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Abstract
Longitudinal datasets have an added time index in
their features, representing repeated measures of
the same variables. This added temporal infor-
mation increases the complexity of data represen-
tation, and carries meaningful information about
the evolution of a feature’s values throughout the
time a study is conducted. This article introduces a
new taxonomy of machine learning approaches to
cope with longitudinal data, which are categorised
as data transformation approaches and algorithm-
adaptation approaches. Data transformation tech-
niques transform the longitudinal data into a for-
mat that can be used by standard machine learn-
ing algorithms, possibly losing the time informa-
tion in the data. Conversely, algorithm adaptation
approaches change existing machine learning tech-
niques to make them exploit the temporal informa-
tion present in the input longitudinal data.

1 Introduction
Longitudinal datasets, where each data instance has vari-
ables repeatedly measured across multiple time points (called
‘waves’), are increasingly important in many areas, particu-
larly in biomedical science, due to the strong interest in un-
derstanding a disease’s evolution across the lifetime of in-
dividuals. Longitudinal databases of ageing [Kaiser, 2013],
[Ribeiro et al., 2017] are particularly relevant for this, since
old age is the greatest risk factor for a number of diseases.

However, although there are many supervised machine
learning (ML) algorithms for classification and regression,
few of them can directly cope with longitudinal datasets, and
there is a general lack of survey papers discussing how super-
vised ML algorithms can cope with longitudinal data (some
exceptions are discussed in Section 2).

In this context, this work presents a short survey of studies
where supervised ML methods have been applied to longi-
tudinal ageing-related datasets – where usually the class or
target variable to be predicted represents the occurrence of
some age-related disease.

This work is organised as follows. In Section 2 we briefly
review related surveys (or reviews) on this topic, including
mainly a simple taxonomy for categorising ML studies ap-
plied to longitudinal data previously proposed in [Jie et al.,

2017] – the only taxonomy of this kind so far in the liter-
ature, to the best of our knowledge. In Section 3, we dis-
cuss the limitations of that simple taxonomy and then we pro-
pose a new, more detailed taxonomy. This taxonomy has two
dimensions, the first one involving the distinction between
data transformation and algorithm adaptation. The former
approach consists of transforming longitudinal data into stan-
dard, non-longitudinal data, so that standard supervised ML
algorithms can be applied (reviewed in Section 4). The lat-
ter approach involves modifying an existing ML algorithm to
make it directly cope with (untransformed) longitudinal data
(reviewed in Section 5). The second dimension distinguishes
between different types of data transformation. The discus-
sions in Sections 4 and 5 are summarised in Section 6.

By describing how different studies fit into the different
categories of approaches associated with the new proposed
taxonomy, we can hopefully get more insight about impor-
tant similarities and differences, as well as the pros and cons,
of different supervised ML techniques for analysing longitu-
dinal ageing-related datasets, which could lead to the design
of better ML algorithms for this type of data.

2 Related Surveys (or Reviews)
Kaiser (2013) has reviewed a number of longitudinal
databases of human ageing, focusing on the original purpose
and the types of data included in the databases, but without
any significant discussion on ML methods for analysing such
data. Ribeiro et al. (2017) proposed a taxonomy focused
on categorising different types of ageing-related variables,
rather than categorising supervised ML methods for coping
with longitudinal data. Also, they review mainly the use of
classical statistical methods (e.g. logistic regression), rather
than highly non-linear machine learning methods.

The most related work to this current work is [Jie et al.,
2017], which categorises supervised ML methods that use
data from multiple time-points into four categories, based on
the number of input and output time-points used by the ML
method: (1) Single-time-point Input and Single-time-point
Output (SISO), (2) Single-time-point Input and Multiple-
time-points Output (SIMO), (3) Multiple-time-points Input
and Single-time-point Output (MISO), and (4) Multiple-time-
points Input and Multiple-time-points Output (MIMO). In the
terminology used in this work, the inputs are features, the out-
puts are target variables, and time points are waves. Hence, a



SISO dataset has a single wave with features and target vari-
ables. A SIMO dataset also has features from a single wave,
but the target variables span multiple waves. A MISO dataset
has features in multiple waves but target variables in a single
wave (typically, the last wave). A MIMO dataset has both
features and target variables available in multiple waves.

3 A New Taxonomy of ML Approaches to
Cope with Longitudinal Data

As discussed earlier, longitudinal datasets can be categorised
based on the number of input and output time-points used by
the ML method – i.e. the number of waves with features and
target variable(s). However, this is a very high-level, coarse-
grained categorisation, since it just refers to the cardinalities
of the sets of features and class variables, without indicating
how a ML algorithm would cope with the longitudinal nature
of the underlying dataset. For successfully applying ML to
such longitudinal datasets we need to choose a more specific
approach to cope with the longitudinal nature of the data.

In this section we propose a new taxonomy of supervised
ML approaches to cope with longitudinal data, which is more
focused on how supervised ML algorithms can process lon-
gitudinal data. The proposed taxonomy has two dimensions.
The first dimension involves a distinction between the data-
transformation and the algorithm-adaptation approaches. In
this approach, the longitudinal (temporal) data is first trans-
formed into a format that can be directly used by standard
supervised ML algorithms. Then, those algorithms are ap-
plied to the transformed data. The main advantages of this
approach are its simplicity and generality, since it allows the
use of many existing supervised ML algorithms. The dis-
advantage is that the data transformation usually loses some
relevant temporal information about the data. Conversely, the
algorithm-adaptation approach is more complex and is spe-
cific to each type of supervised ML algorithm, but it can po-
tentially exploit better the full temporal information available
in the original dataset.

For the second dimension, we propose a categorisation of
approaches for representing longitudinal features in a way
that it is suitable for a standard (non-longitudinal) supervised
ML algorithm. We focus on longitudinal features (inputs), as
their representation is more commonly addressed in the lit-
erature than the representation of longitudinal class variables
(outputs). Actually, the longitudinal ML studies reviewed in
this work fall into the previously mentioned MISO or MIMO
categories of [Jie et al., 2017]’s taxonomy (both those cate-
gories contain features in multiple waves).

In order to describe feature representations, we use the fol-
lowing notation. Consider a longitudinal dataset with t con-
secutive waves W1, . . . ,Wt, each of those comprised by d
features and n instances (typically individuals, in longitudi-
nal datasets of human ageing). As shown in Figure 1, we have
identified four different approaches for coping with longitu-
dinal (varying across time) features, in order to put the dataset
into a format suitable for a supervised ML algorithm.

In the first approach (Figure 1(a)), denoted SepWav (Sep-
arate Waves), the ML algorithm receives as input one wave
at a time. In the second approach, denoted AggrFunc, some
aggregation function(s) – e.g., the mean or mode – is used to

Figure 1: Four feature representation approaches.

aggregate all values of a feature across multiple waves into
a single value. This approach has the advantage of giving
a lower dimensionality dataset, with summarised features, to
the ML algorithm. However, this loses detailed information,
and so the ML algorithm is unable to identify more detailed
patterns of variation in a feature’s values across time. By con-
trast, in the next two approaches, the ML algorithm receives
as input the feature values from all waves, as follows.

The third approach, MerWav-Time(+), consists of merg-
ing multiple waves and keeping the features’ time indices.
This allows the use of a “time-aware” ML algorithm, i.e. a
ML algorithm specifically designed or adapted to cope with
longitudinal data where each feature value has a time index.
Hence, using fi,j to denote the value of the i-th feature at the
j-th wave (time index), the ML algorithm should consider the
values of the same feature on different waves (say f1,1 and
f1,2) as something conceptually different from the values of
two different features on the same wave (say f1,1 and f2,1).
How the algorithm should cope with these two types of fea-
ture values is up to the algorithm’s designer; the point is that
this representation provides the algorithm with detailed tem-
poral information, allowing the design of truly longitudinal,
time-aware ML algorithms. The fourth approach, MerWav-
Time(–), consists of merging multiple waves and discarding
the features’ time indices, producing a timeless merged set of
features. In this representation, the ML algorithm is forced
to treat two values of the same feature in two different orig-
inal waves in the same way it treats two values of different
features in the same original wave. To avoid that the merged
dataset have multiple features with the same feature index,
since the time index (wave number) is removed in this rep-



resentation, one can rewrite the indices of all features after
the wave merging process, using sequential incrementing, as
shown in the column headings of the table in Figure 1(d).

The two dimensions of the proposed taxonomy are related
as follows. In general, if the approach chosen in the first
dimension is algorithm adaptation, it is natural to use the
MerWav-Time(+) feature representation in the second dimen-
sion, since this is the only representation that gives the ML
algorithm access to multiple waves with the features’ time
indices. By contrast, if the approach chosen in the first di-
mension is data transformation, one can use any of the three
other feature representations in the second dimension.

4 A Review of Longitudinal ML Studies Using
the Data Transformation Approach

[Zhang et al., 2016] merged data from two consecutive waves
into a single dataset, discarding the features’ time indices
(MerWav-Time(–) representation, Figure 1(d)). The authors
employed a standard (non-longitudinal) decision tree algo-
rithm to predict the Activities of Daily Living (ADL) status
(healthy or disability) in a given wave of the dataset, using
features from that wave and the previous wave. It is impor-
tant to note that the authors used the value of the class label
in the previous wave as a feature, which makes the prediction
problem substantially easier. It seems intuitive that an indi-
vidual that currently has ADL issues (difficulty to perform
daily tasks) will likely still have them in the next wave.

[Mo et al., 2013] also merged data from two waves us-
ing the MerWav-Time(–) representation. The class variable
belonged to the first wave, so they used features from the
second wave to predict the class in a past wave (a counter-
intuitive prediction scenario). Their classification task was
discriminating patients diagnosed with Alzheimer’s disease
from those diagnosed as cognitively normal, using an ensem-
ble of 5 standard classifiers.

A different approach based on the MerWav-Time(–) repre-
sentation was used by [Niemann et al., 2015], who grouped
instances considering the features observed in each wave, cre-
ating features related to clustering information in each wave
(such as an instance’s distance to a cluster’s centroid, the co-
hesion and silhouette index of the instance) and how those
changed in relation to previous waves. The features created
from the clustering results were added to the dataset prior to
feature selection, and the features from the 3 waves were
merged and used for learning ignoring their time indices.
Even though the constructed features consider some temporal
information (when comparing clusters across waves), this in-
formation is considered before presenting the data to the ML
algorithm, so the features’ time indices are not available to
the algorithm – i.e., the MerWav-Time(–) representation.

[Minhas et al., 2015] used features from the first 6 waves
of the Alzheimer’s Disease Neuro-imaging Initiative study to
predict the class label on wave 6, using standard SVM to pre-
dict a subject’s conversion from the mild cognitive impair-
ment class to the Alzheimer’s disease class. In the first exper-
iment, they used only the first wave’s feature values for train-
ing (SepWav representation, Figure 1(a)). In the other ex-
periments, they used two aggregation functions, namely the

arithmetic mean and the median of each feature throughout
the waves (AggrFunc representation, Figure 1(b)).

5 A Review of Longitudinal ML Studies Using
the Algorithm-Adaptation Approach

[Adhikari et al., 2015] created a new dataset from the Cardio-
vascular Health Study Cognition Study (CHS-CS) database.
The created dataset had data from subjects of each age in the
65..98 range as waves, totalling 34 waves. For example, the
wave for age 70 had data from all subjects in the CHS-CS
study when they were 70, regardless of when that data was
collected. Their model predicted the odds of either death or
dementia (different models were trained for each prediction
type) of a subject when they reach t + 10 years of age, where
t is the subject’s age at the last wave of the dataset. This
work tackled the classification task by using a Lasso regres-
sion model [Tibshirani, 1996] that considered the features’
time indices (MerWav-Time(+) representation, Figure 1(c)).
The algorithm used two regularizers: a standard Lasso regu-
larizer, which encourages overall sparsity in the coefficients
of the active features (i.e. features with coefficient greater
than 0 in the linear model) in each wave; and the fused Lasso
regularizer [Tibshirani et al., 2005], which encourages conti-
guity in the coefficients of the active features across waves.

Similarly, [Jie et al., 2017] adapted the Lasso algorithm to
predict Mini Mental State Examination and Alzheimer’s Dis-
ease Assessment Scale-Cognitive Subscale scores using lon-
gitudinal magnetic resonance imaging data. They proposed
a novel temporally-constrained group Lasso method, named
tgLasso, which uses two weight smoothing techniques. The
first is a fused smoothness term, where two weights for the
same feature at adjacent waves have a small difference (like in
the above fused Lasso). The second is a new output smooth-
ness term, which requires that the model’s outputs at two
adjacent waves also have a small difference. In one experi-
ment, four waves of data were used separately for regression
(SepWav representation). In the other experiments, two or
more consecutive waves were joined into a single dataset and
the features’ time indices were considered by the proposed
tgLasso regulariser (MerWav-Time(+)). They tested predict-
ing the scores in all waves, one at a time, using only the first
wave’s features, and gradually incremented the number of
feature waves included in the dataset. The results showed that
tgLasso significantly improved regression performance when
compared with the standard and group Lasso methods.

In another algorithm-adaptation work, [Du et al., 2015]
extended a previous longitudinal classification SVM, LSVC
[Chen and DuBois Bowman, 2011], by making it a longitu-
dinal regression algorithm. LSVC extends SVM to longitu-
dinal data by simultaneously estimating the traditional SVM
separating hyperplane parameters with the proposed tempo-
ral trend parameters, taking into account dependencies within
subjects; and the same principle was used to derive the longi-
tudinal regression SVM. They created two types of datasets,
the first, using the MerWav-Time(+) representation, i.e, merg-
ing the data from multiple waves and keeping the features’
time indices, which were used to calculate temporal trend pa-
rameters. The second approach created a new dataset with



Table 1: Summary of the main characteristics of the reviewed studies

Study Machine Learning
(ML) task

Main type of
ML algorithm

Jie et al.’s
taxonomy

Proposed Taxonomy
Main

approach
Feature

representation

[Zhang et al., 2016] Classification Decision tree MISO Data
transformation MerWav-Time(-)

[Mo et al., 2013] Classification Ensemble of 5
classifier types MISO Data

transformation MerWav-Time(-)

[Niemann et al., 2015] Classification RF, DT, NB,
KNN MISO Data

transformation MerWav-Time(-)

[Minhas et al., 2015] Classification SVM MISO Data
transformation

SepWav,
AggrFunc

[Adhikari et al., 2015] Classification Fused Lasso MIMO Algorithm
adaptation MerWav-Time(+)

[Jie et al., 2017] Regression Temporal
Group Lasso MIMO Algorithm

adaptation
SepWav,
MerWav-Time(+)

[Du et al., 2015] Regression Longitudinal
SVR MIMO Algorithm

adaptation
AggrFunc,
MerWav-Time(+)

[Huang et al., 2016] Regression Random
Forest MIMO Algorithm

adaptation MerWav-Time(+)

[Radovic et al., 2017] Feature selection Temporal
mRMF MISO Algorithm

adaptation MerWav-Time(+)

[Pomsuwan and Freitas, 2017] Feature selection Modified CFS MISO Algorithm
adaptation MerWav-Time(+)

only the means of the feature values from all waves. The
MerWav-Time(+) representation led to better results.

[Huang et al., 2016]’s study aims to predict some longi-
tudinal Alzheimer’s Disease clinical scores. The model pre-
dicted the score for each individual in all the waves after the
first wave, using features from the current and all past waves
of the dataset as input (MerWav-Time(+)). They presented a
Random Forest (RF) regression algorithm adapted for sparse
regression. The proposed RF algorithm outperformed tradi-
tional RF and other popular regression methods: Lasso re-
gression, Ridge regression, and SVM. The RF model with
the best predictive accuracy started at the first wave and used
its feature values to predict the score for the second wave,
then incorporated the predicted feature score into the dataset,
repeating this process until every wave’s feature score predic-
tion was incorporated. Hence, they used multiple instances
of the MerWav-Time(+) representation, since in each run of
the algorithm the feature representation consists of merging
multiple waves and keeping the features’ time indices.

A temporal variation of the minimum Redundancy-
Maximum Relevance (mRMR) filter algorithm for feature se-
lection was proposed by [Radovic et al., 2017]. The temporal
mRMR accepts as input a dataset with multiple waves and
the features’ time indices (MerWav-Time(+)). The time in-
dices are used to calculate class-feature correlations, as well
as similarities between the pairs of features’ values, across
waves. The study aimed to classify patients as symptomatic
or asymptomatic using gene expression data.

[Pomsuwan and Freitas, 2017] merged several waves of
data extracted from the ELSA (English Longitudinal Study
of Ageing) database, maintaining the features’ time indices
(MerWav-Time(+) representation). The features were divided
into groups; each group containing variations of the same
base feature across time. They transformed the data so that

each group would be small enough to be inputted into the ex-
haustive search version of the Correlation-based Feature Se-
lection (CFS) method [Hall, 1999]. This work used biomed-
ical features from three waves of the ELSA study, predict-
ing whether individuals would develop an ageing-related dis-
ease in a later (future) wave. The strategy was tested for 10
different age-related diseases separately (10 binary classifi-
cation problems), using decision-tree and Naive Bayes algo-
rithms. Their proposed method showed an improvement over
the standard CFS greedy forward search applied to all fea-
tures (without dividing the features into groups) when tested
with Nave Bayes, but did not significantly improve the results
when tested with the decision tree algorithm.

6 Summary and Conclusions
Table 1 summarises the main characteristics of the reviewed
studies, namely: the ML task addressed in the study, the main
type of supervised ML algorithm(s) used, the categorisation
of the study based on [Jie et al., 2017]’s taxonomy (Section
2), and finally the categorisation of the study based on the two
dimensions of the proposed taxonomy (Section 3): whether it
used a data-transformation or algorithm-adaptation approach,
and the feature representation approach used. Note that all
the 6 algorithm-adaptation studies used the MerWav-Time(+)
feature representation, which is consistent with the fact that
this is the only representation preserving features from mul-
tiple waves with their time indices, providing the full longi-
tudinal information for the ML algorithm. In some studies,
experiments compared the MerWav-Time(+) representation
against a non-longitudinal representation (SepWav or Aggr-
Func), and in general the former led to better results.

One limitation of this work is that we focused on longitu-
dinal features only. Future work could propose a taxonomy
for coping with longitudinal class variables.
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