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Abstract
Missing values are common in longitudinal
datasets because often data is not collected at all
waves (time points), and choosing the best method
to estimate these values is a challenging task. This
work compares the effectiveness of six imputa-
tion methods in a classification dataset created
from the English Longitudinal Study of Ageing
(ELSA), where the classes are age-related diseases
and the predictive features are mainly biomedical
data. Three of the imputation methods are based
on different approaches for computing the mean
or mode of a feature (for numeric or nominal fea-
tures, respectively), two methods use longitudinal
(temporal) information, and one method uses the 7-
NN (7-Nearest Neighbours) machine learning algo-
rithm. The methods’ effectiveness were measured
using two criteria: (a) how often each imputation
method can be applied (the two longitudinal meth-
ods often cannot be applied to some features); (b)
how accurately they estimate the missing values.
Overall, 7-NN was the most accurate method, but
the two longitudinal methods also performed well
when they could be applied.

1 Introduction
In machine learning, missing values of variables (features)
is a common problem in real-world datasets. Traditionally,
missing values can either be removed from the dataset, ig-
nored (i.e., the machine learning algorithm has to handle them
during its execution), or replaced by an estimated value. The
latter can be done by several methods, usually based on infor-
mation from the known values in the dataset, to approximate
the estimation from the actual value as much as possible.

Longitudinal studies follow a set of subjects over time, and
take repeated measures of variables for each subject at dif-
ferent time points. Longitudinal datasets, derived from these
studies, are prone to high amounts of missing data, mainly
due to attrition (for example, subjects dropping out) [Engels
and Diehr, 2003]. Actually, in the longitudinal dataset used in
this work, the overall proportion of missing values is 38.5%.
This is a strong motivation to investigate the effectiveness of
several missing value imputation methods.

We focus on longitudinal datasets to be used as input to
classification algorithms. Such datasets are composed of in-
stances (the subjects to be classified) and features, which are
variables describing each subject, usually with repeated mea-
sures for each time point (called wave) in the dataset.

Classification algorithms aim to predict the value of a nom-
inal class variable for an instance, based on the values of its
features. These algorithms use training data (a set of instances
with known class values) to create a model for predicting the
class of previously unseen instances (test data).

There are many ways to estimate missing values (some par-
ticular to longitudinal datasets), and selecting the best impu-
tation method is challenging, since no missing value impu-
tation method is the best choice for all types of features and
datasets [Diggle et al., 2002], [Hu et al., 2017], [Mallinck-
rodt, 2013]. The performance of a method depends on sev-
eral factors, such as: a) the data distribution [Santos et al.,
2017]; b) how the missing data appears in the dataset (miss-
ing completely at random, missing at random, or missing not
at random) [Diggle et al., 2002], [Mallinckrodt, 2013]; c) the
proportion of instances with missing values; d) the availabil-
ity of information that can be used to make better imputation.

In this study, we performed experiments on a real-world
longitudinal dataset created from the English Longitudinal
Study of Ageing (ELSA) [Banks et al., 2018], to compare the
effectiveness of six missing value imputation methods. The
ELSA study interviews its core participants (who are at least
50 years old) repeatedly, over the years prior to their retire-
ment and beyond.

As related work comparing different imputation methods,
some studies did not use imputation methods devised specif-
ically for longitudinal data [Belger et al., 2016], [Hu et al.,
2017], while others employ the well-known Last Observa-
tion Carried Forward method [Gad and Abdelkhalek, 2017],
[Minhas et al., 2015], [Zhu, 2014], or several longitudinal
methods [Engels and Diehr, 2003]. For our experiments, we
selected methods from classical statistics, methods made for
longitudinal data, and a machine learning algorithm.

There are two main approaches to evaluate the perfor-
mance of missing value imputation methods. The first is to
evaluate how missing value imputation changes the accuracy
of a classification/regression model [Hu et al., 2017], [Min-
has et al., 2015]. The results of such evaluations are depen-
dent on the algorithm used to create the model. The second



approach is to replace known values in a synthetic [Gad and
Abdelkhalek, 2017], [Zhu, 2014] or real [Belger et al., 2016],
[Engels and Diehr, 2003] dataset, and compare the estimated
values to the ground-truth, calculating the error rate. For our
study, we focused on the second approach, as the results from
this classifier-independent approach are easier to generalise.

One important characteristic that sets our study apart from
the related works is the number of features in our datasets.
The cited studies performed experiments using datasets with
under 10 [Engels and Diehr, 2003], [Gad and Abdelkhalek,
2017], [Zhu, 2014], or between 10 and 20 [Hu et al., 2017],
[Minhas et al., 2015] longitudinal features (in [Belger et al.,
2016] the number of features was not specified). The ELSA
dataset used in this work has 45 longitudinal features, with
their repeated measures totalling 140 features.

Among the cited works, [Engels and Diehr, 2003] has the
most similar evaluation approach. However, in [Engels and
Diehr, 2003] the imputation methods were evaluated on just
4 longitudinal features, whereas our dataset has 45 longitu-
dinal features, representing a wider diversity of feature types
and distributions. In addition, our work includes continuous,
discrete, and unordered nominal features. The latter feature
type requires different treatment, and is not present in any of
the cited related works.

This article is organised as follows. Section 2 describes the
missing value imputation methods used in our experiments.
Section 3 presents our dataset creation process. Section 4 has
our experimental results and discussion. Section 5 presents
our conclusions and future work suggestions.

2 The Missing Value Imputation Methods
Our experiments use six missing value imputation methods
[Gad and Abdelkhalek, 2017], [Mallinckrodt, 2013], [Al-
bridge et al., 1988], described below. In the following, Fi,t

denotes the value of feature Fi at wave t, and I denotes the
instance where the missing value is being imputed.

• Global mean/mode: Replace the missing values in fea-
ture Fi,t by the mean or mode (for numeric or nomi-
nal features, respectively) of Fi,t over all instances with
known values for it in the dataset.

• Class-based mean/mode: Similar to Global mean/mode,
but the values used are those in the dataset with the same
class value as instance I .

• Age-based mean/mode: Similarly to Global mean/
mode, but the mean/mode is computed over the in-
stances with the same age value as instance I . This is
analogous to the class-based imputation method, as age
is a key feature to divide the dataset into sections (since
in our ELSA dataset all class variables are age-related
diseases). A similar approach was used by [Zhao et al.,
2018], which replaced missing values with the median
from individuals with the same age and sex.

• Prev: If a value of feature Fi,t is unknown for instance
I , input the value of Fi,t for I in the previous wave, i.e.,
input Fi,t−1. On longitudinal datasets, the Last Observa-
tion Carried Forward approach is typically applied, but
in our ELSA dataset there is a gap of 4 years between

consecutive waves, so we decided to consider only val-
ues from the previous wave as viable for imputation.
• PrevNext: If a value of feature Fi,t is unknown, and both

the values of Fi,t+1 and Fi,t−1 are known, replace the
missing value by: a) for numeric features, the mean of
Fi,t+1 and Fi,t−1 for instance I; b) for nominal features,
only replace the missing value if both values of Fi,t+1

and Fi,t−1 are the same (repeat that value for Fi,t). Note
that, as with the Prev method, only values from the near-
est waves are considered viable for imputation, to avoid
imputing values too far into the future or too long past.
• K-Nearest Neighbours: Replace the missing value of a

feature Fi,t by the prediction of a K-Nearest Neighbours
algorithm with k = 7 (i.e., 7-NN). We evaluated dif-
ferent k values (1,3,5,7,9) in preliminary experiments,
and observed little difference in the average error val-
ues. In this work we report results for k = 7, which
produced the best results overall. We leave the possibil-
ity of optimising the value of k in more detailed exper-
iments for future work. To avoid the problem of high
dimensionality, 7-NN calculates the Euclidean distance
between instances using only a feature subset, namely
the values of F in other waves, and the subject’s age and
gender. Note that, in cases where the value of Fi was
not known in all other waves for the current instance, we
considered this method could not be applied. The miss-
ing value is replaced by the mean (for numeric features)
or mode (for nominal features) value of Fi,t among the
7 nearest neighbours. Note that the 7-NN can be consid-
ered a longitudinal imputation method, in the sense that
its distance function takes into account the variation of a
feature’s values across the waves (time points).

3 Experimental Methodology
Consider a set of n missing value imputation methods
S = {M1, ...,Mn}, and a dataset with a set of d features
{F1, ..., Fd}. For each feature Fi at wave k (Fi,k) in a dataset,
we create a subset of the original dataset, composed of all
the instances with known values for Fi,k (removing instances
where Fi,k’s value is missing). This subset is hereafter called
the known data subset for Fi,k. Then, each method from S
has its average error rate measured in a 5-fold cross-validation
performed in that known data subset. That is, the known data
subset for the current feature Fi,k is randomly partitioned into
5 folds of about the same size, and each imputation method is
executed 5 times, each time using a different fold as a held-
out ”validation” subset, and the other four folds as the ”esti-
mation” subset. This process is summarised in Figure 1.

In the validation subset, the known values of Fi,k are tem-
porarily hidden from the imputation method being evaluated,
and the method uses all instances in the estimation subset to
determine the best value to be imputed for each instance in
the validation subset. The estimated values are then com-
pared with the true, known values of Fi,k in the validation
set, and an error measure is computed.

If Fi,k is nominal, the error is 0 or 1, depending on whether
or not the estimated value matched the known value, respec-
tively. If Fi,k is numeric, the error is the absolute value of the



Figure 1: Cross-validation approach to evaluate missing value im-
putation methods.

difference between the estimated and known values of Fi,k.
The error associated with each method is the average of its
errors over all instances in the validation subset, over the 5
iterations of the cross-validation procedure.

The methods are then ranked based on their average error,
where the smallest-error method is assigned rank 1 and the
largest-error method is assigned the last rank. If two methods
have the same average error, they share a rank (e.g.: if two
methods tie for the first place, both get a rank of 1.5).

4 Dataset Creation
For our experiments, we used a real-world longitudinal
dataset, created from data extracted and processed from the
English Longitudinal Study of Ageing (ELSA) [Banks et al.,
2018]. The dataset spans 4 waves (time points), where each
pair of consecutive waves is separated by a 4-year period.

The dataset involves the classification task of machine
learning. It has 140 features (40 unordered nominal and
100 numeric features), of which only age and gender do not
have missing values. Most features refer to biomedical data,
mainly results from tests performed during nurse visits to
each subject in waves 2, 4, 6 and 8 of the study. Most fea-
tures were measured in all those 4 waves, but many measure-
ments have missing values due, e.g., to subjects dropping out
of the study or entering the study at a later wave. In total,
38.5% of all feature values (across all 4 waves) are missing.
The dataset also has the diagnoses (positive or negative value)
of 10 different age-related diseases as class variables, whose
values have to be predicted by a classifier.

We preprocessed the data to ensure all features had the
same measurement unit and were represented by a single
value at each wave (e.g., features with multiple values per
wave, from repeated tests, were averaged to produce a single
value per wave). As there were no definitive variables indi-
cating whether a subject was diagnosed with each of the 10
age-related diseases at each wave, we inferred the class values
from questions in the ELSA questionnaire such as: whether
the subject had been recently diagnosed with the disease, and

whether the patient confirms the disease diagnosis from past
waves. For more details on the dataset’s creation, please see
[Pomsuwan and Freitas, 2017].

5 Computational Results and Discussion
For each imputation method we computed: a) its applicabil-
ity, i.e., for how many missing values the method could be
applied; b) its normalised average error rate, for nominal and
numeric features separately; and c) its average error-based
rank.

Regarding the applicability of each method, 7-NN could
not be applied to features that didn’t have repeated measure-
ments (2 out of the 138 features with missing values). All
the mean/mode-based methods (Age-based, Class-based, and
Global mean/mode) can be applied to every feature, except
that the Age-based method was not applicable in rare cases
where there was no known feature values for subjects of the
same age of the current instance’s subject. The PrevNext and
Prev methods could not be applied in many cases, by defini-
tion; as the Prev method requires the feature to have a known
value in the previous wave, and the PrevNext method requires
a known value in both the previous and the next wave in the
dataset, which is even less common.

In the last column of Tables 1 and 2, we show the error
rates for an ”Oracle” method, which is not a valid imputation
method but indicates an over-optimistic error measure, as fol-
lows. The Oracle knows the error rates of each of the 6 impu-
tation methods on the validation set (for each cross-validation
fold), for each feature, even though it does not know the true
value of the feature for each instance in the validation set.
Hence, to estimate missing values in the validation set, for
each feature, the Oracle first uses the method with the small-
est error on the validation set to estimate all missing values
for which that method can be applied. Next, if there are still
missing values for that feature in the validation set, the Or-
acle uses the second smallest-error imputation method in all
applicable cases, and so on, until all missing values have been
estimated. Hence, the Oracle’s error rate is a kind of unreal-
istic lower bound for the imputation error rate.

Tables 1 and 2 show the mean error rate over the nomi-
nal features and the mean normalised absolute error over the
numeric features, for each method. Table 1 considers the en-
tire dataset, whilst Table 2 considers only the feature values
where all methods could be applied. In each Table, the small-
est error in each row, excluding the over-optimistic Oracle’s
error, is shown in bold face.

The normalisation method used was min-max, where the
absolute error for each estimated feature value is divided by
the difference between the minimal and maximum values ob-
served for that feature, producing errors in the [0..1] range.

Considering all features (Table 1), 7-NN was the most ac-
curate method for both nominal and numeric features. As
the PrevNext and Prev methods could not be applied in many
cases, they were assigned the maximum error value (1) in
those cases, which greatly hindered their results. The differ-
ence between the error rates of the best imputation method
and the Oracle is smaller for nominal features (1.1%) than for
numeric features (1.8%).



Table 1: Error rates (in [0..1]) of the imputation methods, computed by 5-fold cross-validation. For nominal features each value represents
the mean error rate (over 39 features) and for numeric features each value is the mean normalised absolute error (over 99 features).

Feature type (number) 7-NN Age-based Class-based Global mean Prev PrevNext Oracle
Nominal (39) 0.083 0.09 0.112 0.113 0.441 0.749 0.072
Numeric (99) 0.090 0.102 0.103 0.104 0.402 0.656 0.072

All features (138) 0.088 0.099 0.106 0.106 0.413 0.684 0.072
Applicability: % of cases replaced 81.79% 97.08% 100.00% 100.00% 35.57% 2.95% 100.00%

Table 2: Error rates (in [0..1]) of the imputation methods, computed by 5-fold cross-validation, considering only instances where the PrevNext
and Prev methods were applicable. For nominal features each value represents the mean error rate (over 14 features), and for numeric features
each value is the mean normalised absolute error (over 40 features).

Feature type (number) 7-NN Age-based Class-based Global mean Prev PrevNext Oracle
Nominal (14) 0.075 0.099 0.108 0.108 0.067 0.086 0.062
Numeric (40) 0.096 0.086 0.101 0.101 0.075 0.061 0.059

All features (54) 0.081 0.096 0.102 0.103 0.073 0.067 0.06

Regarding the percentage of missing values in the dataset
that could be replaced by each method, 7-NN was not ap-
plicable in almost a fifth of the cases, involving instances
where there were no known values of the feature being re-
placed in other waves. Importantly, for most missing values
in our dataset, the longitudinal methods Prev and PrevNext
could not be applied, either because the method was not ap-
plicable for that feature or because the previous and/or next
value was unknown in the current instance.

On the other hand, when we only considered the error rates
for features where all methods could be applied (Table 2),
both longitudinal methods outperformed all others, with Pre-
vNext obtaining the smallest average error rate over the 54
features (roughly 39% of the features in the dataset). Hence,
when applicable, the longitudinal methods provided more ac-
curate estimations of missing values than the other methods,
including the more complex machine learning method 7-NN.
The difference between the error rates of the best method and
the Oracle are 0.5% and 0.2%, for nominal and numeric fea-
tures respectively.

We ranked the imputation methods based on their average
error rate for each feature, where a method’s error rate for
a feature is the average of its error over all estimated val-
ues of that feature across all waves (time points). The aver-
age ranks (over the 43 features) were as follows: 2.76 for the
7-NN, 2.69 for Age-based mean/mode, 3.22 for Class-based
mean/mode, 3.58 for Prev, 3.84 for Global mean/mode, and
4.67 for PrevNext. Note that, as we assigned the maximum
error value to the PrevNext and Prev when they could not be
applied, their average ranks have been negatively impacted.

Then, we performed the Wilcoxon signed rank test, ap-
plying the Holm-Bonferroni Sequential Correction [Demšar,
2006], to compare the feature ranks of the method with the
smallest average error rate, 7-NN, to all others, pairwise,
with a significance level of α = 0.05. In every test result,
there was statistically significant evidence against the null
hypothesis that the methods’ performances were equivalent,
meaning 7-NN’s performance was indeed superior to each of
the other methods. The p-values obtained in the tests were:
6.0e−9, 5.59e−9, 5.58e−9, 6.01e−9 and 5.58e−9, when
7-NN was compared against Age-based mean/mode, Class-

based mean/mode, Prev, Global mean/mode and PrevNext,
respectively.

6 Conclusions

We compared the applicability and estimation accuracy of six
missing value imputation methods. The experiments were
performed on a dataset created from the English Longitudi-
nal Study of Ageing (ELSA), with 138 features of biomedical
data, across four waves of the study.

We analysed how well each method estimated the miss-
ing values in a classifier-independent scenario. For the ex-
periments, we hid some known feature values from the im-
putation methods, and used the other known values to esti-
mate them. Then, the estimated values were compared to the
ground truth (the previously hidden known values), to obtain
an average error rate for each imputation method.

The results showed that each of the six imputation meth-
ods was the most accurate one for some features in the
datasets, which corroborates the notion that no single im-
putation method is the best for every feature. However, as
expected, the most sophisticated method, 7-NN, which is a
machine learning algorithm, was the best-performing method
for both the nominal and the numeric features of the dataset.
In addition, the 7-NN can be considered a longitudinal impu-
tation method, in the sense that it uses all the values of a fea-
ture across the different waves (time points) for estimating a
missing value. The 7-NN method also had high applicability
(81.8%), and the statistical analysis confirmed a significant
difference between the estimation accuracy of 7-NN and the
other methods.

The two methods devised specifically for longitudinal data
(Prev and PrevNext) had very low applicability (35.57% and
2.95%, respectively). However, they had the smallest average
error rates over the cases where they could be applied. That
shows the value of considering the often ignored temporal as-
pect of the data when handling missing data in a longitudinal
dataset.

Future work could involve experiments with other imputa-
tion methods and other longitudinal datasets of ageing.
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