 ± 0.21
breast-l 72.32 ± 0.31 75.27 ± 0.35 70.59 ± 0.42 73.77 ± 0.36
breast-w 94.29 ± 0.16 94.34 ± 0.16 94.09 ± 0.33 94.60 ± 0.20
credit-a 85.68 ± 0.15 86.10 ± 0.23 85.19 ± 0.31 85.77 ± 0.22
dermatology 92.46 ± 0.31 92.40 ± 0.40 91.72 ± 0.35 91.97 ± 0.28
glass 73.94 ± 0.49 73.11 ± 0.61 72.73 ± 0.65 73.52 ± 0.42
heart-c 55.50 ± 0.37 55.21 ± 0.41 54.57 ± 0.63 54.83 ± 0.62
hepatitis 78.78 ± 0.43 78.55 ± 0.66 79.50 ± 0.61 78.83 ± 0.55
ionosphere 89.65 ± 0.31 89.95 ± 0.23 89.32 ± 0.30 90.58 ± 0.45
iris 93.24 ± 0.20 93.13 ± 0.26 94.33 ± 0.25 94.47 ± 0.14
liver-disorders 66.72 ± 0.40 66.71 ± 0.41 67.10 ± 0.49 67.98 ± 0.53
parkinsons 86.98 ± 0.65 88.42 ± 0.50 87.88 ± 0.29 87.72 ± 0.55
wine 93.57 ± 0.32 94.51 ± 0.31 94.18 ± 0.56 95.04 ± 0.33
zoo 88.59 ± 0.50 88.67 ± 0.26 89.19 ± 0.41 88.57 ± 0.49

Table 4: Average number of terms (average ± standard error) measured over
tenfold cross-validation. The lowest number of terms for a given data set is
shown in bold.

cAMPB cAMPB [E] cAMPB [D] cAMPB [D+E]

balance-scale 12.64 ± 0.03 12.66 ± 0.05 15.45 ± 0.16 14.32 ± 0.13
breast-l 19.15 ± 0.40 8.65 ± 0.17 34.65 ± 0.82 11.85 ± 0.62
breast-w 8.55 ± 0.12 8.03 ± 0.19 11.90 ± 0.21 9.50 ± 0.28
credit-a 17.54 ± 0.32 13.71 ± 0.38 35.53 ± 0.74 25.23 ± 0.64
dermatology 44.47 ± 0.63 43.93 ± 0.63 42.39 ± 0.66 41.89 ± 0.57
glass 10.73 ± 0.14 9.99 ± 0.15 13.24 ± 0.25 12.61 ± 0.22
heart-c 27.65 ± 0.58 25.10 ± 0.57 38.66 ± 0.68 29.90 ± 0.71
hepatitis 10.87 ± 0.17 10.36 ± 0.40 12.71 ± 0.43 11.47 ± 0.20
ionosphere 11.04 ± 0.17 9.96 ± 0.25 15.35 ± 0.38 11.38 ± 0.32
iris 4.92 ± 0.08 4.17 ± 0.13 5.04 ± 0.11 4.13 ± 0.05
liver-disorders 11.78 ± 0.08 11.49 ± 0.12 29.66 ± 0.30 23.70 ± 0.50
parkinsons 7.02 ± 0.11 5.96 ± 0.08 7.94 ± 0.15 7.00 ± 0.15
wine 4.75 ± 0.08 3.83 ± 0.07 5.66 ± 0.14 4.42 ± 0.07
zoo 6.70 ± 0.09 7.12 ± 0.10 6.97 ± 0.10 7.41 ± 0.19

Table 5: Statistical test results according to the non-parametric Friedman test
with the Hommel’s post-hoc test. Statistically significant differences at the
α = 0.1 level are tabulated in bold and differences at the α = 0.05 level are
underlined.

Configuration Average Rank Adjusted pHomm

(i) Predictive Accuracy

cAnt-MinerPB [D+E] (c) 2.07 –

cAnt-MinerPB [E] 2.43 0.4642

cAnt-MinerPB 2.57 0.4642

cAnt-MinerPB [D] 2.93 0.2369

(ii) Model Size

cAnt-MinerPB [E] (c) 1.43 –

cAnt-MinerPB 2.29 0.0789

cAnt-MinerPB [D+E] 2.57 0.0383

cAnt-MinerPB [D] 3.71 8.4E-6

test. The use of the error-based rule-list quality (cAnt-MinerPB [E]) had a simi-
lar predictive accuracy to the original cAnt-MinerPB, achieving a similar average
rank. The use of the dynamic rule quality function (cAnt-MinerPB [D]) has not
led to an improvement in predictive accuracy, achieving the lowest average rank.
In terms of the discovered model size, the use of the error-based rule-list qual-
ity (cAnt-MinerPB [E]) led to a statistically significant improvement in the size
of the discovered lists, reducing the average number of terms in the lists. The
use of the dynamic rule quality function selection (cAnt-MinerPB [D] and cAnt-
MinerPB [D+E]) resulted in longer lists and achieved the lowest rank.

The error-based rule-list function has shown significant improvement in terms
of the size of the discovered lists of rules, without a drop in accuracy. This is
a very useful finding as the cAnt-MinerPB algorithm suffered from increased
list size, which now can be avoiding by the use of the new error-based rule-list
function. The dynamic rule quality function selection, however, has shown no
significant gain in accuracy while performing much worse in terms of size.

During the experiments using the dynamic rule quality function selection we
monitored which rule quality functions were being chosen. The frequency of each
rule quality function being chosen per dataset can be found in Figure 3. The top
image (Figure 3a) shows the results when using the dynamic search alongside
the traditional predictive accuracy rule-list function, whereas the bottom image
(Figure 3b) shows the results when the proposed error-based rule-list function
was used. In Figure 3a, it appears that four rule quality functions were being used
more often quite consistently, except in the case of the zoo dataset, suggesting
that the use of these functions can lead to improvements in the accuracy during

ba
la
nc
e.
sc
al
e

br
ea
st
.l

br
ea
st
.w

cr
ed
it.
a

de
rm
at
ol
og
y

gl
as
s

he
ar
t.c

he
pa
tit
is

io
no
sp
he
re

iri
s

liv
er
.d
is
or
de
rs

pa
rk
in
so
ns

w
in
e

zo
o

AccuracyFunction

ConfidenceCoverageFunction

CostMeasureFunction

FmeasureFunction

JaccardFunction

KlosgenFunction

MEstimateFunction

ReducedErrorFunction

RelativeCostMeasureFunction

SensitivitySpecificityFunction

(a) Using the predictive accuracy rule-list function.

ba
la
nc
e.
sc
al
e

br
ea
st
.l

br
ea
st
.w

cr
ed
it.
a

de
rm
at
ol
og
y

gl
as
s

he
ar
t.c

he
pa
tit
is

io
no
sp
he
re

iri
s

liv
er
.d
is
or
de
rs

pa
rk
in
so
ns

w
in
e

zo
o

AccuracyFunction

ConfidenceCoverageFunction

CostMeasureFunction

FmeasureFunction

JaccardFunction

KlosgenFunction

MEstimateFunction

ReducedErrorFunction

RelativeCostMeasureFunction

SensitivitySpecificityFunction

(b) Using the error-based rule-list function.

Fig. 3: Heatmaps showing the frequency at which different rule quality functions
were chosen per dataset—the darker the colour the more often the rule quality
function was used.

training and potentially overfitting. In Figure 3b, however, the pattern is much
less clear and no rule quality function stands out.

5 Conclusion

We have found that the error-based rule-list evaluation function produces a sta-
tistically significant improvement in terms of the size of the discovered lists, and
that there is no detriment to the predictive accuracy. Our second finding was
that the dynamic selection of rule quality functions did not yield any improve-
ments. This leads us to believe that the characteristics of an individual rule
quality function have little effect on the final quality of the discovered lists, and
that any sensible rule quality function can be used.

We have shown that the dynamic selection of rule quality function (used
purely for pruning) has little effect on the quality of the lists, therefore as a
future research direction, it may be interesting to investigate the use of different
pruning strategies within cAnt-MinerPB that are not necessary dependent on
the rule quality and more related to the quality of a list of rules.

References

1. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. JMLR
7, 1–30 (2006)

2. Dorigo, M., Stüzle, T.: Ant Colony Optimization. The MIT Press (2004)
3. Fayyad, U., Piatetsky-Shapiro, G., Smith, P.: From data mining to knowledge

discovery: an overview. In: Advances in Knowledge Discovery & Data Mining. pp.
1–34. MIT Press (1996)

4. Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010),
http://archive.ics.uci.edu/ml

5. Fürnkranz, J., Flach, P.: ROC ‘n’ Rule Learning—Towards a Better Understanding
of Covering Algorithms. Machine Learning 58, 39–77 (2005)

6. Garćıa, S., Herrera, F.: An Extension on ‘Statistical Comparisons of Classifiers
over Multiple Data Sets’ for all Pairwise Comparisons. JMLR 9, 2677–2694 (2008)

7. Janssen, F., Fürnkranz, J.: On the quest for optimal rule learning heuristics. Ma-
chine Learning 78, 343–379 (2010)

8. Martens, D., Baesens, B., Fawcett, T.: Editorial survey: swarm intelligence for data
mining. Machine Learning 82, 1–42 (2011)

9. Otero, F., Freitas, A., Johnson, C.: A New Sequential Covering Strategy for Induc-
ing Classification Rules with Ant Colony Algorithms. To appear in IEEE Trans.
on Evolutionary Computation (2012)

10. Parpinelli, R., Lopes, H., Freitas, A.: Data Mining with an Ant Colony Optimiza-
tion Algorithm. IEEE Trans. on Evolutionary Computation 6(4), 321–332 (2002)

11. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA (1993)

12. Salama, K., Abdelbar, A.: Exploring Different Rule Quality Evaluation Functions
in ACO-based Classification Algorithms. In: Swarm Intelligence (SIS), 2011 IEEE
Symposium on. pp. 1–8 (2011)

13. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, 3rd edn. (2011)

