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ABSTRACT  
 
In Machine Learning and Data Mining, most of the works in classification 

problems deal with flat classification, where each instance is classified in one of a set of 

possible classes and there is no hierarchical relationship between the classes. There are, 

however, more complex classification problems where the classes to be predicted are 

hierarchically related. This chapter presents a tutorial on the hierarchical classification 

techniques found in the literature. We also discuss how hierarchical classification 

techniques have been applied to the area of Bioinformatics (particularly the prediction of 

protein function), where hierarchical classification problems are often found.  

 

INTRODUCTION 

Classification is one of the most important problems in Machine Learning (ML) and 

Data Mining (DM). In general, a classification problem can be formally defined as:  

 

Given a set of training examples composed of pairs {xi, yi}, find a function 

f(x) that maps each xi to its associated class yi, i = 1, 2, …, n, where n is 

the total number of training examples.  

 

After training, the predictive accuracy of the classification function induced is evaluated 

by using it to classify a set of unlabeled examples, unseen during training. This 



evaluation measures the generalization ability (predictive accuracy) of the classification 

function induced. 

The vast majority of classification problems addressed in the literature involves flat 

classification, where each example is assigned to a class out of a finite (and usually 

small) set of classes. By contrast, in hierarchical classification problems, the classes are 

disposed in a hierarchical structure, such as a tree or a Directed Acyclic Graph (DAG).   

In these structures, the nodes represent classes. Figure 1 illustrates the difference between 

flat and hierarchical classification problems. To keep the example simple, Figure 1(b) 

shows a tree-structured class hierarchy. The more complex case of DAG-structured class 

hierarchies will be discussed later. In Figure 1, each node – except the root nodes – is 

labeled with the number of a class. In Figure 1(b), class 1 is divided into two sub-classes, 

1.1 and 1.2, and class 3 is divided into three sub-classes. The root nodes are labeled “any 

class”, to denote the case where the class of an example is unknown. Figure 1 clearly 

shows that flat classification problems are actually a particular case of hierarchical 

classification problems where there is a single level of classes, i.e., where no class is 

divided into sub-classes. 
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Figure 1: An example of flat vs. hierarchical classification 

 

 



In the flat classification problem of Figure 1(a), there is a single level of classes to be 

assigned to an example, but the class hierarchy of Figure 1(b) offers us more flexibility to 

specify at which level of the hierarchy a class will be assigned to an example.  

For instance, one could require that an example should be assigned to a leaf, most 

specific, class. In the case of Figure 1(b), this means that the candidate classes to be 

assigned to this example are 1.1, 1.2, 2, 3.1, 3.2 and 3.3. At first glance, by defining that 

only leaf classes can be assigned to an example, we are implicitly transforming the 

hierarchical classification problem into a flat one, since we could use a flat classification 

algorithm to solve it. Note, however, that in this case the flat classification algorithm 

would ignore valuable information in the structure of the class hierarchy. For instance, 

the fact that class 1.1 is more similar to class 1.2 than to class 3.1. By contrast, a truly 

hierarchical classification algorithm will take into account the structure of the class 

hierarchy. Even if we require the hierarchical algorithm to perform class assignments at 

the leaf level, the algorithm exploits the structure of the class hierarchy to look for a more 

accurate classification function. 

On the other hand, we could be more flexible and allow the hierarchical classification 

algorithm to classify an example at any appropriate level, depending on the predictive 

power of the available data. For instance, an example could be reliably classified as 

having the specific class 1.1, whilst, perhaps, another example could only be reliably 

classified as having the general class 1.  

Note that, in general, class assignments at internal nodes can be carried out in a more 

reliable manner than class assignments at leaf nodes, because discriminating between the 

most specific classes at leaf nodes is more difficult than discriminating between the more 

general classes at internal nodes and, as a related factor, the number of examples per leaf 

node tends to be considerably smaller than the number of examples per internal node. On 

the other hand, class assignments at the leaf node tend to be more useful than class 

assignments at internal nodes, because the former provides more information about the 

class of an example. This trade-off between the reliability of a class assignment and its 

usefulness is common in hierarchical classification problems. 

This chapter also presents applications of concepts and methods of hierarchical 

classification to problems in Bioinformatics, at present one of the most important groups 



of  DM applications. The application of DM techniques to Bioinformatics is a very active 

research area, and it is not feasible to address the entire area in a single book chapter. 

Hence, this chapter focuses on a particular kind of Bioinformatics problem, namely the 

prediction of protein function.  

Proteins are large molecules that execute nearly all of the functions of a cell in a living 

organism (Alberts et al., 2002). They consist essentially of long sequences of amino 

acids, which fold into structures that usually minimize energy. Proteins can fold into a 

large number of structures, where different structures are usually associated with different 

functions. Due to the progress in genome sequencing technology, the number of proteins 

with known sequence has grown exponentially in the last few years. Unfortunately, the 

number of proteins with known structure and function has grown at a substantially lower 

rate. The reason for this is that, in general, determining the structure of a protein is much 

more difficult, time-consuming and expensive than determining its sequence. The main 

database with information about protein structures is the Protein Data Bank (PDB), which 

contains information related to experimentally-determined structures. The doubling time 

for the number of experimentally-determined protein structures available in the PDB has 

been recently calculated as 3.31 years, which, although impressive, represents a 

considerably slower growth than the doubling time for the number of sequences in the 

GenBank, which is just 1.4 years (Higgs & Attwood, 2005).  

There are several motivations to investigate the application of concepts and methods 

of hierarchical classification to the prediction of protein function. First, proteins have a 

large diversity of functions, which can be categorized in many different ways. This 

naturally gives rise to hierarchical classification problems where the classes to be 

predicted are arranged in a tree-like or a DAG-like structure.  

Furthermore, bearing in mind that the ultimate goal of DM is to discover useful 

knowledge, the prediction of protein function can potentially lead to better treatment and 

diagnosis of diseases, design of more effective medical drugs, etc., constituting an 

important and much needed application of DM in the context of Intelligent Systems for 

human health improvement. An additional, related, motivation is that the contents of all 

the major protein databases are freely available on the web. Thus, DM researchers do not 



have to face the problems of data privacy and restricted data access found in 

commercially-oriented DM applications. 

Another motivation to focus this chapter on hierarchical classification applied to the 

prediction of protein function is that this is still a relatively new, under-explored research 

area, where there are many opportunities for further research and improvement of current 

practice. For instance, the vast majority of works on hierarchical classification for the 

prediction of protein function are still using a conventional measure of predictive 

accuracy for flat classification problems. In principle, it would be more effective to use a 

measure of predictive accuracy tailored for hierarchical classification problems, as will be 

discussed later. 

It should be noted that, recently, there has been an extensive research on hierarchical 

classification, but the majority of that research has been oriented to Text Mining, rather 

than Bioinformatics – see e.g. the survey of (Sun et al., 2003b). On the other hand, a large 

amount of work has been lately published reporting the use of DM techniques in 

Bioinformatics. However, the majority of this research focuses on the analysis of gene 

expression  data (Slonim et al, 2000), (Jiang et al., 2004) which is very different from the 

problem of predicting protein function addressed in this chapter. Given the 

aforementioned exponential growth of protein sequence data available in biological 

databases and the important role of effective protein function predictions in improving 

understanding, diagnosis and treatment of diseases, it is timely to focus on the problem of 

protein function prediction.  

To summarize, this chapter has two main contributions. First, it presents a 

comprehensive tutorial on hierarchical classification, discussing the main approaches and 

different techniques developed for solving these problems. Second, it discusses how 

concepts and methods from hierarchical classification have been applied to a very 

challenging and important DM problem in Bioinformatics, namely the prediction of 

protein function. 

The remainder of this chapter is organized as follows. The second section presents a 

gentle introduction to the problem of protein function prediction for data miners who are 

not familiar with molecular biology. The third section describes several approaches for 

categorizing hierarchical classification problems.  The fourth section covers different 



hierarchical classification methods, including methods based on transforming a 

hierarchical classification problem into one or more flat classification problems. The fifth 

section reviews several works on hierarchical classification applied to the prediction of 

protein function. Finally, the sixth section presents the conclusions and future research 

directions. 

 

 

AN OVERVIEW OF PROTEIN FUNCTION PREDICTION 

Proteins are large molecules consisting of long sequences (or chains) of amino acids, 

also called polypeptide chains, which fold into a number of different structures and 

perform nearly all of the functions of a cell in a living organism.  

We can distinguish four levels of organization in the structure of a protein (Alberts et 

al., 2002). The primary sequence of a protein consists of its linear sequence of amino 

acids. The secondary structure consists of α helices (helical structures formed by a 

subsequence of amino acids) and β sheets (subsequences of amino acids folded to run 

approximately side by side with one another). The tertiary structure consists of the three-

dimensional organization of the protein. Some proteins also have a quaternary structure, a 

term used to refer to the complete structure of protein molecules formed as a complex of 

more than one polypeptide chains. These four levels of protein structure are illustrated in 

Figure 2, adapted from (Lehninger et al., 1998). The leftmost part of the figure shows 

part of a sequence of amino acids – each one with its name abbreviated by three letters. 

This part of the sequence forms an α helix – an element of secondary structure, as shown 

in the second part of the figure. This α helix is part of the larger tertiary structure, as 

shown in the third part of the figure. Finally, the rightmost part of the figure shows two 

polypeptide chains assembled into a larger quaternary structure. 

 

 

 



 
Figure 2: Four levels of structure in a protein 

 

 

In addition to these four levels of organization, there is a unit of organization named 

protein domain, which seems particularly important for the prediction of protein 

functions. A protein domain consists of a substructure produced by some part of a 

polypeptide chain that can fold, independently from other parts of the chain, into a 

compact, stable structure. Therefore, protein domains can be regarded as “higher-level 

building blocks” from which proteins are built. The term “higher-level” has been used to 

distinguish protein domains from the lower-level, fundamental building blocks of 

proteins, namely the amino acids composing its primary sequence. To see the importance 

of protein domains, it has been argued that protein domains, rather than genes, are the 

fundamental units of evolution (Nagl, 2003). The presence of one or more protein 

domains in a given polypeptide chain is often a useful clue to predict that protein’s 

function, since different domains are often associated with different functions.  



The most used approach to predict the function of a new protein given its primary 

sequence consists of performing a similarity search in a protein database. Such database 

contains proteins for which we know both their sequence and function. In essence, the 

program finds the protein whose sequence is most similar to the sequence of the new 

protein. If the similarity is higher than a threshold, the function of the selected protein is 

transferred to the new protein. This method will be hereafter referred to as similarity-

based protein function prediction, and is illustrated in Figure 3. 

The similarity between a new protein and each protein in the database is usually 

computed by measuring the similarity between the sequences of amino acids of the two 

proteins, which involves performing some kind of alignment between these two amino 

acid sequences (Higgs & Attwood, 2005). 
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Figure 3: Overview of similarity-based protein function prediction 

 

 

A very simple example of this kind of alignment is shown in Figure 4. Note that in 

Figure 4(b) a gap, denoted by the symbol “–”, was inserted into the fifth position of the 

second sequence, which had the effect of sliding the subsequence “VACFW” to the right. 

This allows the system to detect that the two sequences have the same amino acids at 

their last five positions. Comparing the sequences in Figure 4(b) in a position-wise 



fashion, there are only two differences between them: a difference in the amino acid at 

the second position and the presence of a gap at the fifth position in the bottom sequence. 

Intuitively, this can be considered a high similarity, much larger than the similarity of two 

randomly-chosen sequences of the same size, since each position could contain any of the 

20 amino acids. Intuitively, this high similarity would suggest that the two sequences are 

homologous, in the sense that they evolved from a common ancestor (Higgs & Attwood, 

2005), and the difference between them could be explained by just two mutations. First, a 

mutation in the second position, which either changed an A to a K or a K to an A (there is 

no way of knowing which was the case by just comparing the two sequences), and, 

second, a mutation in the fifth position, where either a P was inserted into the top 

sequence or a P was deleted at the bottom sequence (again, we do not know which was 

the case).  

 

DACAPVACFW                               DACAPVACFW 

DKCAVACFW                                 DKCA–VACFW 

(a) before alignment                           (b) after alignment 

Figure 4: Example of alignment between two amino acid sequences 

 

 

From a ML and DM perspective, the similarity-based protein function prediction 

method can be regarded as an instance of the Instance-Based Learning (IBL) or Nearest 

Neighbor paradigm (Aha et al., 1991), (Aha, 1992), sometimes called “lazy learning” 

(Aha, 1997). The latter term is sometimes used because in this paradigm learning is 

delayed to the moment when a new test instance is to be classified, rather than first 

learning a model from the training data and then use the model to classify a new test 

instance. The main difference between the similarity-based protein function prediction 

method and the majority of conventional IBL algorithms is that, in the latter, the measure 

of distance (the dual of similarity) between two instances is usually simpler, involving a 

generic distance measure, such as the well-known Euclidean distance or another distance 

measure suitable for the target problem (Liao et al., 1998). More precisely, in 

conventional IBL algorithms, the distance measure usually is computed between two 

instances with the same number of attributes and the distance between the values of a 



given attribute in two instances is usually computed in a straightforward manner, say by 

the subtraction of two numbers in the case of numeric attributes.  

By contrast, when comparing two protein sequences, matters are considerably more 

complicated. The two sequences being compared usually have different lengths, so that 

they first have to be aligned, as illustrated in Figure 4. Alignments are often performed by 

using a dynamic programming algorithm that finds alignments with optimal scores. 

However, the results of the algorithm will, of course, depend on several parameters of the 

heuristic scoring function. One such parameter, for instance, is how much an alignment 

score should be penalized for each gap. Another parameter involves how to compute the 

similarity between two different amino acids. The naïve approach of assigning a 

similarity score of 1 to two identical amino acids and a similarity score of 0 to any pair of 

distinct amino acids is not effective, because it ignores the well-established fact that some 

kinds of amino acids are more similar to each other than others. In order to take this 

aspect into account, the computation of the similarity between two amino acid values is 

usually based on a matrix M, where each entry Mi,j represents the similarity score 

between amino acid i and amino acid j. Such matrices are generally constructed from data 

involving sets of proteins believed to be homologous (because they have sequence 

similarity higher than a certain threshold). However, it should be noted that the 

construction of such matrices is a heuristic process, depending on both assumptions 

associated with the evolutionary model used and the data available at the time the amino 

acid distance matrix is constructed. 

In any case, despite the complexity of measuring the similarity between the amino 

acid sequences of two proteins, we emphasize that the similarity-based protein function 

prediction method can still be considered as an instance of the IBL paradigm. In 

particular, it has the following core IBL properties: (a) the “training phase” of the method 

is very simple, consisting of storing known-function proteins in a large database; (b) in 

the “testing phase”, the protein database is directly used as a “classification model”, by 

assigning the new protein to the functional class(es) of the most similar protein(s) stored 

in the protein database, as long as the similarity is above a threshold value.  

One advantage of this method – which is inherent to virtually all IBL methods – is that 

the simplicity of its training phase makes it naturally incremental. That is, as more and 



more proteins with known function are added to the database, the training set – and so the 

classification model – is immediately expanded, which should in principle increase the 

predictive accuracy of new functional predictions. 

Although this method is very useful in several cases, it also has some limitations, as 

follows. First, it is well-known that two proteins might have very similar sequences and 

perform different functions, or have very different sequences and perform the same or 

similar function (Syed & Yona, 2003), (Gerlt & Babbitt, 2000). Second, the proteins 

being compared may be similar in regions of the sequence that are not determinants of 

their function (Schug et al., 2002). Third, the prediction of function is based only on 

sequence similarity, ignoring many relevant biochemical properties of proteins (Karwath 

& King, 2002), (Syed & Yona, 2003).  

In order to mitigate these problems, another approach consists of inducing from 

protein data a classification model, so that new proteins can be classified by the model. In 

this approach, instead of computing similarities between pairs of sequences, each protein 

is represented by a set of attributes. The learning algorithm induces a model that captures 

the most relevant relationships between the attributes and the functional classes in the 

training dataset. As long as the examples in the training dataset being mined have the 

same number of attributes, as usual in most ML and DM classification problems, this 

approach opens up the opportunity to use a large variety of classification algorithms for 

the prediction of protein function.  

Additionally, if the induced classification model is expressed in a comprehensible 

representation – say, as a set of rules, a decision tree or perhaps a Bayesian network – it 

can also be shown to a biologist, to give her/him new insights regarding relationships 

between the sequence, the biochemical properties and the function of proteins; and 

possibly suggest new biological experiments. The induced model approach also has the 

advantage that it can predict the function of a new protein even in the absence of a 

sequence similarity measure between that protein and other proteins with known function 

(King et al., 2001).  

In the remainder of this chapter, we will assume the use of this framework of 

classification model induction, unless mentioned otherwise. In any case, it should be 

emphasized that the induced model-based approach aims mainly at complementing – 



rather than replacing – the conventional similarity-based approach for protein function 

prediction. Ideally, both approaches should be used in practice. 

Since the focus of this chapter is on hierarchical classes, the issue of how to create 

predictor attributes to represent proteins is not directly related to the focus of this chapter. 

However, the choice of predictor attributes is crucial to any classification task, so it is 

worth briefly mentioning here some predictor attributes previously used in the literature 

to predict protein function: 

a) Attributes directly derived from protein sequence: for instance, composition 

percentage of each of the 20 amino acids and the 400 possible pairs of possible amino 

acids (Syed & Yona, 2003), (King et al., 2001), molecular weight, average 

hydrophobicity, average isoeletric point, etc; 

b) Attributes predicted from the sequence by using some computational method: this 

includes predicted attributes based on the secondary structure (Syed & Yona, 2003), 

(Jensen et al., 2002), (Karwath & King, 2002) and post-translational modifications, 

e.g. glycosylation (Gupta & Brunak, 2002), (Stawiski et al., 2002); 

c) Attributes obtained from biological databases: for instance, UniProt/SwissProt 

contains information about tissue specificity, organism, and domain/motifs associated 

with proteins (whose details can be obtained by following links to databases like 

PRODOM and PROSITE). As another example, predictor attributes based on protein-

protein interaction data can be derived from the Database of Interacting Proteins (DIP) 

(Jensen et al., 2002) or other data sources (Hendlich et al., 2003), (Deng et al., 2002). 

 

 

CATEGORIZING HIERARCHICAL CLASSIFICATION 

PROBLEMS 

In order to understand hierarchical classification problems, the first step is to 

categorize those problems according to relevant criteria. Intuitively, this categorization 

should be useful in the design of a new algorithm for hierarchical classification, i.e., the 

algorithm should be tailored for the specific characteristics of the target hierarchical 

classification problem. Several relevant criteria for this categorization are described next. 

Note that, in this Section, we analyze the structure of hierarchical classification problems, 



regardless of the kind of algorithm used to solve them. An analysis of the structure of 

hierarchical classification algorithms will be presented in the next section. 

 

Categorization Based on the Structure of the Class Hierarchy 

In general, there are two main types of structure for a class hierarchy, namely a tree 

structure and a Direct Acyclic Graph (DAG) structure. These structures are illustrated in 

Figures 5 and 6, respectively. In these figures, each node represents a class – identified by 

the number inside the node – and the edges between the nodes represent the 

corresponding super-class and sub-class relationships. Figures 5 and 6 show just a two-

level class hierarchy, to keep the pictures simple. In both figures, the root node 

corresponds to “any class”, denoting a total absence of knowledge about the class of an 

object. The main difference between the tree structure and the DAG structure is that in a 

tree structure each class node has at most one parent, whilst in a DAG structure each 

class node can have more than one parent.  

In the tree structure of Figure 5, each node is labelled with the number (id) of its 

corresponding class. The root node is considered to be at level 0, and the level of any 

other node is given by the number of edges linking that node to the root node. Nodes at 

the first level have just one digit, whereas nodes at the second level have two digits: the 

first digit identifies the parent class (at the first level) and the second digit identifies the 

subclass at the second level, as a child of the parent class.  
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Figure 5: Example of a class hierarchy specified as a tree structure 

 



 

In the context of protein functional classification, a typical example of a class 

hierarchy structured as a tree is the functional classification of enzymes. Enzymes are 

proteins specialized in catalyzing (or accelerating) chemical reactions (Alberts et al., 

2002), (Dressler & Potter, 1991). Each enzyme is assigned to a class according to its EC 

code, which specifies the chemical reaction catalysed by enzymes. The EC code consists 

of a series of four digits, where the first digit specifies the most general class of the 

enzyme and the fourth digit the most specific one. For instance, the EC code 1.1.1.1 

specifies the class Alcohol Dehydrogenase.  
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Figure 6: Example of a class hierarchy specified as a DAG (Direct Acyclic Graph)  

 

 

The notation for the labels of class nodes in Figure 6 is similar to the notation in 

Figure 5. The main difference occurs for nodes with multiple parents, namely the nodes 

1-2.1 and 2-3.1 at the second level of the class hierarchy. In this notation, the parent 

classes are specified by not just a single digit, but rather two digits before the class level-

delimiter “.”, i.e., one digit for each of the parent classes. Hence, in the class number 1-

2.1, the notation “1-2” indicates that this node has parent classes 1 and 2, and the “1” 

after the “.” indicates that this is the first child class of those two parent classes 

considered as a whole (rather than each parent class individually). 



In the context of protein functional classification, a typical example of a class 

hierarchy structured as a DAG is the Gene Ontology (GO), a relatively recent approach 

for classifying gene/protein functions (GO Consortium, 2000), (Lewis, 2004), (Camon et 

al., 2003). GO consists of three categories of functions, namely biological process, 

molecular function and cellular component, which are implemented as three independent 

ontologies. GO has important advantages when compared with previous schemes for 

classifying protein functions. It specifies a well-defined, common, controlled vocabulary 

for describing protein functions. Hence, it improves the interoperability of genomic 

databases and provides a generic framework for protein functional classification. In 

addition, it is a pan-organism classification, i.e., it can potentially be applied to all 

organisms, contributing to the unification of Biology. The use of GO and its associated 

DAG structure are increasingly popular in the protein function prediction literature 

(Jensen et al., 2003), (King et al., 2003), (Laegreid et al., 2003), (Thomas et al., 2003). In 

addition, several other Bioinformatics ontologies have lately been developed based on 

some basic ideas from GO, particularly the use of a DAG structure to represent the class 

hierarchy. Two examples are the cell type ontology (Bard et al., 2005) and the 

mammalian phenotype ontology (Smith et al., 2004). 

 

Categorization Based on the Hierarchical Level of Predicted Classes 

Two main groups of problem can be distinguished according to this criterion. First, in 

some problems, all examples must be assigned to classes that are leaf nodes in the class 

hierarchy. We will refer to this group of problems as mandatory leaf-node prediction 

problems. Note that, in the case of a tree structure, when the system assigns a leaf class to 

an example, the system is also implicitly assigning to that example a unique class at each 

internal (non-leaf) level of the class hierarchy.  

For instance, if the system predicts that the EC code of an enzyme is 2.1.3.1, the 

system is effectively predicting not only the enzyme’s class at the fourth level, but also 

the enzyme’s classes at the first three levels. However, this is not necessarily true in the 

case of a DAG structure, where a leaf node can have more than one parent.  

Second, in some problems, examples can be assigned to classes that are either leaf 

nodes or internal nodes in the class hierarchy. We will refer to these problems as optional 



leaf-node prediction problems. In this case, the system has autonomy to decide, 

depending on the predictive power of the available data, how deep in the hierarchy the 

predicted class should be for each example. 

For instance, although some enzymes could be easily classified by the system at the 

level of the fourth EC code digit (leaf class), for other enzymes the system could be much 

less confident about a fourth-level (most specific) prediction and decide to make a 

prediction only at the second, or perhaps first, level of the class hierarchy. 

Of course, ideally, this decision should take into account not only the confidence in 

the predictions at different levels, but also their relative usefulness to the user. In general, 

the more specific (the deeper in the class hierarchy) a prediction is, the more it tends to be 

useful to the user, but the more difficult the prediction tends to be.  

This holds particularly true for a tree structure, where the prediction of a leaf class 

subsumes the prediction of its parent classes, as mentioned earlier. The difficulty of 

prediction usually increases with the depth of the tree because the number of examples 

per class node in a deep level of the classification tree tends to be much smaller than in a 

shallow level, which means there is less data to support the discovery of a reliable 

classification model.  

The situation is more complex in the DAG structure, where a class node can have 

more than one parent. In this case, it is actually possible that a class node has more 

examples than each of its parent class nodes. For instance, suppose that class C is a child 

of the classes P1 and P2; class P1 has 100 examples, 70 of which also belong to its child 

class C; class P2 has 50 examples, 40 of which also belong to its child class C. In this 

case, class C has 110 examples, a number larger than the number of examples in each of 

the parent classes P1 and P2. Thus, other things being equal, with respect to the number of 

examples per class, it might be easier to predict the more specific class C than any of its 

more generic parent classes P1 and P2 individually. In practice, however, even in a DAG, 

it is usually the case that the predictive accuracy decreases with an increase in the depth 

(specificity) of the prediction. For instance, (Pal & Eisenberg, 2005) obtained “…about 

85% correct assignments at ontology depth 1 and 40% at depth 9”.  

Before we proceed, we must make a note about the terminology used in this 

subsection. The proposed terms mandatory leaf-node prediction and optional leaf-node 



prediction correspond to the types of class hierarchy named virtual category tree (or 

DAG) and real category tree (or DAG) by (Sun & Lim, 2001), (Sun et al., 2003b). In this 

chapter, we prefer the new terminology introduced in this subsection because it 

intuitively has a more direct meaning. 

 

Categorization Based on the Predictive Performance Measure 

There are several alternatives for measuring the predictive performance of a 

classification algorithm. A recent paper (Caruana & Niculescu-Mizil, 2004) discusses 9 

different measures of predictive performance in the context of standard, flat classification 

problems. A discussion of conventional measures of predictive performance for flat 

classification is out of the scope of this chapter, since this topic is well covered in the 

mentioned paper and in data mining textbooks (Witten & Frank, 2005), (Tan et al., 2006). 

Here we are rather interested in the orthogonal problem of how to take the class hierarchy 

into account when measuring predictive performance. We can identify at least four 

different ways of measuring predictive performance in hierarchical classification. Each of 

these is discussed in one of the following four subsections. Related discussions on 

predictive performance measures for hierarchical classification can also be found in 

(Blockeel et al., 2002), (Sun & Lim, 2001). 

 

Uniform misclassification costs 

In this category of predictive performance measure, all misclassification costs are the 

same (say, unitary cost) for all possible values of the predicted class and the true class of 

an example – regardless of the level of the predicted and the true classes in the hierarchy. 

Note that uniform misclassification costs can be straightforwardly employed both in 

mandatory leaf-node prediction problems, where all examples must be assigned to 

classes that are leaf nodes in the class hierarchy, and in optional leaf-node prediction 

problems, where examples can be assigned to internal or leaf class nodes. In the latter, we 

simply compare the class predicted for an example with the true class of the example at 

the same level of the predicted class, of course. For instance, if the system has assigned 

an enzyme to the EC code 3.1, we just have to compare this class (predicted at level 2 of 



the class hierarchy) with the true class of this enzyme at the second level, which 

effectively ignores the enzyme’s true classes at the third and fourth level.  

However, the use of uniform misclassification costs in optional leaf-node prediction 

problems is not recommended, because it ignores the fact that the prediction of deeper-

level classes tends to be more difficult than the prediction of shallower-level classes 

(particularly for tree-structured class hierarchies), as discussed earlier. In addition, a 

misclassification at a deep class level will mislead the user relatively little, by comparison 

with a misclassification at a shallow class level. Hence, other things being equal, 

misclassification costs at shallower levels of the classification tree should be larger than 

misclassification costs at deeper levels of the classification tree. 

Note also that, even when all classes are predicted at the same level of the class 

hierarchy, the uniform misclassification costs approach is usually not the ideal approach 

for measuring predictive performance in hierarchical classification problems. This occurs 

because it ignores the fact that classes that are closer to each other in the hierarchy (say, 

“sibling” classes) are normally more similar to each other than classes that are further 

away to each other in the hierarchy (say, “cousin” classes) (Koller & Sahami, 1997). For 

instance, if the true second-level class of an enzyme is 2.1, misclassifying it as its sibling 

class 2.2 should have a smaller misclassification cost than misclassifying it as its cousin 

class 3.2. This introduces the motivation for another measure of predictive performance, 

discussed in the next subsection. 

 

Distance-based misclassification costs 

This category of predictive performance measure consists of assigning, to each 

misclassification, a cost that is proportional to the distance between the example’s 

predicted class and the example’s true class in the hierarchy. This category can be further 

sub-divided into two sub-categories. In the first one, the distance between two classes can 

be measured in the same way, regardless of the level (depth) of these two classes in the 

hierarchy. This will be called depth-independent distance-based misclassification costs. 

The typical approach in this sub-category consists of defining the distance between two 

nodes in the class hierarchy as the number of edges in the shortest path connecting them. 

We stress that by “path” we mean here a sequence of undirected edges – i.e., we do not 



take into account the original direction of each of the edges in the graph for the purpose 

of finding paths between two nodes. For instance, the distance between classes 1.1 and 

3.2 in the tree-structured hierarchy of Figure 5 is 4. In a tree, the computation of this 

distance is very simple. If we consider only paths where each edge is used at most once, 

there is exactly one path between each pair of distinct nodes in the tree. 

The situation is more complex in a DAG, where there can be multiple paths (each of 

them without edge duplication) between a pair of nodes. For instance, there are several 

paths between the class nodes 1-2.1 and 2-3.1 in Figure 6. More precisely, using the 

notation “<n1, n2>” to denote an edge linking node n1 and node n2, we can observe the 

following paths between nodes 1-2.1 and 2-3.1 in Figure 6:  

 

(a) <1-2.1, 1>, <1, any>, <any, 3>, <3, 2-3.1>;  

(b) <1-2.1, 1>, <1, any>, <any, 2>, <2, 2-3.1>;  

(c) <1-2.1, 2>, <2, any>, <any, 3>, <3, 2-3.1>; 

(d) <1-2.1, 2>, <2, 2-3.1>. 

 

Using the common definition of distance between two class nodes as the number of 

edges in the shortest path connecting these nodes, the distance in the previous example 

would be equal to 2, corresponding to the number of edges in the path (d).  

This predictive performance measure has the advantage of simplicity, but it has the 

disadvantage of not taking into account that fact that, in many problems, misclassification 

costs at higher levels of the class hierarchy tend to be higher than misclassification costs 

at lower levels of the tree. For instance, suppose an example has leaf class 1.1.1.1 in a 

four-level hierarchy and the predicted class for this example is 1.1.1.4. The distance 

between the true class and the predicted class for this example is 2, since they are sibling 

classes separated by two edges – their common parent class is 1.1.1. Now suppose that 

the same example is assigned just to the internal, second-level class 1.2 – assuming an 

optional leaf-node prediction problem. Again, the distance between the true class (1.1) 

and the predicted class (1.2) is 2. However, intuitively, the latter misclassification should 

have a larger cost than the former, because an error in the second-level (fairly general) 

class of an enzyme is much less forgivable than an error in the fourth-level (very specific) 



class of an enzyme. To overcome this deficiency, we should use another category of 

distance-based misclassification costs, where the cost of a misclassification depends on 

both the distance between the predicted and true classes and their depth in the class 

hierarchy. This will be called depth-dependent distance-based misclassification costs. If 

this measure is adopted, when computing the distance of a path, we can consider 

weighted edges, where deeper edges have smaller weights than shallower edges 

(Blockeel et al., 2002). The distance between two nodes can be computed as the shortest 

weighted path between these two nodes. 

 

Semantics-based misclassification costs 

This category of predictive performance measures is based on a determination of class 

similarity that is independent of the distance of the classes in the hierarchy. The measure 

of similarity is supposed to be based on some notion of “semantics” of the classes, which 

is independent of the structure of the class hierarchy. This approach has been proposed, in 

the context of text mining – more precisely document classification – by (Sun and Lim, 

2001), (Sun et al., 2003a). In this context, each class of documents is represented by a 

feature vector derived by adding up the features vectors of all documents belonging to 

that class. Then, the similarity between two classes is computed by some measure of 

similarity between their corresponding vectors (the cosine measure, often used in 

information retrieval, was proposed by the authors).  

In the context of Bioinformatics – particularly protein functional classification – the 

idea of a predictive performance measure based on class similarity independent from 

distance in the class hierarchy might be somewhat controversial. On one hand, 

presumably, the class hierarchy of several protein functional classifications – such as the 

EC code for enzymes – was constructed based on extensive biological knowledge, and its 

structure is already supposed to reflect some notion of the semantics of the classes, so 

that the distance between classes in the hierarchy should be considered when measuring 

predictive performance. On the other hand, it is interesting to observe that, once a 

measure of class similarity (independent of class distance in the hierarchy) has been 

precisely defined and its value computed for each pair of classes, this could, in principle, 

be used to construct another class hierarchy by using, say, a hierarchical clustering 



algorithm. This new hierarchical classification – rather than the original one – could then 

be given to the DM algorithm, whose predictive performance could then be evaluated by 

taking into account the distances between classes in the new hierarchy. This approach 

seems very under-unexplored in the literature about hierarchical classification.  It could 

potentially shed a new light into some existing biological hierarchical-classification 

problems.  

 

Hierarchical misclassification cost matrix 

This category of predictive performance measures consists of explicitly specifying the 

cost associated with each possible misclassification, by using a hierarchical 

misclassification cost matrix. This type of matrix is a generalization of the well-known 

misclassification cost matrix for standard flat classification (Witten & Frank, 2005). 

There are different ways of making this generalization. Let us start with a hierarchical 

misclassification cost matrix for mandatory leaf-node prediction, whose matrix structure 

is illustrated in Figure 7. To keep the figure simple, there are only two classes at the first 

level of this matrix. Each of these classes has only two subclasses at the second level. 

However, the matrix in Figure 7 can be straightforwardly extended to represent a larger 

number of class levels and larger numbers of classes per level. Note that in the simple 

structure of Figure 7, although the structure is hierarchical, the misclassification costs are 

specified only at the level of the leaf class nodes. In the main diagonal the 

misclassification costs are zero, as usual, since the cells along that diagonal represent 

correct classifications. In the other cells, the misclassification costs are labelled a,…,l, 

and each of these values is assumed to be larger than zero. It is trivial to look up the 

matrix in Figure 7 to determine a misclassification cost in the case of a mandatory leaf-

node prediction problem. For instance, if the class predicted for an example is 2.1 and the 

true class of that example is 1.1, this wrong prediction has a misclassification cost of g.  

Note that, although the basic structure of the matrix in Figure 7 is quite simple, in 

general, it is flexible enough to implement the previously-discussed categories of 

predictive performance measures as particular cases, with a proper specification of the 

misclassification costs a,…,l for each category. This can be shown as follows: 



• To obtain uniform misclassification costs, all the costs a,…,l are set to the same 

value; 

• To obtain distance-based misclassification costs, where the costs are given by the 

number of edges in the hierarchical classification tree – so that the costs associated 

with sibling class nodes are equal to 2 and the costs associated with cousin class 

nodes are equal to 4 – the costs should be set as follows:  

      a = d = i = l = 2 and b = c = e = f = g = h = j = k = 4 . 

• To obtain semantics-based misclassification costs, the costs a,…,l are simply set to 

the corresponding values of semantic distance between each pair of classes. 
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Figure 7: Structure of a Hierarchical Misclassification Cost Matrix for Mandatory Leaf-

Node Prediction 

 

 

Recall that the discussion so far has assumed the context of a mandatory leaf-node 

prediction problem. If the target problem is optional leaf-node prediction, the scenario 

becomes more complex. In this new scenario, it seems natural to extend the matrix in 

Figure 7 in order to represent hierarchical misclassification costs involving non-leaf 

classes. This leads to the more complex hierarchical misclassification cost matrix shown 

in Figure 8. In that matrix, the notation “.*” refers to a wild card denoting any class at the 

second level. For instance, the notation “1.*” for a predicted class means that class 1 was 

predicted at the first, non-leaf, level and no class was predicted at the second, leaf level. 

The misclassification costs involving at least one first-level, non-leaf class (i.e. a row or 

column with the wild care “.*”), are denoted by upper case letters, whilst the 

misclassification costs involving only second-level, leaf, classes, are denoted by lower 

case letters (using the same notation as the simpler matrix of Figure 7). For instance, the 



cell at the intersection of the 1.* row and the 1.* column represents the misclassification 

cost A of predicting class 1 at the first level and making no prediction at the second level, 

when the true class at the first level is 1 and the true class at the second level is unknown. 

Note that intuitively this cost should be larger than zero, to take into account the lack of 

prediction for the second-level class. The cost zero should be reserved only for the cases 

where both the predicted and the true classes at the second level are known to be equal. 

As another example of the use of the “.*” notation, the cell at the intersection of the 2.* 

row and the 1.2 column specifies the misclassification cost M of predicting class 2 at the 

first level and making no prediction at the second level, when the true class is known to 

be 1.2.  
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Figure 8: Structure of a Hierarchical Misclassification Cost Matrix for Optional Leaf-

Node Prediction 

 

 

CATEGORIZING HIERARCHICAL CLASSIFICATION 

APPROACHES 

  

Transforming a Hierarchical Classification Problem into a Flat Classification 

Problem 

A standard flat classification problem can be regarded as a particular case (or a 

degenerated case) of a hierarchical classification problem where none of the classes to be 

predicted has super-classes or sub-classes. Hence, a simple, somewhat naïve, way to 

“solve” a hierarchical classification problem consists of transforming it into a flat 



classification problem, and then apply one of the very many flat classification algorithms 

available to solve the new problem.  

Consider, for instance, the tree-structured class hierarchy in Figure 5. We could 

transform the hierarchical classification problem associated with this figure into the 

problem of predicting classes only at the first level (i.e., most general classes) of the 

hierarchy. In this case, however, we would miss the opportunity of making more specific 

predictions at the second level of the hierarchy, which in principle would be more useful, 

providing more knowledge to the user. Alternatively, one could transform the original 

hierarchical classification problem into the problem of predicting only classes at the 

second level (i.e. the leaf classes) of the hierarchy. As mentioned earlier, by predicting 

classes at the leaves of the hierarchy, we are implicitly predicting the classes at higher 

levels (internal nodes). In this case, however, we would miss the opportunity of 

predicting classes at higher levels of the hierarchy, which presumably can be predicted 

with more confidence than classes at lower, deeper levels, as also previously discussed.  

 

Hierarchical Class Predictions Using Flat Classification Algorithms 

One way of avoiding the missed opportunities discussed in the previous subsection 

consists of transforming the original hierarchical classification problem into a set of flat 

classification problems, more precisely one flat classification problem for each level of 

the class hierarchy, and then use a flat classification algorithm to solve each of these 

problems independently. For instance, in the case of Figure 5, the associated hierarchical 

classification problem would be transformed into two problems, namely predicting the 

classes at the first level and predicting the classes at the second level. A flat classification 

algorithm would then be applied to each of these two problems independently, i.e., each 

of the two runs of the algorithm would ignore the result of the other run.  

Note that, in this case, in principle each of the two runs of the classification algorithm 

would be associated with its own measure of predictive performance, since the two 

independent runs effectively correspond to two distinct flat classification problems. In 

other words, the multiple runs of the classification algorithm are independent both in the 

training phase and in the test phase (classification of new, previously unknown, 

examples).  



One problem with this approach is that there is no guarantee that the classes predicted 

by the independent runs at different class levels will be compatible with each other. For 

instance, still referring to the simple hypothetical example of class hierarchy in Figure 5, 

it is possible, in principle, to have a situation where the classifier at level 1 assigns a test 

example to class 1, whilst the classifier at level 2 assigns the example to class 2.1, which 

is clearly incompatible with the first-level prediction. 

A more sophisticated approach to hierarchical class predictions consists of having 

multiple runs of a classification algorithm in such a way that results from independent 

training runs are used together during the test phase. Thus, there is a single measure of 

predictive performance on the test set associated with the results of all the training runs. 

To summarize, in this approach the multiple runs of the classification algorithm are 

independent during training, but integrated or dependent during the test phase.  

The most common way of implementing this approach consists of training a different 

classification model for each node of the class hierarchy. Typically, each trained 

classification model is a binary classifier that decides, for each test example, whether or 

not the example should be assigned the class associated with the corresponding 

classification node. Note that this approach can be implemented in a way that naturally 

allows a test example to be assigned to more than one class at any level of the hierarchy, 

if the example satisfies the conditions of the corresponding binary classifiers.  

In passing, notice that this is a straightforward approach to implement a multi-label 

classifier – i.e., a classifier that has the autonomy to assign one or more classes to each 

example, rather than the conventional single-label classifiers that assign just one class to 

an example. Multi-label classification is out of the scope of this chapter, but a more 

detailed discussion about how to integrate multi-label classification and hierarchical 

classification into a single algorithm can be found in (Blockeel et al., 2002). 

In any case, if we do not want to allow an example to be assigned to more than one 

class at each level of the class hierarchy, this constraint can be easily incorporated in the 

classification procedure during the test phase, by forcing the procedure to assign a test 

example only to the most likely class at each level of the class hierarchy.  

 

Big-Bang versus Top-Down Hierarchical Classification 



Probably the most important watershed to categorize truly hierarchical classification 

algorithms is the distinction between the big bang and the top down approaches. The 

main characteristics of these approaches are as follows (Sun and Lim, 2001), (Sun et al., 

2003a). 

In the big bang approach, a single (relatively complex) classification model is built 

from the training set, taking into account the class hierarchy as a whole during a single 

run of the classification algorithm. When used during the test phase, each test example is 

classified by the induced model, a process that can assign classes at potentially every 

level of the hierarchy to the test example. An example of the big-bang approach in the 

context of text mining can be found in (Sasaki & Kita, 1998), whereas an example of this 

approach in the context of Bioinformatics – the focus of this paper – will be discussed in 

the next section.  

In the top-down approach, in the training phase, the class hierarchy is processed one 

level at a time, producing one or more classifiers for each class level. In the test phase, 

each example is classified in a top-down fashion, as follows. First, the test example is 

assigned to one or more classes by the first-level classifier(s). Then the second level 

classifier(s) will assign to this example one or more sub-classes of the class(es) predicted 

at the first level, and so on, until the example’s class(es) is(are) predicted at the deepest 

possible level.  

In order to produce a hierarchical set of classifiers in the top-down approach, we can 

either train a single classifier per class level or train multiple classifiers per level. In the 

former case, we use a multi-class classification algorithm. Thus, at each class level, we 

build a classifier that predicts the class(es) of an example at that level. In the latter case, 

we typically train a binary classifier at each class node. Therefore, for each test example 

and for each class level, we present the example to each of the binary classifiers at that 

level. As a result, the test example will be assigned to one or more classes at each level, 

and this information will be taken into account in the next level, as previously explained.  

The top-down approach has the advantage that each classification model (built either 

for a class level or a single class node) is induced to solve a more modular, focused 

classification problem, by comparison with the big-bang approach, where a more 

complex classification model has to be built by considering the entire class hierarchy at 



once. The modular nature of the top-down approach is also exploited in the test phase, 

where the classification of an example at a given class level guides its classification at the 

next level. However, the more modular nature of the top-down approach does not 

guarantee that this approach will have a better predictive performance than the big-bang 

approach. In particular, the top-down approach has the disadvantage that, if a test 

example is misclassified at a certain level, it tends to be misclassified at all the deeper 

levels of the hierarchy. The probability that this kind of error occurs can be reduced by 

using a procedure that tries to recover from misclassifications in a shallower level of the 

class tree – see (Dumais & Chen, 2000), (Sun et al., 2004) for a discussion of procedures 

to address this kind of problem. 

 

 

A REVIEW OF WORKS ADDRESSING HIERARCHICAL 

CLASSIFICATION PROBLEMS IN PROTEIN FUNCTIONAL 

CLASSIFICATION 

Table 1 summarizes key aspects of previous works addressing hierarchical 

classification problems in the context of the prediction of protein functional classes. The 

second column of this table indicates the broad category of class hierarchy, either tree-

structured or DAG-structured, and the specific protein functional classification scheme 

addressed in each work. The third column indicates whether the predictions made by the 

system are flat or hierarchical. If they are hierarchical, the column also indicates which 

class level(s) is(are) predicted. The fourth column points out whether the classification 

algorithm being used is a flat or a hierarchical algorithm. Note that for flat predictions the 

classification algorithm is always flat. However, in the case of hierarchical predictions, 

the classification algorithm can be either flat (see the Subsection “Hierarchical Class 

Predictions Using Flat Classification Algorithms” of the previous Section) or hierarchical 

(see the Subsection “Big-Bang versus Top-Down Hierarchical Classification” of the 

previous Section).  



As can be observed in Table 1, there are several works involving tree-structured class 

hierarchies where the original hierarchical classification problem is transformed into a 

flat classification problem. Two examples of this approach are mentioned in Table 1: 

• (Jensen et al., 2002), (Weinert & Lopes, 2004) predict only classes at the first level of 

the previously discussed EC code for enzymes.  

• (Jensen et al., 2002) predicts only classes at the first level of the Riley’s hierarchical 

classification scheme. This scheme was originally defined for E. coli bacteria  (Riley, 

1993), but it has been modified to describe protein functions in other organisms. 

 

Table 1: Review of Works Involving Hierarchical Classification of Protein Functions 

Work Kind of class 

 Hierarchy 

Flat or hierarchical  

class predictions? 

Hierarchical or flat 

classification algorithm? 

(Jensen et al., 

2002) 

Tree:  

Riley’s scheme, 

EC code  

Flat;  

only first class level 

Flat artificial neural network 

(Weinert & 

Lopes, 2004) 

Tree:  

EC code 

Flat;  

only first class level 

Flat artificial neural network 

(Clare & 

King, 2001) 

Tree:  

MIPS 

Flat; 

all class levels, but just one level 

at a time 

Flat decision-tree induction 

algorithm 

(Clare & 

King, 2003) 

Tree:  

MIPS 

Hierarchical;  

all class levels 

Hierarchical (big-bang) decision-

tree induction algorithm, 

compared with flat decision-tree 

induction algorithm 

(Holden & 

Freitas, 2005) 

Tree:  

EC code 

Hierarchical;  

all class levels 

Hierarchical rule set (top-down) 

discovered using many runs of a 

flat hybrid particle swarm/ant 

colony optimisation algorithm 

(Holden & 

Freitas, 2006) 

Tree: 

GPCR classes 

Hierarchical; 

first four class levels 

Hierarchical rule set (top-down) 

discovered using many runs of a 

flat hybrid particle swarm/ant 

colony optimisation algorithm 

(Jensen et al., 

2003) 

DAG:  

GO 

Hierarchical; 

learnability-based prediction, 

potentially at any class level 

Flat artificial neural network 

(Laegreid et 

al., 2003) 

DAG:  

GO 

Hierarchical, 

learnability-based prediction, 

potentially at any class level 

Flat rough set-based rule 

induction and genetic algorithms; 

Class hierarchy used to create flat 

training sets in data pre-

processing 

(Tu et al., 

2004) 

DAG:  

GO 

Hierarchical; 

learnability-based prediction of 

child classes given their parent 

class 

Flat artificial neural network; 

Class hierarchy used to create flat 

training sets in data pre-

processing 

(King et al., 

2003) 

DAG:  

GO 

Deep, specific levels; 

predictions based on other 

known classes for the same 

protein 

Flat decision-tree induction 

algorithm and hierarchical 

Bayesian networks 

 



 

 

Let us now turn to hierarchical class predictions using a flat classification algorithm. 

In the context of tree-structured class hierarchies, the approach of predicting each level of 

the hierarchy independently from the other levels – i.e., by running a separate flat 

classification algorithm for each level – is found in (Clare & King, 2001), where it was 

the only hierarchical classification approach used; and in (Clare & King, 2003), where it 

was compared with a more sophisticated approach based on a hierarchical version of the 

well-known C4.5 algorithm, as will be discussed later in this section. 

Turning to DAG-structured hierarchical classes, Table 1 mentions several works – in 

particular (Jensen et al., 2003), (Laegreid et al., 2003) and (Tu et al., 2004) – where 

classes can be predicted at potentially any level of the previously-discussed Gene 

Ontology (GO) using a flat classification algorithm – although in practice the actual 

number of predicted classes is relatively small. Let us first review the strategies used by 

these works to achieve such flexibility, and next discuss their limitations concerning the 

actual number of classes predicted. 

In (Jensen et al., 2003), a flat Artificial Neural Network (ANN) was trained for each 

GO class at a time. It seems that parent-child relationships between classes were virtually 

ignored during the ANN training, since each run of the ANN treated the current class as 

the positive class and apparently considered all the other classes – regardless of their 

position in the class hierarchy – as negative classes.  

(Laegreid et al., 2003) predicts GO classes using a combination of a Rough Set-based 

rule induction algorithm and a Genetic Algorithm (GA). However, these algorithms do 

not directly cope with the DAG-structured class hierarchy of GO. Rather, the class 

hierarchy is used just to pre-process the data into suitable flat classification training sets, 

as follows. The genes in the original training set were grouped into 23 high-level GO 

classes. For genes whose most specific annotated class was below the level of the target 

classes, the more specific classes were ignored. This corresponds to generalizing each of 

the specific classes to one of the general classes at the level of the target 23 classes. As a 

result, 23 groups of genes were created, each group associated to one of the 23 classes. 

Thus, each group was considered as a training set to the combined technique. As a result, 



a set of rules was discovered for each of the 23 classes – i.e., each rule predicts a single 

class.  

Note that in both (Jensen et al., 2003) and (Laegreid et al., 2003) the essential result of 

the training phase is one classification model for each of the GO training classes. The 

basic difference is the nature of the classification model, which is an ANN in (Jensen et 

al., 2003) and a set of rules in (Laegreid et al., 2003). However, at a high level of 

abstraction, we can ignore this difference and focus on the important point: in both 

works, a classification model was built for each class, one class at a time. Consequently, 

when a new example in the test set needs to be classified, we can simply apply each of 

the classification models (each of them associated with a predicted class at potentially 

any level in the hierarchy) to that test example, and then assign to the test example the 

best class(es) among the classes predicted by the classification models, based on some 

measure of confidence in the prediction made by these models. That is why classification 

models trained for flat classification were able to assign a new test example to potentially 

any class at any level of the GO hierarchy. 

The work of (Tu et al., 2004) also uses a flat-classification ANN as the classification 

algorithm. However, unlike the work of (Jensen et al., 2003), where the class hierarchy 

seems to have been virtually ignored, the work of (Tu et al., 2004) applied the ANN in a 

way that clearly takes into account the parent-child relationships between classes. A set 

with a parent GO class and its child sub-classes was called by the authors a classification 

space. At each classification space, a flat-classification ANN was trained to predict the 

child class for an example that was known to belong to the parent class. This is what the 

authors called “further prediction”, because in order to predict child classes at a given 

level n it is necessary to know their parent class at level n – 1 (where n ≥ 2). Note that 

this is in contrast with the works of (Jensen et al., 2003), (Laegreid et al., 2003), which do 

not require the parent class of a protein to be known in order to predict its corresponding 

child class. 

Observe also that in both (Laegreid et al., 2003) and (Tu et al., 2004) the structure of 

the class hierarchy – i.e., parent-child class relationships – was essentially used to create 

flat training sets in a kind of data pre-processing step for the application of a flat 

classification algorithm.  



We now turn to limitations in the actual number of GO classes predicted in the works 

of (Jensen et al., 2003), (Laegreid et al., 2003) and (Tu et al., 2004). To understand these 

limitations, we first must bear in mind that the prediction of GO classes is particularly 

challenging. As discussed earlier, GO classes are arranged in a DAG, and the number of 

GO classes is very high (more than 13,000), referring to an extremely diverse set of 

gene/protein functions. As a result, it is not surprising that many works, like (Jensen et 

al., 2003), (Laegreid et al., 2003) and (Tu et al., 2004), follow an approach that can be 

named learnability-based prediction, a term explicitly introduced by (Tu et al., 2004). 

The basic idea is to focus on the prediction of the classes which are “more learnable”, i.e., 

which can be predicted with a reasonable accuracy (given the available predictor 

attributes) and whose prediction is considered interesting and non-trivial. Let us briefly 

discuss how this approach has been used in the previously mentioned works. 

(Jensen et al., 2003) initially tried to predict 347 GO classes, but this number was 

significantly reduced later in two stages: (a) the majority of the 347 classes was discarded 

either because they could not be predicted with a reasonable accuracy or because they 

represented trivial classes whose prediction was not interesting – this reduced the number 

of classes to be predicted to 26; (b) a number of classes was discarded to avoid 

redundancy with respect to other classes, which finally left only 14 GO classes to be 

predicted. As another example of the use of the learnability-based prediction approach, 

(Tu et al., 2004) considered 44 classification spaces, containing in total 131 classes – 

including both parent and child classes. The final set of learnable classes was reduced to 

just 14 classification spaces, containing in total 45 classes – again, including both parent 

and child classes. In addition, as mentioned earlier, (Laegreid et al., 2003) focused on 

predicting only 23 general classes of the GO hierarchy. 

Let us now discuss two works making hierarchical predictions based on either the 

big-bang or the top-down approach.  

(Clare & King, 2003) modified the well-known C4.5 decision-tree induction algorithm 

to perform hierarchical classification. This modification was not described in detail in the 

paper, but the basic idea seems to be that the entropy formula – used to decide which 

attribute will be selected for a given node in the decision tree being built – was weighted. 

This weighting took into account the facts that shallower (more general) classes tend to 



have lower entropy than deeper (more specific) classes, but more specific classes are 

preferred – since they provide more biological knowledge about the function of a protein. 

The predictive accuracy of the hierarchical version of C4.5 was compared with the 

predictive accuracy obtained applying the standard C4.5 separately to each class level. 

The hierarchical version of C4.5 obtained mixed results in terms of predictive accuracy, 

outperforming the standard C4.5 in some cases, but being outperformed by the latter in 

other cases. Since the hierarchical version of C4.5 apparently considered the entire class 

hierarchy during its training and produced a hierarchical classification model in a single 

run of the algorithm, this work can be considered an example of the “big-bang” approach.  

By contrast, an example of the top-down approach is found in (Holden & Freitas, 

2005). This work applied a new hybrid particle swarm optimization/ant colony 

optimization (PSO/ACO) algorithm to the prediction of the EC code of enzymes. In 

addition, (Holden & Freitas, 2006) applied a slightly improved version of the PSO/ACO 

algorithm to the prediction of G-Protein-Coupled-Receptor (GPCR) classes. Since in both 

works the hierarchical classification method used has essentially the same basic structure, 

our discussion hereafter will refer only to the work of (Holden & Freitas, 2005), for the 

sake of simplicity. 

In this work the top-down approach was used mainly for the creation of the training 

sets used by the PSO/ACO algorithm and for the classification of the examples in the test 

set, as follows. During its training, the PSO/ACO algorithm was run once for each 

internal (non-leaf) node of the tree hierarchy. At each internal node, the PSO/ACO 

discovered a set of rules discriminating among all the classes associated with the child 

nodes of this internal node. For instance, at the root node, the algorithm discovered rules 

discriminating among the first-level classes 1,2,…,k0, where k0 is the number of first-

level classes (child nodes of the root node). At the node corresponding to class 1, the 

algorithm discovered rules discriminating among the second-level classes 1.1, 1.2,…,k1, 

where k1 is the number of child classes of the class 1, and so on. The class hierarchy was 

used to select a specific set of positive and negative examples for each run of the PSO, 

containing only the examples directly relevant for that run. For instance, the algorithm 

run corresponding to class node 1 – i.e., discovering rules to discriminate among classes 

1.1, 1.2,…,k1 – used only examples belonging to classes 1.1, 1.2,… ,k1. During that run 



of the algorithm, when evaluating a rule predicting, say, class 1.1, examples of this class 

were considered positive examples, and examples of its sibling classes 1.2, 1.3…,k1 were 

considered negative examples.  

This approach produces a hierarchical set of rules, where each internal node of the 

hierarchy is associated with its corresponding set of rules. When classifying a new 

example in the test set, the example is first classified by the rule set associated with the 

root node. Next, it is classified by the rule set associated with the first-level node whose 

class was predicted by the rule set at the root (“zero-th”) level, and so on, until the 

example reaches a leaf node and is assigned the corresponding fourth-level class. For 

instance, suppose the example was assigned to class 1 by the rule set associated with the 

root node. Next, the example will be classified by the rule set associated with the class 

node 1, in order to have its second-level class predicted, and so on, until the complete EC 

code is assigned to the example. This top-down approach for classification of test 

examples exploits the hierarchical nature of the discovered rule set, but it has the 

drawback that, if an example is misclassified at level l, then clearly the example will also 

be misclassified at all levels deeper than l. 

In addition, note that in (Holden and Freitas, 2005) the class hierarchy was used 

during training just to produce compact sets of positive and negative examples associated 

with the run of the PSO/ACO algorithm at each node, but the algorithm itself was 

essentially a flat classification algorithm. I.e., each time the algorithm was run it was 

solving a flat classification problem, and it is just the many runs of the algorithm – one 

run for each internal node of the class hierarchy – that produces the hierarchical rule set. 

Hence, this work can be considered as a borderline between hierarchical prediction 

using a top-down hierarchical classification method and hierarchical prediction using a 

flat classification algorithm. In this chapter we categorize it mainly as belonging to the 

former group of methods, mainly because it produces a hierarchical rule set that is used to 

classify test examples according to the top-down approach. Besides, it systematically 

creates a hierarchical rule set covering the entire class hierarchy. These characteristics are 

in contrast with methods that are more typical examples of the approach of hierarchical 

prediction with a flat classification algorithm, such as predicting classes at each level of 

hierarchy independently from other levels (as in (Clare & King 2001)) or using a flat 



classification algorithm to predict just a relatively small subset of the class hierarchy (as 

in (Jensen et al., 2003), (Laegreid et al., 2003), (Tu et al., 2004)). 

Finally, let us discuss the work of (King et al., 2003) for the prediction of GO classes. 

First of all, this work is quite different from the other works predicting GO classes shown 

in Table 1, with respect to the predictor attributes used to make the prediction. In this 

work, when predicting whether or not a particular GO term g should be assigned to a 

gene, the set of predictor attributes consists of all the other terms annotated for this gene, 

except the terms that are ancestors or descendants of the term g in the GO DAG. By 

contrast, the other works predicting GO classes mentioned in Table 1 address the more 

usual problem of predicting GO classes based on a set of predictor attributes, which do 

not involve any previously annotated GO term.  

Since the work of (King et al., 2003) requires a gene to have a set of GO term 

annotations different from the GO term g currently being predicted, this work can be said 

to perform a kind of “further prediction”, a term that was also used to describe the work 

of (Tu et al., 2004). One important difference is that in (Tu et al., 2004) the prediction of 

a new term requires knowledge of the parent of that term in the GO DAG, whilst in (King 

et al., 2003) the prediction of a new term g requires knowledge of any other term, except 

the ancestors and descendants of g in the GO DAG. 

Concerning the algorithms, (King et al., 2003) investigated two algorithms. One was 

essentially a flat-classification decision-tree induction algorithm. The other, a Bayesian 

network algorithm, can be called a hierarchical algorithm in the sense of directly taking 

the class hierarchy into account when generating the Bayesian network. This was 

achieved by ordering the attributes (random variables for the Bayesian network 

algorithm) in a way compatible with the GO DAG; more precisely, using an ordering A1, 

…, Am – where m is the number of attributes – in which attribute Ai comes before 

attribute Aj whenever Ai is a parent of Aj in the GO DAG. Once one of these orderings is 

found – there are in general many orderings satisfying the mentioned property and the 

authors did not try to find the optimal one – it is taken into account in the construction of 

the Bayesian network. 

 

 



CONCLUSIONS AND FUTURE RESEARCH 

This chapter has two main contributions. The first one is to present a tutorial on 

hierarchical classification, discussing how to categorize hierarchical classification 

problems and hierarchical classification algorithms. The second contribution of this 

chapter is to present a review of a number of works applying hierarchical classification 

techniques to protein function prediction – an important Bioinformatics problem.  

Let us now list the main conclusions of the discussion presented in this chapter, 

followed by corresponding suggested research directions. 

First, in hierarchical classification the misclassification costs tend to vary significantly 

across different levels of the hierarchy and even across the same level. This is an under-

explored topic in the literature on hierarchical classification of protein functions. In 

general, the works mentioned in Table 1 (in the previous section) employ a simple 

approach to measure predictive accuracy, assuming uniform misclassification costs. We 

would like to point out that it is important to use a measure of predictive accuracy 

tailored for hierarchical classification problems, such as distance-based misclassification 

costs or a measure based on a hierarchical misclassification cost matrix. The use of these 

measures is expected to be a significant improvement over the current situation of using a 

simple predictive accuracy measure that ignores the class hierarchy.  

Second, when the target hierarchical classification problem is categorized as optional 

leaf-node prediction, the hierarchical classification algorithm has autonomy to decide 

how deep in the class hierarchy should be the most specific class assigned to an example. 

This decision should, in principle, be based on at least two factors, namely:  

(a) How much confidence the algorithm has in different class predictions at different 

levels of the class hierarchy – recall that, in general, the deeper the class level, the more 

difficult the prediction is, and so the less confident the algorithm will tend to be in the 

prediction; 

(b) The usefulness of different class predictions at different levels of the class 

hierarchy – recall that, in general, the deeper the level of a predicted class, the more 

useful the prediction tends to be to the user. 

This trade-off between confidence and usefulness of class predictions at different 

levels of a class hierarchy is still very under-explored in the literature, and a future 



research direction would be to try to develop methods for quantifying this trade-off and 

coping with it during the construction of the classification model. Since maximizing 

prediction confidence and maximizing prediction usefulness tend to be conflicting 

objectives, perhaps the use of a multi-objective classification algorithm based on the 

concept of Pareto dominance would be useful here. The reader is referred to (Deb, 2001) 

for a comprehensive review of the concept of Pareto dominance and to (Freitas, 2004) for 

a review of the motivation for the use of this concept in data mining. 

Third, as a particularly important special case of the general trade-off between 

confidence and usefulness just-discussed, we identify the challenging problem of 

predicting functional classes of the Gene Ontology – a class hierarchy in the form of a 

DAG. As discussed in Section 5, several works in this area focus on predicting classes in 

just a relatively small subset of the GO DAG, rather than all classes in the entire DAG, 

and in particular focus on classes that are more “learnable” – characterizing the so-called 

“learnability-based prediction framework”. The basic idea of this framework consists of 

predicting classes which are more learnable and whose prediction is more interesting, 

which is conceptually similar to the idea of trying to maximize the confidence and the 

usefulness of the predictions made by the hierarchical classification algorithm. The need 

for this learnability-based framework is clearly understandable, since the GO DAG 

contains more than 13,000 class nodes and, in a given Bioinformatics application, the 

user may very well be interested in predicting a relatively small set of GO functional 

classes. However, it should be pointed out that, in the literature in general, the precise 

determination of which GO functional classes should be predicted in the learnability-

based framework is usually done in an ad-hoc fashion, being very much dependent on the 

user’s intuition. There is a need to develop more formal and effective methods to 

determine how to quantify the degree of learnability and interestingness of nodes in the 

GO class hierarchy. This is an important and challenging research direction. 
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