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Abstract 

Background:  Dietary restriction (DR) is the most studied pro-longevity intervention; 
however, a complete understanding of its underlying mechanisms remains elusive, and 
new research directions may emerge from the identification of novel DR-related genes 
and DR-related genetic features.

Results:  This work used a Machine Learning (ML) approach to classify ageing-related 
genes as DR-related or NotDR-related using 9 different types of predictive features: 
PathDIP pathways, two types of features based on KEGG pathways, two types of Pro-
tein–Protein Interactions (PPI) features, Gene Ontology (GO) terms, Genotype Tissue 
Expression (GTEx) expression features, GeneFriends co-expression features and protein 
sequence descriptors. Our findings suggested that features biased towards curated 
knowledge (i.e. GO terms and biological pathways), had the greatest predictive power, 
while unbiased features (mainly gene expression and co-expression data) have the 
least predictive power. Moreover, a combination of all the feature types diminished 
the predictive power compared to predictions based on curated knowledge. Feature 
importance analysis on the two most predictive classifiers mostly corroborated existing 
knowledge and supported recent findings linking DR to the Nuclear Factor Erythroid 
2-Related Factor 2 (NRF2) signalling pathway and G protein-coupled receptors (GPCR).

We then used the two strongest combinations of feature type and ML algorithm to 
predict DR-relatedness among ageing-related genes currently lacking DR-related anno-
tations in the data, resulting in a set of promising candidate DR-related genes (GOT2, 
GOT1, TSC1, CTH, GCLM, IRS2 and SESN2) whose predicted DR-relatedness remain to be 
validated in future wet-lab experiments.

Conclusions:  This work demonstrated the strong potential of ML-based techniques to 
identify DR-associated features as our findings are consistent with literature and recent 
discoveries. Although the inference of new DR-related mechanistic findings based 
solely on GO terms and biological pathways was limited due to their knowledge-driven 
nature, the predictive power of these two features types remained useful as it allowed 
inferring new promising candidate DR-related genes.
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Background
Ageing increases the risk of disease and death as it declines homeostasis and decreases 
the capacity to respond to environmental stimuli [1]. Given the widespread interest in 
reversing and ultimately preventing the detrimental effects of ageing, considerable effort 
has been devoted to understanding its underlying biochemical mechanisms [2]. It is 
known that ageing-related changes are multifactorial and involve a variety of processes, 
including genomic instability, telomere attrition, epigenetic alterations, loss of proteo-
stasis, impaired nutrient sensing, mitochondrial dysfunction, cellular senescence, stem 
cell exhaustion, and altered intracellular communication [3].

Dietary Restriction (DR), which involves reducing total dietary energy intake while 
maintaining adequate vitamin and mineral levels, is currently the most promising inter-
vention for increasing both lifespan and healthspan, as experiments with a variety of 
species have shown that DR not only induces longevity but also retards the ageing pro-
cess [2]. Although the mechanism underlying these pro-longevity effects is unknown, 
evidence suggests that DR: (1) reduces oxidative damage by reducing the production 
of Reactive Oxygen Species (ROS); (2) decreases circulating insulin and glucose lev-
els, resulting in decreased cell growth and division and a shift toward maintenance and 
repair; and (3) decreases growth hormone and insulin-like growth factor levels [4].

Additionally, a wealth of publicly available omics data on ageing has emerged thanks to 
new high-throughput sequencing technologies [5]. Hence, a relatively recent approach 
for studying the ageing process is based on Machine Learning (ML) techniques that 
learn patterns about gene or protein functions by analyzing gene or protein features 
such as Gene Ontology (GO) terms, metabolic pathways, and protein-protein interac-
tions, to name a few [6]. Examples include the association of human genes with ageing-
related diseases [7]; prediction of gene deletion effects on yeast longevity [8]; and the 
determination of blood age [9]; among others [10].

This work aims to identify novel DR-related candidate genes from ageing-related genes 
while also identifying genetic features which increase the likelihood that certain ageing-
related genes become DR-related. To accomplish this, we created 11 datasets based on 9 
different types of predictive features and two approaches to combine all those features 
into an integrated dataset. The 9 used feature types were: PathDIP pathways, two types 
of features based on KEGG pathways, two types of Protein-Protein Interactions (PPI) 
features, Gene Ontology (GO) terms, Genotype-Tissue Expression (GTEx) expression 
features, GeneFriends co-expression features and protein sequence descriptors. These 
datasets provide a wealth of information for representing each of the ageing-related 
genes under study (i.e., genes retrieved from the GenAge “Model organisms” database, 
where genes are considered ageing-related if there is least one wet-lab study where 
manipulations of the gene result in noticeable changes in the ageing phenotype and/or 
longevity of the model organism, as further explained in Methods: Ageing genes and DR 
labels retrieval). Then, a ML approach was used to predict whether or not an ageing-
related gene is DR-related (i.e., using information from the GenDR database where DR-
related genes are selected as those that impair DR-related effects in at least one wet-lab 
study, as explained in the same Methods subsection). The approach involved comparing 
the predictive accuracy of four different tree-based ensemble ML algorithms across all 
11 datasets, with the most predictive ML algorithm, Dataset combinations being then 
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used for feature importance analysis, which led to the identification of key DR-related 
genetic attributes. Finally, we used the two best performing classifiers to infer potential 
under-explored DR-relatedness from ageing-related genes lacking DR-related annota-
tions in the dataset.

Our findings indicate that the most predictive features are based on curated knowl-
edge, such as GO terms and biological pathways. The least predictive features were 
gene expression and co-expression features. Apart from the well-established DR-related 
autophagy and longevity regulating pathways, our findings indicate that the G Protein-
Coupled Receptor (GPCR) signalling, cellular responses to external stimuli, and Nuclear 
Factor Erythroid 2-Related Factor 2 (NRF2) pathways were among the most significant 
features for inferring DR-relatedness. This is consistent with recent evidence indicating 
that these pathways act as mediators of DR effects. Additionally, the oxidation-reduction 
reaction was the most predictive feature across all GO terms. Finally, predictions from 
the strongest classifiers indicate that the ageing-related genes GOT2, GOT1, TSC1, CTH, 
GCLM, IRS2, and SENS2 may share an under-explored association with DR.

Methods
Datasets construction

This and the following sections use the following ML terminology: an instance refers 
to any ageing-related gene/protein included in the datasets; whereas a feature is any 
observable property or attribute of any instance (e.g., GO term annotations, association 
with biological pathways, protein sequence descriptors, etc).

Ageing genes and DR labels retrieval

GenAge [11] is a benchmark database of ageing-related genes. GenAge “model organ-
isms” is a subsection of GenAge consisting of genes in model organisms that, if geneti-
cally modulated, result in significant changes in the ageing phenotype and/or longevity 
[12]. The majority of observations have been made on mice, nematodes, fruit flies and 
budding yeast. The criterion for including a gene in this subsection of GenAge consists 
on the existence of at least one wet-lab study where manipulations of the gene result 
in noticeable changes in the ageing phenotype and/or longevity of the model organism. 
In this work, ageing-related genes from those four organisms were downloaded from 
GenAge Build 20 (09/02/2020). Then, human orthologs of these genes were retrieved 
from the OMA Orthology database [13] (2020 Release) using the OMA browser’s 
Genome Pair View, which allows for the download of orthologs between two species 
(https://​omabr​owser.​org/​oma/​genom​ePW/). Since some genes in different organisms 
are mapped to overlapping human orthologs, only one gene from each set of repeated 
genes was retained, resulting in 1137 human ageing-related genes.

GenDR [14] is a database of DR-related genes. DR-essential genes are defined in 
GenDR as those which, if genetically modified, impair DR-mediated lifespan extension 
in at least one wet-lab study. This criterion applies even if it was shown for only a single 
DR regimen. In this work, 215 DR-associated genes from the aforementioned four model 
organisms were retrieved from the “Gene Manipulation” section of the GenDR database, 
build 4 (24/06/2017), and used as input for another OMA human orthologs query, which 
led to 152 human DR genes after keeping only one of each repeated ortholog genes 

https://omabrowser.org/oma/genomePW/
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coming from different organisms. The ageing- and DR-related human genes retrieval 
processes are summarised in Fig. 1a.

Finally, the overlap of the retrieved ageing- and DR-related human orthologs resulted 
in 115 genes (Fig.  1b) which were labelled as AgeingDR-related, while the remaining 
1022 ageing-related genes that didn’t overlap with DR-related orthologs were labelled as 
AgeingNotDR-related.

PathDIP dataset

This dataset consists of binary features, i.e., each feature value indicates whether or 
not an ageing-related gene belongs to corresponding specific PathDIP pathway. To 
accomplish this, we queried the PathDIP [15] database (version 4.0.7.0) to download a 
dataset in which instances were ageing-related genes, and features were biological path-
ways coming from a variety of database sources, including ACSN2, Bio-Carta, EHMN, 
HumanCyc, INOH, IPAVS KEGG, NetPath, OntoCancro, Panther Pathway, PharmGKB, 
PID, RB-Pathways, REACTOME, stke, systems-biology.org, SignaLink2.0, SIGNOR2.0, 
SMPDB, Spike, UniProt Pathways, and WikiPathway. The resulting dataset contained 
1640 pathways and 986 ageing-related genes: 110 labelled as AgeingCR-related and 876 
labelled as AgeingNotDR-related.

KEGG‑pertinence dataset

This dataset consists of binary features, where each feature indicates whether or not an 
ageing-related gene (instance) belongs to a specific KEGG pathway. To construct this 
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Fig. 1  Overview of ageing- and DR-related genes’ retrieval and overlap. A Ageing- and DR-related genes 
from mice, fruit flies, nematodes, and budding yeast were retrieved from GenAge and GenDR. Then, an 
OMA database query was performed to retrieve their corresponding human orthologs, which are the 
ageing-related and DR-related genes used in this work. B Human ageing- and DR-related genes’ overlap
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dataset, a data frame relating KEGG pathways with the genes they contain was retrieved 
by using the getGeneKEGGLinks command of the R’s Lima package [16]. Then, only the 
KEGG pathways that were associated with at least one of the ageing-related genes were 
retained, yielding 312 KEGG pathways. The resulting dataset contained 799 ageing-
related genes: 94 labelled as AgeingCR-related and 705 labelled as AgeingNotCR-related.

KEGG‑influence dataset

This approach was inspired by the feature-creation method proposed in [17]. Instead 
of producing binary features like KEGG pertinence, that method examines the inter-
nal contents of each KEGG pathway to produce numerical features, where each feature 
value measures the extent to which each protein influenced all the other proteins in 
the pathway. Figure 2a illustrates the influence that a reference protein (red node in the 
graph) exerts on other proteins (the remaining graph’s nodes) within a given pathway. In 
essence, proteins coloured in dark blue can be “reached” only via upstream paths passing 

Fig. 2  Graphical overview of the datasets used in this work. A KEGG-Influence. B PPI Adjacency. C PPI 
measures. D GO terms. E GTEx. F Co-expression. G WholeDatasets
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through the reference protein and thus are highly influenced by it. As the proteins in the 
pathway can be reached via more upstream paths not involving the reference protein, 
they become less influenced by it, and are represented by lighter blue colours. Proteins 
that receive no influence are coloured in white. Additional file 1: Text S.1.1 contains a 
complete description of this dataset which contains 1770 features and 799 ageing-related 
genes, 94 of which are labelled as AgeingDR-related and 705 labelled as AgeingNotDR
-related.

Protein–protein interaction (PPI) adjacency dataset

The human physical PPI network was downloaded from BioGrid (Release 3.5.185): 
BIOGRID-MV-Physical-3.5.181.tab2.zip [18]. Interactions were then processed using 
the R’s igraph library to create a graph object with a total of 25,292 gene products and 
324,892 interactions. After removing loops and repeated edges, the graph consisted of 
25,292 nodes and 92,237 edges. This graph contained 850 ageing-related genes, 86 of 
which were labelled as AgeingDR-related while the remaining 764 as AgeingNotCR-related. 
Then, a dataset with binary features was extracted from the PPI-graph’s adjacency 
matrix. The ij-th element of this matrix takes the value 1 if the gene products Gi and Gj . 
are adjacent in the PPI-graph (i.e., if there is an edge connecting them), or 0 otherwise. 
We retained only ageing-related genes of the adjacency matrix as instances, whereas for 
features, we kept not only ageing-related genes but also genes not associated with age-
ing that directly interact with at least one of the ageing-related genes, yielding 5718 fea-
tures. Figure  2b depicts a representation of this dataset where an adjacency matrix is 
constructed from a graph.

PPI graph measures dataset

This dataset was created from the same base PPI-graph used to create the PPI-adjacency 
dataset, but now using as features only 18 graph measures applied to the 850 ageing-
related genes within the PPI graph. These measures are classified as centrality- and 
non-centrality-based and were computed using the R’s igraph and Centricerve librar-
ies [19–21]. Following these libraries’ documentation, the centrality measures used in 
this work were: Leverage, Markov, Maximum neighborhood component, Closeness, 
Betweenness, Laplacian, Diffusion, Semilocal, Subgraph, Geokpat, Eigenvalue, Eccen-
tricity, Degree and Lobb centralities. In addition, we used the Kcore, DR-ratio, Cluster-
ing Coefficient and Topological Coefficient as non-centrality-based measures. A detailed 
description of all these measures, except DR-ratio, is available on the Centiserve webpage 
[20]. The DR-ratio is the ratio of the number of DR-related direct neighbours of the que-
ried gene over the total number of neighbours of the queried gene (i.e., it describes what 
percentage of the queried-gene’s direct neighbours are DR-related). Figure 2c represents 
this dataset by displaying a graph whose nodes are coloured based on their degree cen-
trality (the larger the number of neighbours, the higher the degree centrality and the 
darker the nodes’ colour).

GO terms dataset

In this dataset, each binary feature represents a specific GO term with which each age-
ing-related gene may or may not be associated. To accomplish this, a BioMart query 
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retrieved a list of the Biological Process GO terms associated with the ageing-related 
genes, yielding 8640 different GO terms. The retrieved GO terms form a hierarchical 
structure with two properties: (1) if a gene is associated to a specific GO term, it will also 
be associated with all its ancestors (i.e., more general GO terms); and (2) if a gene is not 
associated to a given GO term, then the gene is not associated to any of its descendants. 
The GO term GO:0008150 (named ‘Biological Process’) is the root of the hierarchy, i.e., 
it is an ancestor of all other GO terms in the dataset. The R’s GO.db package [22] was 
used to retrieve all the ancestors of the originally retrieved GO terms. Those ancestors 
were then merged to this dataset as new predictive features. This process increased the 
number of GO terms across all the ageing-related genes from 4877 (i.e., without ances-
tors) to 8640 (i.e., containing both the original retrieved GO terms and their ancestors). 
Each GO term (considering both originally retrieved and ancestor GO terms) is repre-
sented as a binary feature, indicating whether or not a gene (instance) is annotated with 
that GO term. Out of the 1137 ageing-related genes, 13 genes were not associated with 
any GO term in BioMart and were removed. This produced a dataset composed of 1124 
ageing-related genes: 114 labelled as AgeingDR and 1010 labelled as AgeingNotDR . Finally, 
due to the hierarchical structure of GO terms, any gene associated with a fixed GO term 
is also associated with all of the term’s ancestors. Figure 2d illustrates this phenomenon 
by indicating that association with a fixed GO term (red node) implies association with 
all of its ancestors (orange nodes).

GTEx dataset

The median expression levels of human genes across 55 different anatomical tissues were 
retrieved from the GTEx database [23] (Analysis V8 database) by downloading the file 
corresponding to the median gene-level Transcripts Per Million (TPM) by tissue. Then, 
only ageing-related genes were retained, resulting in 1111 ageing-related genes: 114 
labelled as AgeingDR-related and 997 labelled as AgeingNotDR-related. The tissues’ median 
TPM scores were then used as predictive features. A graphical representation of this 
dataset is illustrated in Fig. 2e through a heatmap of the mean expression of each single 
gene across different tissues.

Co‑expression dataset

The GeneFriends database [24] was used to generate co-expression profiles for 1048 age-
ing-related genes across a set of 44,946 genes that included both the 1048 ageing-related 
and other genes. The goal was to determine whether the co-expression profile of key 
genes across the ageing-related genes contributes to the association of certain ageing-
related genes with DR. This dataset contained 106 and 942 AgeingDR - and AgeingNotDR
-related genes, respectively. Figure 2f illustrates a representation of this dataset, where 
the correlation between the expression of two genes across different samples is depicted.

Protein‑descriptor dataset

This dataset contains numeric features associated with the proteins encoded by the age-
ing-related genes. Since each gene may code for either one or more proteins, this dataset 
differs from others in the sense that it provides information on ageing-related proteins 
rather than genes. The names and sequences of human proteins were obtained using 
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the proteins command in R’s ensembldb library, with the database EnsDb.Hsapiens.v86 
[25, 26] as the source. 1109 ageing-related genes encoded 6180 ageing-related proteins, 
from where 115 genes and 514 proteins were designated as AgeingDR-related, while the 
remaining 994 genes and 5666 proteins as AgeingNotDR-related. Additionally, features 
were computed from the amino acid sequences of the proteins using the R’s protr and 
Peptides packages [27, 28], which resulted in the features discussed in Additional file 1: 
Text S.1.2.

Whole‑datasets

Two datasets were created that combine features from PathDIP, KEGG-Pertinence, 
KEGG-Influence, PPI adjacency matrix, PPI graph measures, GO terms, GTEx expres-
sion data, and Co-expression datasets. The protein-descriptors dataset was not included 
as it only provides information on proteins rather than genes, which complicates the 
gene-based merging process as proteins do not always have a one-to-one relationship 
with genes. We coined the term ‘WholeDataset’ to refer to the resulting dataset that 
combines all of the aforementioned features, yielding a total of 63,099 features and 1,137 
ageing-related genes: 115 labelled as AgeingDR and 1022 labelled as AgeingNotDR.

Since the merged datasets had different numbers of ageing-related genes, the Whole-
Dataset contained data gaps for ageing-related genes whose features were not annotated 
across all the datasets. We addressed this issue using two approaches, namely, impu-
tation and intersection, which are described next and illustrated in Fig.  2g, where the 
combination of datasets results in genes with missing data (purple cells), which are then 
imputed (green cells) or removed to leave only genes containing features from all the 
datasets (intersected genes).

Whole-Dataset-imputation in this approach we used a 5 Nearest Neighbors (5NN) 
imputation method. For each ageing-related gene G that is missing a value for feature F, 
this method first determines the top five ageing-related genes that have a known value 
for F and are most similar (have the smallest Euclidean distance) to G in the training 
set. The Euclidean distance is computed using all the features for which the values of G 
are known. If F is a continuous feature, its missing value in G is imputed using the mean 
value of F across the 5NN of G in the training set. If F is binary, the missing value in G 
is imputed using the mode of F (i.e., its most frequent value) across the 5NN of G in the 
training set.

Whole-Dataset-intersection In this approach we only retained the ageing-related genes 
that are present across every single dataset, except the protein-descriptors dataset. This 
guarantees the absence of any missing feature values. However, information is lost since 
only about half of the ageing-related genes had known values for all the features. The 
resulting dataset contained 628 ageing-related genes: 72 labelled as AgeingDR-related and 
556 labelled as AgeingNotDR-related.

Machine learning

This work focuses on decision tree-based ensembles, which are a type of powerful 
ML technique that combines the predictions of several base learners (decision trees) 
in order to improve predictive accuracy over a single base learner, reaching state-
of-the-art predictive power while achieving relatively high computational efficiency 
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[29–31]. This type of ensembles is usually categorised into two broad groups: (1) 
Bagging methods, where each base learner is trained independently from the oth-
ers—so, the base learners are conceptually trained in parallel. In bagging methods, 
the predictive accuracy is usually improved due to the reduction of the variance 
in the ensemble’s predictions, by comparison with the variance in the predictions 
of a single base learner. (2) Boosting methods, where the base learners are trained 
sequentially, and each base learner is trained with instance weights that are deter-
mined in order to correct the errors of previous base learners in the sequence. This 
tends to reduce the bias in the predictions [32].

One challenge in this work is that AgeingNotDR-related genes are roughly tenfold more 
numerous than AgeingDR-related genes, resulting in an imbalanced data that biases ML 
predictions towards AgeingNotDR-related genes. To address this, under-sampling of the 
majority class ( AgeingNotDR-related genes) was performed for each of the base learners’ 
training set. Hence, after under-sampling each training set (for each base learner) has 
the same number of AgeingDR-related and AgeingNotDR-related genes. Note that, when 
performing cross-validation, under-sampling was applied to the training set only, i.e., the 
test set remains with the original, very imbalanced class distribution, in order to reflect 
as well as possible the challenge of imbalanced classes associated with the target real-
world classification problem.

Two of the ML algorithms we used, Balanced Random Forests (BRF) and Easy Ensem-
ble Classifier (EEC), are bagging and boosting methods, respectively. Both BRF and 
EEC were implemented using the Python package Imbalanced-learn [33]. Additionally, 
XGBoost (XGB) [34] and CatBoost (CAT) [35] were used, as they are both high-perfor-
mance open-source libraries for gradient boosting in decision trees. Figure 3a illustrates 
these algorithms graphically. The four techniques were run with random_state set to 42.

Predictive accuracy calculation

Predictive accuracy was calculated by using a nested cross-validation (CV) procedure (a 
common approach in ML), as follows. To implement the outer 10-fold cross-validation, 
the dataset instances (ageing-related genes) are randomly divided into 10 stratified outer 
folds of roughly the same size. Then each ML algorithm is run 10 times, each using a 
different outer fold as the testing set and all the other 9 outer folds as the training set. 
Before each run of an algorithm, however, its hyperparameters are tuned by an inner 
5-fold cross-validation. To implement this, each training set of the outer CV is randomly 
divided into 5 stratified inner folds of roughly the same size. Then, for each candidate 
configuration of hyperparameter settings of the algorithm, the algorithm is run 5 times, 
each time using a different inner fold as the validation set (to measure predictive accu-
racy) and the other 4 inner folds as a reduced training set. The predictive accuracy of 
each candidate algorithm configuration is computed as the average accuracy over the 5 
validations sets, and then the algorithm configuration with the highest average predic-
tive accuracy is chosen as the best configuration for the current iteration of the outer CV. 
Next, the algorithm with that best configuration is applied to the full training set of the 
current iteration of the outer CV, and the learned classifier is evaluated on the current 
testing set. Finally, this whole process is repeated for the 10 iterations of the outer CV, 
and the predictive accuracy of the algorithm is computed as the average of the 10 values 
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of predictive accuracy over the 10 testing sets of the outer CV. Note that hyperparameter 
optimization is performed by the inner CV using only the training set (i.e., not using the 
testing set), which is always reserved for measuring generalisation performance.

Fig. 3  Summary of ML methods. A Selection of each possible {Dataset, ML algorithm} model. B Evaluation of 
each model through the nested-CV. Only 5 outer folds are depicted to facilitate visualization. C Comparison 
of the predictive power of all the {Dataset, ML algorithm} models using Gmean and AUC. D Computation 
of feature importance analysis in the two best performing models from different datasets. E Construction 
of the DR-annotations and the DR-probability vectors. F Possible DR-related inference from AgeingNotDR
-related genes strongly predicted as DR-related. TN, TP, FN and FP refer to True Negatives, True Positives, False 
Negatives and False Positives, respectively
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A graphical representation of the nested CV procedure is depicted in in Fig. 3b (which 
only displays five outer folds for ease of visualization). In this work, the inner loop was 
implemented using the scikit-learn’s GridSearchCV command [29], with random_
state = 42 and hyperparameters as stated in Additional file 1: Text S.2.

The performance metric used for hyperparameter tuning during the inner-loop of the 
nested CV was the Geometric Mean (Gmean), defined in equation (1):

where sensitivity is the percentage of AgeingDR-related genes (i.e., the minority class) 
that were correctly predicted as AgeingDR-related, and specificity is the percentage 
of AgeingNotDR-related genes (i.e., the majority class) that were correctly predicted as 
AgeingNotDR-related. Since sensitivity and specificity take values in the [0,  1] interval, 
so does Gmean. Gmean is suited for class-unbalanced problems as this metric meas-
ures the balance between classification performances on both the majority and minority 
classes [36]. The closer Gmean is to 1, the better is the classification.

The predictive performance of the final models on the testing sets of the outer CV 
was evaluated by two measures (Fig.  3c): (a) Gmean of sensitivity and specificity, and 
(b) Area Under the Receiver Operating Characteristic Curve (AUC), which is an overall 
summary of predictive accuracy. AUC also takes values in [0, 1], where 1 is the ideal 
value (indicating that all predictions were correct), and an AUC value of 0.5 corresponds 
to random predictions.

A special form of nested CV procedure was applied to the protein-descriptors dataset, 
as follows. The sequences of ageing-related proteins encoded by a single ageing-related 
gene are highly correlated. As a result, the testing and training sets of the proteins data-
set are also likely to be highly correlated, impeding a fair measure of predictive accuracy. 
To address this issue, the inner and outer folds of the nested-CV were performed at the 
gene level rather than at the protein level. This was accomplished by directly applying 
the nested-CV splitting to all the ageing-related genes containing proteins in the EnsDb.
Hsapiens.v86 database [28, 29]. Following that, the corresponding proteins for each of 
these ageing-related genes were retrieved. Proteins encoded by the genes in the outer 
training, outer testing, inner training and inner validation sets were then used to create 
their corresponding data subsets of the protein-descriptors dataset.

Preprocessing

Two distinct preprocessing methods were applied, depending on the type of data to 
be computed. For binary features (i.e., PathDIP, KEGG-Pertinence, PPI-Adjacency, 
GO terms), a minimum threshold of association occurrences was tuned as follows: 
we defined the ‘Thresholds_Set’ Ts = {3, 4, 5} as the candidate minimum number of 
instances (i.e., genes) to which a feature must be associated in order to be retained for 
the ML model’s training and testing. The value that maximizes the average prediction 
performance across all the inner loops of the nested CV is then selected for training the 
corresponding outer loop.

On the other hand, continuous features (i.e., KEGG-Influence, GTEx, and Proteins 
descriptors) were filtered based on a correlation criterion where one of each two features 
with correlation greater than 99% was eliminated. The co-expression dataset, despite 

(1)Gmean =

√

sensitivity× specificity
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continuous, was preprocessed differently from other continuous datasets due to its 
remarkably larger number of features that made correlation analysis highly demanding 
in terms of computational power and time. To address this, an F-statistic-based univari-
ate feature filtering algorithm was applied using the SelectKBest command of the sklearn 
feature_selection python’s library to retrieve the 1000 genes that co-express the most 
with the DR-related target labels. Then, similarly to other continuous datasets, the 99% 
correlation-based filtering was applied to the remaining 1000 genes.

WholeDatasets’ features were classified into two categories: binary, which underwent 
the ‘Thresholds_Set’ preprocessing step Ts = {3, 4, 5}; and continuous, to which the uni-
variate filter was applied to reduce the number of continuous features to 1000, followed 
by the 99% correlation step. Some KEGG-Influence-based features had only two val-
ues and thus were preprocessed as binary within the WholeDatasets, even though this 
dataset was created by trying to compute all its features as continuous. This implies that 
some KEGG Influence-based features within the WholeDatasets were preprocessed by 
the minimum occurrence threshold criterion, while others by the univariate feature plus 
the correlation criterion.

Feature importance calculation

We calculated the feature importance for the best learned models (Fig. 3d). To accom-
plish this, we used 100% of the ageing-related genes (instances) of the dataset under 
study as the training set, which ensured that the features importance were calculated 
using all of the data available, maximising the quality of the feature importance calcula-
tion. No instances were withheld for testing purposes, as this task’s objective was not to 
determine predictive accuracy (already determined by the nested-CV procedure) but to 
compute the features’ predictive relevance.

The importance of BRF’s features is determined by using the default Gini index of class 
impurity, which calculates how well a split separates the samples of the two classes in 
each node of a decision tree. A feature’s importance is basically given by the weighted 
average of the reduction of the Gini index across the tree nodes labelled with that fea-
ture, with weights proportional to the number of instances split by that feature [37]. On 
the other hand, EEC, XGB, and CAT calculate a feature’s relevance through the permu-
tation method, which compares the model’s predictive accuracy on the original data vs 
the model’s accuracy on a dataset with a random permutation of that feature’s values, 
so that the extent of the drop in the model’s accuracy after the random permutation 
indicates how much the model is dependent on the feature. Finally, in order to compare 
the results of the two feature importance methods, the resulting feature rankings were 
scaled from their original values to the [0, 100] interval, where 100 represents the most 
important feature and 0 represents no relevance.

New DR‑related genes inference

Each learned classification model outputs a probability that a gene belongs to the 
AgeingDR-related class. For converting a predicted probability into a class label we 
use a classification threshold of 0.5, i.e., any gene with a predicted AgeingDR-related 
probability less than 0.5 is predicted to be AgeingNotDR-related, whereas any gene 
with a predicted probability greater than 0.5 is predicted to be AgeingDR-related. 
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Although DR-related predictions are binarized by the threshold, the DR-related 
probabilities remain informative as a measure of the prediction’s certainty, from the 
model’s viewpoint. For instance, if two given genes, A and B, have DR-related prob-
abilities of 0.6 and 0.9, respectively, both are classified as DR-related; but from the 
model’s perspective, gene B is more reliably related with DR.

Hence, it is possible to infer novel AgeingDR-related genes by identifying, among all 
the genes annotated in the dataset as AgeingNotDR-related genes, which ones have the 
greatest predicted AgeingDR-related probabilities, which are the strongest false posi-
tives (FP) genes. After all, the AgeingNotDR-related class label annotation in the data-
set is not very reliable in general, because it basically means that there is no evidence 
for AgeingDR-relatedness in the literature, and absence of evidence is not the same 
as evidence for absence of AgeingDR-relatedness. Hence, the strongest FP genes are 
good candidate targets for future experiments to determine AgeingDR-related genes.

Keeping in mind that the nested-CV’s outer testing sets do not overlap and that 
they collectively include all the genes (instances) in the dataset, we created, for each 
of the best performing Dataset, ML algorithm combinations (i.e., the best models), 
two vectors: a DR-probability vector combining the predicted DR-related prob-
abilities from all the outer testing splits, and a DR-annotations vector by combining 
the original annotations of class labels in the data from all the outer splits (Fig. 3e). 
Next, based on these two vectors, we retained only AgeingNotDR-related genes with 
DR-probability equal to or greater than 0.5 (i.e., FP genes), meaning that they were 
classified as DR-related by the model but lack a DR-related annotation in the dataset 
(based on the literature). We identified the top 10 FP genes with greater DR-proba-
bility for each of the best performing models and discussed their potential as candi-
date DR-related genes for confirmation in further wet-lab experiments (Fig. 3f ).

Finally, we looked for common top DR-related genes candidates among the shared 
ageing-related genes between the two strongest models, namely {GO terms, BRF} 
and {PathDIP, CAT}, as described in the Results section. To do so, we originally com-
puted a common-ranking by averaging the DR-probability scores of common genes 
in both models and then sorted the genes in descendent order based on the averaged 
score. This approach had, however, one issue as the DR-probability density distribu-
tions of both strongest models lied in different intervals ([0.35,0.75] in {GO terms, 
BRF} while [0,  1] in {PathDIP, CAT}, as described in Results). Consequently, each 
computed average was biased towards the distribution with the most extreme val-
ues (i.e., genes with the greatest/lowest DR-probability scores in {PathDIP, CAT} will 
have stronger influence when averaging than genes with greatest/lowest DR-mem-
bership score in {GO terms, BRF}). With the aim to provide a similar comparison 
scale for the top DR-related candidates in both models while considering the distri-
bution shape, we mapped the DR-membership scores of all genes in both {GO terms, 
BRF} and {PathDIP, CAT} models to the [0, 1] interval and then retrieved common 
genes in both models to compute DR-probability arithmetic averages, highlighting 
AgeingNotDR-related genes with the highest probabilities of being AgeingDR-related 
genes from both best models’ perspectives.
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Statistical analysis

To report on the most important features, two statistical analysis tests were used (with a 
significance level of 0.01): a Two-Proportions Z-Test for binary features and a T-test for 
continuous features. The use of the test for binary features is based on the concept of a 
feature’s positive value, which is defined as the presence of annotation (e.g., a GO term 
annotation) for a gene, as opposed to the absence of that annotation (the negative value 
of the feature).

The test for binary features was designed to determine whether the proportion of 
AgeingDR-related genes associated with a particular relevant feature’s positive value (i.e., 
the ratio of AgeingDR-related genes associated with the relevant feature’s positive value 
over the total number of AgeingDR-related genes in the dataset) is significantly differ-
ent than the proportion of AgeingNotDR-related genes associated with the same relevant 
feature’s positive value. For continuous features, the test determined whether the mean 
value of the feature across all AgeingDR-related genes was significantly different than the 
mean value of the feature across all AgeingNotDR-related genes. The resulting p-values 
were adjusted for multiple tests using the Benjamini–hochberg correction.

Results
This section first highlights the best performing combinations of ML algorithms and 
datasets. Top relevant features are then presented. Finally, the predicted top DR-associ-
ated genes candidates are reported.

Predictive accuracy results

The AUC and Gmean values obtained by BRF, EEC, XGB, CAT are compared in Table 1. 
For each dataset (feature type) and predictive accuracy measure, the best result from the 
four algorithms is highlighted in bold face. This bold face meaning also holds in Table 2. 
GTEx and co-expression were the least predictive feature types, yielding results compa-
rable to random predictions (AUC close to 0.5), whereas GO terms and PathDIP were 
the most predictive: GO terms had the highest average AUC (0.83) and the second high-
est average Gmean (0.75) across the four algorithms; whilst PathDIP had the highest 
average Gmean (0.76) and the second highest average AUC (0.81). BRF got the highest 
AUC values overall, whereas the highest Gmean values were more distributed across all 
algorithms, with higher means for EEC and CAT.

By defining a model as a combination of a dataset and the classification algorithm 
that runs over it {Dataset, ML algorithm}, the model with the highest Gmean (0.77) was 
{PathDIP, CAT}, closely followed by {GO Terms, BRF} and {PathDIP, BRF}, both with a 
Gmean of 0.76. Regarding AUC results, the best model was {GO Terms, BRF} with an 
AUC of 0.84, closely followed by {GO terms, EEC} and {PathDIP, CAT}, both with an 
AUC of 0.83. Since {PathDIP, CAT} and {GO Terms, BRF} achieved complementary and 
notably close first and second places regarding Gmean and AUC, they are both the most 
predictive models overall.

Table  2 reports sensitivity and specificity results, as measures of predictive accu-
racy for AgeingDR-related genes and AgeingNotDR-related genes, respectively. The high-
est mean sensitivity and specificity values across all four algorithms were obtained by 
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PathDIP and Proteins-Descriptors, respectively, as shown in the last two columns of the 
table. There was no strong winner algorithm in terms of sensitivity, but XGB obtained by 
far the worst sensitivity values overall, as shown in the last row of the table. On the other 
hand, XGB achieved in general the highest specificity values, implying more accurate 
predictions for AgeingNotDR-related genes, the majority class. ROC curves of all the ML 
algorithms in the two strongest datasets, as well as confusion matrices of the two strong-
est models, {GO Terms, BRF} and {PathDIP, CAT}, are depicted in Additional file 1: Fig-
ures S1 and S2, respectively.

Feature importance results

The top-5 most relevant features in each of the two most predictive models, {GO terms, 
BRF} and {PathDIP, CAT}, are shown in Tables 3 and 4, respectively. The column Score 
in these tables indicates the relative importance of the features, in the range from 0 (no 
relevance) to 100 (maximal relevance).

The columns AgeingDR and AgeingNotDR denote the percentage of AgeingDR - and 
AgeingNotDR-related genes with the GO term or pathway in the corresponding row 
(i.e., the percentage of genes with the feature’s positive value). In addition, a propor-
tion is provided in brackets where the numerator indicates the number of AgeingDR - or 

Table 3  Top-five most predictive GO terms in the {GO terms, BRF} model

Feature Definition Score AgeingDR 
(%)

AgeingNotDR  (%) Adjusted p value

GO:0055114 Oxidation–reduction process 100 19.3%
{22/114}

11.58%
{117/1010}

1

GO:0007188 Adenylatecyclase-modulating G 
protein-coupled receptor
signalling pathway

70.965 13.16%
{15/114}

0.3%
{3/1010}

1.52e−20

GO:1,904,659 Glucose transmembrane transport 67.831 10.53%
{12/114}

0%
{0/1010}

3.76e−20

GO:0007186 G protein-coupled receptor signalling 
pathway

53.516 15.79%
{18/114}

2.77%
{28/1010}

1.21e-07

GO:0008643 Carbohydrate transport 51.516 9.65%
{11/114}

0.1%
{1/1010}

3.51e−16

Table 4  Top-five most predictive pathways in the {PathDIP, CAT} model

Feature Definition Score AgeingDR (%) AgeingNotDR (%) Adjusted p value

KEGG.2 Autophagy (animal) 100 18.18%
{20/110}

4.34%
{38/876}

3.05e−0.5

KEGG.30 Longevity regulating 
pathway  (multiple.
species)

45.349 12.73%
{14/110}

2.63%
{23/876}

8.71e−04

NetPath.23 BDNF 38.953 0.91%
{1/110}

1.14%
{10/876}

1

REACTOME.10 Cellular responses to 
external stimuli

37.791 20.91%
{23/110}

9.13%
{80/876}

3.90e−01

WikiPathways.37 NRF2 34.884 14.55%
{16/110}

1.14%
{10/876}

2.58e−12
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AgeingNotDR-related genes with the positive feature value, while the denominator indi-
cates the total number of AgeingDR - or AgeingNotDR-related genes, in the dataset.

The Adjusted p-value columns in Tables 3 and 4 indicate the results of the statistical 
tests applied to detect whether the values in the AgeingDR column are significantly differ-
ent from those in the AgeingNotDR column as explained in Methods: Statistical analysis. 
Significant p-values are denoted by bold text.

Interestingly, among the GO terms in Table 3, the most relevant one, oxidation-reduc-
tion process, was the only one that failed to achieve a significant difference in terms 
of the proportion of AgeingDR - and AgeingNotDR-related genes. Nonetheless, this term 
is worth highlighting due to it having the highest proportion of occurrence (19.3%) in 
AgeingDR-related genes among all 5 GO terms in this table. The remaining GO terms, 
which are related to GPCRs and carbohydrate transport, clearly have a stronger asso-
ciation with AgeingDR-related genes, as each of them occurred in about 10%–16% of the 
AgeingDR-related genes while occurring in less than 3% of the AgeingNotDR-related genes.

Table 4 reports the top PathDIP features. Note that the score for the second best path-
way, longevity regulating pathway, is much lower than the score for the best pathway, 
autophagy. The only features with no significant difference in their percentage of occur-
rence in AgeingDR - and AgeingNotDR-related genes were  ’cellular responses to external 
stimuli’ and ’brain-derived neurotrophic factor’ (BDNF). Even so, the cellular responses 
to external stimuli pathway contained the greatest proportion of occurrence (20.9%) in 
AgeingDR-genes.

We also provide feature importance results for {KEGG-Pertinence, XGB} and {KEGG-
Influence, BRF} in Additional file 1: Text S.3.1 and S.3.2 since these two models also got 
relatively high-performance scores, while providing complementary insights to the fea-
ture importance results of the most predictive models.

DR‑associated gene prediction

The two most predictive models, {GO terms, BRF} and {PathDIP, CAT}, were learned 
from datasets with 1124 and 986 ageing-related genes, respectively. Figure 4a, b show 
the distribution of AgeingDR - and AgeingNotDR-related genes across different DR-prob-
ability values for {GO terms, BRF} and {PathDIP, CAT}, respectively. The DR-probabil-
ity distributions in {GO terms, BRF} span a much narrower window, near [0.35, 0.70], 
than distributions in {PathDIP, CAT}, near [0, 1]. Additionally, both models’ AgeingNotDR
-related genes share a maximal density point that is relatively close to the 0.5 threshold, 
yet on the AgeingNotDR predicted side (0.45 points). This point is notably denser (about 6 
folds) and narrower in {GO terms, BRF} than it is in {PathDIP, CAT}. Regarding the top 
DR candidate genes, further analysis of Fig. 4a, b, indicates that, for both models, the top 
DR-probabilities across AgeingNotDR-related genes achieved similar scores to the top DR-
probabilities in AgeingDR-related genes, but are much less numerous. Figure 4c, d depict 
the top ten DR-candidate genes in the {GO terms, BRF} and {PathDIP, CAT} models, 
respectively. Even if some of the top genes predicted by both models may have a procliv-
ity for not detecting unknown DR-relationship, it is remarkable that among their top ten 
DR-candidate genes, only GOT2 overlapped. 

Hypothesising that pertinence to the common set of top-10 DR-candidate genes in 
both models increases likelihood of accurate DR-relatedness prediction, we performed 
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a joint analysis of the top-10 DR-candidate genes (Methods: New DR-related genes infer-
ence). Briefly, we normalised the range of both models’ DR-probability distributions and 
then retained common ageing-related genes (976 genes, 872 of which are AgeingNotDR
-related) in order to compute, for each common ageing-related gene, an arithmetic aver-
age of both normalised DR-probabilities. Then, we sorted genes under a criterion that 
considers both a similar DR-membership range for the two models and their distribu-
tion shapes. The correlation between the normalised DR-probabilities assigned by the 
{GO terms, BRF} and {PathDIP, CAT} models was only moderated, being smaller across 
AgeingNotDR-related genes, increasing throughout AgeingDR-related genes and yielding 
the highest score when using all ageing-related genes (Fig. 5).

Table  5 depicts both models’ common AgeingNotDR-related genes whose averaged 
normalised DR-probability exceed 0.8. Note that all of these genes, namely, GOT2, 
GOT1, TSC1, CTH, GCLM, IRS2, and SENS2; appeared in the top-10 DR-related can-
didates of at least one of the two most predictive models. The top gene in  Table  5, 
Glutamic-Oxaloacetic Transaminase 2 (GOT2), appeared within the set of top six 
ranking genes of both models, indicating that its possible DR-relatedness could be 
similarly inferred from either biological pathways or biological processes GO terms. 
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Fig. 4  DR-probabilities assignations of {GO terms, BRF} and {PathDIP, CAT}. A, B DR-probabilities density 
distribution of {GO terms, BRF} and {PathDIP, CAT}, respectively. The green dashed line represents the 
beginning of the top 10 False Positives (FP), which are identified as candidate DR-associated genes. C, D 
Top 10 FP genes in {GO terms, BRF} and {PathDIP, CAT}, respectively. The classification threshold (0.5) is 
represented by the dashed black line
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Insulin Receptor Substrate 2 (IRS2) and especially Glutamic-Oxaloacetic Transami-
nase 1 (GOT1) got high DR-probabilities in the {GO terms, BRF} model, and a moder-
ately high probability in {PathDIP, CAT}. Moreover, Sestrin 2 (SENS2), the gene with 
the highest DR-probability in the {GO terms, BRF} model, also reached the list but it 
was, by far, the gene with lowest DR-probability in {PathDIP, CAT}, among all genes 
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Table 5  Top DR-related gene candidates

Top DR-related gene candidates jointly defined by the two strongest models. Top-association ranking is provided relative to 
the number of common AgeingNotDR-related genes

Joint rank Gene Normalised DR-probability Ranking

Mean score {GO terms,  BRF} {PathDIP,  CAT} {GO terms,  BRF} {PathDIP,  CAT}

1 GOT2 0.861 0.840 0.882 5th 6th

2 GOT1 0.853 0.946 0.760 2th 35th

3 TSC1 0.847 0.714 0.979 19th 1th

4 CTH 0.846 0.764 0.928 11th 3th

5 GCLM 0.823 0.700 0.946 23th 2th

6 IRS2 0.801 0.826 0.777 8th 31th

7 SESN2 0.801 1 0.602 1th 80th
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in Table 5. Finally, TSC Complex Subunit 1 (TSC1), glutamate-cysteine ligase regula-
tory subunit (GCLM) and Cystathionine Gamma-Lyase (CTH) got the three highest 
DR-probability scores in {PathDIP, CAT}, and also relatively high probabilities in {GO 
terms, BRF}.

Discussion
This study demonstrated that the most powerful predictors of DR-relatedness across 
ageing-related genes rely on features heavily based on curated biological knowledge 
(from the literature), hereafter called ‘knowledge-based features’, such as GO terms and 
biological pathways. However, one caveat of these features is the difficulty to directly 
produce new findings, as they are based on existing knowledge. Nonetheless, the pre-
dictive power of these types of features enabled the extraction of additional biological 
insights from ageing-related genes strongly predicted to be DR-related but lacking cur-
rent annotation of DR-relatedness.

Features not so heavily based on curated biological knowledge, particularly those 
based on gene expression and co-expression, were the least predictive, predicting almost 
randomly and implying that DR-relatedness is unlikely to be explained by gene expres-
sion analysis across tissues or by co-expression of ageing-related genes with other genes.

Upon merging the 9 datasets with specific feature types into two “whole” datasets 
(using two merging approaches), the predictive power was found to diminish compared 
to the strongest feature type-specific datasets. This occurred despite the use of a simple, 
univariate feature filtering algorithm. This suggests the importance of exploring the use 
of more sophisticated feature selection techniques, which is out of the scope of this work 
and left for future research.

The joint analysis of the top DR-candidate genes in {PathDIP, CAT} and {GOterms, BRF} 
models highlighted genes whose DR-relatedness can be explored from both GO terms 
and biological pathways perspectives. The strengths of both models were complementary, 
as {PathDIP, CAT} was more suited for classifying AgeingNotDR-related genes while {GO 
terms, BRF} performed better with AgeingCR-related genes. It is also noticeable that both 
models achieved similar predictive accuracies despite exhibiting only a moderate corre-
lation of DR-related class predictions. In addition, top-ranked AgeingNotDR-related genes 
with high DR-probabilities were mostly surrounded by AgeingDR-related genes in the 
plane defined by the normalised DR-probabilities in {PathDIP, CAT} and {GO terms, BRF} 
models, suggesting biological process and pathway similarities between the top DR-related 
candidates and currently established DR-related genes.

One limitation of this work is that our most predictive models ({GO terms, BRF} and 
{PathDIP, CAT}) may not always be optimal for predicting DR-association of genes outside 
GenAge. This occurs because the input features used for learning these two models (and 
our other models learned in this work in general) have features whose values were com-
puted based on ageing-related genes. That is, since the ML models based on our datasets 
were trained based on data containing exclusively ageing-related instances, the models were 
optimized for predicting whether or not ageing-related genes (included in GenAge) belong 
to the DR-relatedness class; the models were not optimized for predicting whether or not a 
non-ageing-related gene (not included in GenAge) belongs to the DR-relatedness class.
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Features importance

GO term features

The oxidation–reduction process was the most significant GO term for discriminating 
between the presence or absence of DR-relatedness across ageing-related genes. This 
term was also notable as it was associated with the greatest number of ageing-related 
genes across all top features in both PathDIP and GO term feature sets. Nonetheless, 
it did not demonstrate any significant preference for AgeingDR - nor AgeingNotDR-related 
genes, indicating that its effects on ageing could be mediated in both DR and NotDR-
dependent ways. Evidence indicates that DR improves redox state [38], though this may 
not be the mechanism by which DR prolongs life [39]. It has been observed, however, 
that low levels of ROS may actually be beneficial as mediators of redox signalling [39].

Notably, ageing-related genes associated with glucose and carbohydrate transport 
were almost exclusively AgeingDR-related, which at first sight may partially suggest a 
relationship between ageing, DR and glucose transport. Nevertheless, this relationship, 
if existing, is not straightforward as abnormal glucose metabolism is a common but not 
necessary feature of ageing [40]. The most significant changes in glucose metabolism are 
due to ageing-related insulin dysfunction [41]. This phenomenon appears, however, to 
be a consequence rather than a cause of ageing, as the improvement in insulin sensitivity 
induced by DR was not required for the effects of DR on fitness and longevity [42].

Ageing-related genes within the GPCR signalling pathway were also significantly 
related with DR. Some GPCRs have emerged as promising targets for reversing senes-
cence and thus ageing [43]. In this regard, one of the few studies discussing the relation-
ship between a GPCR, namely TGR5, and DR [44] demonstrated that DR benefits on 
renal function ageing can be partially explained by up-regulation of TGR5; as a result, 
the authors of that study proposed up-regulation of TGR5 as a possible DR-mimetic 
candidate for renal function.

PathDIP features

The strongest predictive feature was autophagy, which is responsible for the disposal and 
recycling of metabolic macromolecules and damaged organelles [45]. The second most 
significant feature, the longevity regulating pathway, is also associated with autophagy 
via a well-characterized signalling cascade [45]. The fact that the AgeingDR-related genes 
in this study were significantly strongly associated with these autophagy-related path-
ways supports current hypotheses that some of the DR-related anti-aging effects are 
mediated by autophagy [46, 47].

The BDNF pathway is presumably involved in brain ageing. Moreover, it is well estab-
lished that DR enhances BDNF in a currently unknown manner [48–50], and that BDNF 
declines with age [51]. The possible relationship between this gene and DR could be 
explored through the well-characterized DR-related protein kinase B (Akt) pathway, as 
BNDF and Akt indirectly interact [52]. However, in the context of our ML algorithms, it 
is possible that the BDNF pathway favoured NotDR-related predictions, as only one of 
its 11 ageing-related genes was predicted as DR-related. NRF2 is absent from GenDR. 
Nevertheless, our results suggest a strong association between the NRF2’s pathway 
and DR because, while the ratio of AgeingDR - related to AgeingNotDR-related genes is 
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approximately 1/10 in the overall dataset, this pathway demonstrated the much greater 
16/10 ratio; and this pathway has by far the greatest proportion of AgeingDR-related 
genes, compared to AgeingNotDR-related genes across all top PathDIP pathways. This 
finding could be supported by recent evidence linking NRF2 and DR [53].

The “cellular responses to external stimuli” pathway is notable for the large number of 
ageing-related genes associated with it, only outnumbered, across all the most relevant 
features discussed in this work, by the “oxidation-reduction process” GO term. However, 
similar to the redox GO term, the relative distribution of ageing-related genes in this 
pathway did not achieve statistical significance in direction of neither DR nor NotDR. 
External stimuli responses include responses to metal ions [54], from where a metal 
ion theory of ageing was constructed. This theory has been poorly explored and opens 
opportunities for novel DR-research directions as it has been shown that DR decreases 
the level of certain metal ions in cells [55].

DR‑related candidate genes

GOT1 and GOT2 are genes whose products are involved in the amino acid metabolism 
that exist in cytoplasmic and mitochondrial forms, respectively [56]. GOT1 ’s expres-
sion has been shown to change with age [57], but evidence linking it to DR is far scarcer. 
To our knowledge, only one study [58] has demonstrated this relationship and proposed 
the role of GOT1 as a significant metabolic feature associated with hepatic response to 
DR that is representative of differences in mediating amino acid influx into the gluco-
neogenic pathway. While there is lack of evidence linking GOT2 with DR, one study [59] 
suggested that either GOT1 or GOT2 may impact H2S homeostasis, opening a window 
for further DR-related insights, as H2S signalling cascade has been observed to promote 
DR-like pro-longevity effects [60].

The TSC complex is a critical negative regulator of mTORC1 [56], the inhibition of 
which is associated with DR-like benefits [61]. In this regard, even if the TSC complex’s 
role in regulating mTORC1 in  vivo remains under-explored, one study [62] provides 
insights that indirectly link this gene with DR as it demonstrated that improved insulin 
sensitivity following short-term protein restriction (PR) required TSC1 for facilitating 
increased pro-survival signalling after injury, and contributed to PR-mediated resistance 
to clinically significant hepatic ischemia reperfusion injury.

CTH is a gene that produces endogenous hydrogen sulphide (H2S) as a signalling mol-
ecule [56]. Evidence linking CTH to DR is scarce. To our knowledge, only one recent 
study [63] reveals a positive correlation between CTH expression and DR application. 
This increased expression may have potential contributions to DR pro-longevity effects 
as inhibition of CTH is associated with about 15% lifespan reduction in worms. Moreo-
ver, CTH is a gene that promotes production of H2S, a potential DR-mimetic candidate, 
suggesting an approach for further studies linking CTH with DR.

The Glutamate-Cysteine Ligase Regulatory subunit (GCLM) is a gene that regulates 
the expression of antioxidant enzymes [56]. Its role in DR is not explicitly stated in lit-
erature. However, a recent study [64] showed its increased expression during fasting in 
PASK-deficient mice. Since fasting and intermittent fasting are associated to DR-like 
benefits, a link between GCLM and DR can be investigated from this perspective. If such 
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a link does not exist, the outcome may remain informative by providing insights on dif-
ferences between DR- and fasting-related beneficial signalling cascades.

IRS2 is a cytoplasmic signaling molecule that mediates the effects of insulin, insu-
lin-like growth factor 1, and other cytokines. A homolog of this gene is present within 
GenDR (Gene Manipulations) [14], as “chico” in fruit fly, however, it was not detected as 
an ortholog by the OMA database [13] and thus was not considered a DR-related gene. 
This gene has a further independent entry within GenDR (Gene Expression) where 174 
mice genes that significantly change their expression during DR are reported [14, 65]. 
Out of our 7 top DR-candidate genes, IRS2 was the only one overlapping these 174 genes 
as further explained in Additional file 1: Text S.4. This suggests that IRS2 may not only 
be differentially expressed during DR but also could have the potential to regulate DR-
associated pro-longevity effects. Sestrin 2 (SESN2) is an intracellular leucine sensor that 
negatively regulates the TORC1 signaling pathway. This gene was out of the scope of 
DR-relatedness until a recent work highlighted its role as a novel molecular link that 
mediates the effects of dietary amino acid restriction on TORC1 activity in stem cells of 
the fly gut, thereby maintaining gut health and ensuring longevity [66]. Hence, although 
the DR-probability of this gene was relatively low in the {PathDIP, CAT} model, it was 
the highest in the {GO terms, BRF} model; and the averaged DR-related prediction of 
this gene is supported by recent evidence.

Conclusions
To our knowledge, this is one of the pioneering studies applying ML algorithms to 
DR research in the context of ageing. This work demonstrated the strong potential of 
ML-based techniques to identify DR-associated features as our findings are consistent 
with literature and recent discoveries. GO terms and PathDIP pathways were the most 
predictive types of features. Due to their curated knowledge-driven (literature-based) 
nature, the use of these feature types in the most predictive models has on one hand 
mostly corroborated existing knowledge (rather than directly generating new knowl-
edge), but has on the other hand provided statistical support associating DR with the 
NRF2 pathway and GPDRs, which have been recently accumulating evidence towards 
DR in the literature, and so are worth further exploring.

Inference of novel DR-related features may be easier to accomplish from feature types 
not biased by curated knowledge. However, our work found an obstacle to this inference 
due to the low or even null predictive power of such feature types, implying that either 
(1) their features did not contain relevant information for predicting DR-relatedness; 
or (2) the used tree-based ensemble algorithms were not suitable for our classification 
problem with the unbiased feature types used in this work, especially expression and 
co-expression data; or (3) the number of currently known ageing-related genes was not 
large enough for our ML algorithms to find complex patterns in our unbiased data, lead-
ing to poor predictive accuracy in such datasets. In future work, the application of deep 
learning techniques could potentially increase the predictive power of unbiased feature 
types, which could provide novel insights on possible DR-related protein properties and 
interactions as well as DR-related gene expression and co-expression signatures.

Further insights were taken from genes annotated as AgeingNotDR-related genes in the 
dataset but strongly predicted as DR-related genes based on GO terms and PathDIP 
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pathways. This analysis revealed a list of genes outside GenDR that are prone to be 
related with DR despite lacking such annotation. Most of these genes were consistent 
with some preliminary DR-related experiments, which makes them worth exploring for 
further wet-lab experiments to get a deeper understanding of their relationship with DR. 
Among these genes, GOT2 was the only AgeingNotDR–related gene present within the 
top six stronger false positives in models learned with both PathDIP and GO term fea-
tures. Other DR-related gene candidates strongly predicted by both most predictive ML 
models were GOT1, TSC1, CTH, GCLM, IRS2 and SENS2, which, together with GOT2, 
remain to be validated in further lab-based experiments.
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