
A Novel Evolutionary Algorithm for Automated
Machine Learning Focusing on Classifier Ensembles

João C. Xavier-Júnior∗, Alex A. Freitas†, Antonino Feitosa-Neto∗ and Teresa B. Ludermir‡
∗Digital Metropolis Institute - Federal University of Rio Grande do Norte, Natal, Brazil

Email: jcxavier@imd.ufrn.br, antonino feitosa@yahoo.com
†School of Computing - University of Kent, Canterbury, United Kingdom

Email: a.a.freitas@kent.ac.uk
‡Center for Information Technology - Federal University of Pernambuco, Recife, Brazil

Email: tbl@cin.ufpe.br

Abstract—Automated Machine Learning (Auto-ML) is an
emerging area of ML which consists of automatically selecting
the best ML algorithm and its best hyper-parameter settings
for a given input dataset, by doing a search in a large space
of candidate algorithms and settings. In this work we propose
a new Evolutionary Algorithm (EA) for the Auto-ML task of
automatically selecting the best ensemble of classifiers and their
hyper-parameter settings for an input dataset. The proposed EA
was compared against a version of the well-known Auto-WEKA
method adapted to search in the same space of algorithms and
hyper-parameter settings as the EA. In general, the EA obtained
significantly smaller classification error rates than that Auto-
WEKA version in experiments with 15 classification datasets.

I. INTRODUCTION

Classification is one of the most important tasks in Machine
Learning, and decades of research in this area have produced
a large number of classification algorithms [20]. Hence, the
selection of the best classification algorithm to a given input
dataset is a challenging problem, since the predictive perfor-
mance of an algorithm is strongly dependent on characteristics
of the input dataset [10], as well as on the hyper-parameter
settings of the algorithm.

Hence, the research area of Automated Machine Learning
(Auto-ML) has emerged, in the last 5 years or so, as a
promising approach to tackle this problem [4], [6], [24]. This
approach is promising because it automatically performs a
systematic search in a very large space of candidate algorithms
and hyper-parameter settings, relieving the user from the
task of performing ad-hoc, tedious and very time-consuming
experiments with different algorithms and their settings.

This work follows the Auto-ML approach, but it is mainly
focused on a broad type of classification algorithms, called
classifier ensembles, which combine the outputs of many base
classifiers (e.g. by majority voting). This combination usually
improves predictive accuracy by comparison with a single base
classifier [1]. We focus on ensembles because they are usually
considered one of the best types of classification algorithms
regarding predictive accuracy. For instance, a recent study
[9] compared the predictive accuracy of 179 classification
algorithms divided into 17 families of algorithms, across 121
datasets, and concluded that overall the best algorithms were
versions of random forests, a well-known type of ensemble

(combining the outputs of many decision trees). Even restrict-
ing the choice of classifiers to ensembles, though, there are
still many different types of ensembles, and their predictive
accuracies also depend on both characteristics of the input
dataset and their hyper-parameter settings.

In this context, the main contribution of this work is to
propose a new Evolutionary Algorithm (EA) for the Auto-ML
problem of automatically selecting the best ensemble method
and its best hyper-parameter setting for an input dataset. In
general, an EA iteratively generates and evaluates a number
of candidate solutions, using an evaluation function to select
the most promising ones at each generation, and then uses the
information encoded in the selected solutions to generate better
ones. Hence, the candidate solutions evolve towards better
solutions with time. The proposed algorithm is an Estimation
of Distribution Algorithm (EDA) [7], which follows the basic
EA principle of evolving candidate solutions, but (unlike a
typical EA) it does so by explicitly evolving a probabilistic
model of the best solutions and their components, as discussed
in Section II-C. Hence, EDAs combine methods and concepts
from both EAs and probability theory, which arguably gives
them a sounder mathematical basis than conventional EAs.

II. BACKGROUND

A. Classification and Classifier Ensembles

In the classification task of machine learning, each instance
(object) in the input dataset is represented by a set of fea-
tures (characteristics) and a class attribute. A classification
algorithm has access to the class values of instances in the
training set, but not in the test set. Hence, the goal is to learn
a model from the training set that is able to predict the class
value of each instance in the test set (with instances unseen
during training), based on the feature values for that instance.

Ensemble methods produce a classification model con-
taining a number of classifiers (a classifier ensemble). Such
ensembles have a two-layer structure. A set of base classifiers
(first layer) receive input data and their predicted classes are
sent to a combination module (second layer), which combines
all received predictions into a single predicted class for each
instance. Combining the results of different classifiers often
outperforms base classifiers [1], [2], since an ensemble’s



predictions are usually more robust than the predictions per-
formed by a single classifier.

In classifier ensembles, the two main aspects are the se-
lection of base classifiers and the combination method. Re-
garding the former, some ensemble methods use multiple base
classifiers of the same type (homogeneous ensembles), chang-
ing only their parameter settings; whilst other methods use
different types of base classifiers (heterogeneous ensembles).
Regarding the combination method in the second layer, several
methods have been proposed [3], such as: simple majority
voting, weighted voting (where the vote for a class is weighted
by its estimated probability), using a full classification algo-
rithm – treating the classes predicted by the base classifiers as
features for predicting the class at the meta-level, etc.

B. Automated Machine Learning (Auto-ML)

There are a great variety of types of classification algorithms
in the literature, such as Decision Trees, Neural Networks,
Support Vector Machines, among many others [9]. However,
each type of algorithm has its own limitations, and there
is no classifier which is the best for all problem domains,
since the predictive accuracy of a classifier strongly depends
on the characteristics of the input dataset [10]. In addition,
in general the predictive performance of any classification
algorithm is also strongly dependent on its hyper-parameter
settings. This leads to the challenging optimization problem
of how to select the best classification algorithm and its
corresponding best hyper-parameter settings for each input
dataset provided by a user. An emergent approach to solve
this problem involves Automated Machine Learning (Auto-
ML) methods, which automatically search for the combination
of classification algorithm and hyper-parameter settings that
maximizes predictive performance in an input dataset.

Recent research on Auto-ML has provided some off-the-
shelf Auto-ML tools for researchers and practitioners of ML;
such as Auto-sklearn [6] and Auto-WEKA [4]. Here we briefly
review only Auto-WEKA, which is used as a strong baseline
method in our experiments reported later.

Auto-WEKA is a tool for automatically selecting a ma-
chine learning algorithm and its hyper-parameters, as proposed
in [4]. Auto-WEKA uses a Bayesian optimization search
method called SMAC (Sequential Model-based Algorithm
Configuration) to automatically search through the joint space
of WEKA’s learning algorithms and their respective hyper-
parameter settings, in order to maximize predictive perfor-
mance. Combined with the WEKA tool [5], Auto-WEKA has
obtained good results for a wide variety of data sets [11].

C. Estimation of Distribution Algorithms

Evolutionary Algorithms (EAs) are a type of search and
optimization technique inspired by the principle of natural
selection. As optimization techniques, EAs have the advan-
tages of performing a global search in the space of candidate
solutions (less likely to get trapped into a local optimum than
a greed search) and being robust to noise [12], [13].

Estimation of Distribution Algorithms (EDAs) [7] are a
type of EA which explore the space of potential solutions
by building and sampling explicit probabilistic models of
promising candidate solutions. EDAs have been applied to
several types of machine learning tasks, including feature
selection [14], [15], [18] and classification [17].

EDAs iteratively generate and evaluate a population of
candidate solutions (individuals) to a problem. The initial
population is generated based on the uniform distribution over
all possible solutions. Once the fitness of each individual is
computed, individuals are ranked based on their fitness values,
and a subset of the most promising solutions (usually, 50% of
the best solutions) are selected. Then, a probabilistic model
is constructed aiming to estimate the probability distribution
of the selected solutions. Once the model is constructed, new
solutions are generated by sampling the distribution encoded
by this model. The fitness of each new individual is evaluated,
and so on. This process is repeated until some termination
criteria is met, like in other types of EAs.

The crucial difference between EDAs and other EAs is how
they generate new individuals at each iteration (generation), as
follows. In EDAs the selected individuals are used to update
a probabilistic model, from which new individuals will be
probabilistically sampled in the next generation. By contrast,
in other EAs the next generation’s individuals are generated
by applying solution-alteration operators like crossover and
mutation to the selected individuals of the current generation.
EDAs explicitly maintain and evolve a probabilistic model of
the best solutions evaluated so far, unlike other EAs. Hence, an
advantage of EDAs (versus other EAs) is that they directly use
sound concepts of probability theory to guide the evolutionary
process. Another advantage of EDAs is that they require fewer
parameters than most EAs. In particular, most EAs require the
user to choose which type of crossover and mutation operators
should be used to create new solutions, as well as choosing the
corresponding crossover and mutation probability rates. EDAs
relieve the user from such concerns, since they do not use any
operator to generate new solutions, and simply sample new
candidate solutions from a probability distribution.

The Population-Based Incremental Learning (PBIL) algo-
rithm, proposed in [8] and recently reviewed in [16], is an
EDA that evolves a probability vector, where each vector
component represents the probability of that component being
selected for inclusion in the creation of a candidate solution.
The vector components’ values are usually initialized with
a probability of 0.5. Then, at each generation (iteration), a
population of individuals (candidate solutions) are sampled
from the probability vector based on its probability values,
and each individual is evaluated using a fitness function. A
predefined number of the best individuals (based on fitness) in
the current generation are selected, and the relative frequency
of solution components in those selected individuals is used
to update the probability vector, by increasing the probability
values for the solution components that occurred most often in
the selected individuals. The amount of increase is controlled
by a learning rate parameter. Hence, the probability vector



gradually evolves towards components with probability values
closer to 1 or 0, depending on whether or not, respectively,
the component has been used in the best candidate solutions
evaluated along the generations.

The PBIL algorithm has only 3 parameters: (a) the popula-
tion size, i.e., the number of candidate solutions (individuals)
sampled from the probability vector at each generation; (b) the
Learning Rate, which specifies how large the steps towards
good solutions are; (c) the number of best individuals selected
for updating the probability vector at each generation.

III. RELATED WORK

A. Automated Selection of Ensembles Methods

Current Auto-ML methods typically use a search space
with many types of classification algorithms, without focusing
on ensembles as in this work. However, some studies have
proposed different approaches for automating the creation of
classifier ensembles (base classifiers and their hyper-parameter
settings) [21], [22], [23]. In particular, Wistuba et al. [21]
proposed an automatic approach to generate ensembles with
several layers, called Automatic Frankensteining, where a
Bayesian Optimization method is used to select base classifiers
and their settings using a bagging strategy.

In fact, most Auto-ML methods are based on Bayesian
optimization. For instance, Lacoste et al. [23] proposes an
extension of SMBO (Sequential Model-Based Optimization)
to optimize the selection of ensemble members based on their
performance on randomly selected subsets of the validation
data produced by a bootstrap method. In addition, Levesque
et al [22] propose an approach to build fixed-size ensembles,
optimizing the configuration of one base classifier of the
ensemble at each iteration of the hyper-parameter optimization
algorithm, considering the interaction with other models when
evaluating performance. In this way, the Bayesian optimization
method estimates which prediction model is the best candidate
to be added to the ensemble.

It is important to emphasize that all three aforementioned
methods for automating the selection and configuration of
classifier ensembles use the Bayesian optimization method,
whereas our proposed approach uses the PBIL algorithm – a
type of Evolutionary Algorithm. Unlike the sequential nature
of the search performed by the Bayesian optimization method,
PBIL evolves a population of candidate classifier ensembles,
performing a more global, broader search (conceptually a
parallel search) in the space of candidate solutions.

B. The use of Evolutionary Algorithms for Auto-ML

As mentioned earlier, Evolutionary Algorithms (EAs) have
been used in different areas mainly because they are less likely
to get trapped into a local optimum (compared to a greedy
search), and also robust to noise. These important advantages
are taken into consideration in Auto-ML researches [25], [19].
For example, in [25] the authors proposed the use of an EA (a
genetic algorithm) for searching a very large search space of
many different Multi-Label Classification (MLC) algorithms
and their hyper-parameters; whilst in [26] the authors proposed

Fig. 1. The General structure of PBIL-Auto-Ens’ search space

a genetic programming method for automating the selection
and configuration of both classification algorithms and data
pre-processing methods (classification pipelines). On the other
hand, in a very recent work [19], the authors proposed the
use of a genetic programming (GP) method to search the
space of possible architectures of hierarchical ensembles and
to optimize their hyper-parameters. Broadly speaking, the GP
method proposed in [19] addresses the same type of problem
addressed in our work (the automatic creation of ensembles),
but using GP, a type of EA that is very different from the EDA
proposed in this work – for a brief review of the differences
between EDAs and other types of EAs, see Section II.C. In
addition, the work in [19] focuses more on transfer learning
and meta-learning, which is not the focus of this current work.
Hence, to the best of our knowledge, this is the first work to
propose an EDA addressing the Auto-ML task of optimizing
the selection and configuration of classifier ensembles.

IV. THE PROPOSED PBIL-AUTO-ENS

As mentioned earlier, the main contribution of this work
is to propose a new Evolutionary Algorithm (EA), based on
the general PBIL algorithm described in Section II.C, for the
automated selection and configuration of classifier ensembles.
The proposed method is called PBIL-Auto-Ens (PBIL for
Auto-ML focusing on Ensembles). The general structure of
the search space of PBIL-Auto-Ens is presented in Figure 1.

Each individual (candidate solution) of the PBIL’s popu-
lation can represent either an ensemble method or a base
classifier. As shown in Figure 1, 6 ensemble methods and
9 base classifiers can be selected. All possible ensemble
methods and base classifiers come from the WEKA Machine
Learning tool [5]. The possible options are divided into two
types: (a) ensemble methods: Random Forest (RF), AdaBoost
(ADA), Bagging (BAG), Random Committee (RC), Stacking
(STA), Vote (VT); and (b) base classifiers: BayesNet (NET),
NaiveBayes (NB), Multilayer Perceptron (MLP), a Suport
Vector Machine algorithm (SMO), k-Nearest Neighbor (IBK),
KStar (KST), Decision Tree (J48), Decision Table (DT), and
Random Tree (RT).

The second level of the search space is used to generate
the possible members (base classifiers) for the ensembles of
classifiers. Any one of the 9 base classifiers can be chosen as a



valid member. Stacking and Vote ensembles can have up to 10
different members, whereas AdaBoost, Bagging and Random
committee have only one type of member. The Random Forest
method is the only exception since it does not have any
member choice – its members are fixed to be decision trees.
Finally, the third level is used for setting up the parameters of
all base classifiers and their corresponding ensemble methods.

Each candidate solution is represented by a dynamic binary
vector which can have up to 363 positions. In fact, the
binary vector consists of three parts (P1, P2 and P3). P1
specifies which classifier (ensemble method or base classifier)
is represented (1st level of Figure 1). P2 specifies each of the
members of the ensemble specified in part P1 (2nd level). It
is divided in n parts, where n represents the number of base
classifiers used by the ensemble in P1. Finally, P3 specifies
the parameters of each base classifier used by the ensemble
method in P2 (3rd level). It is divided in m parts, where m
represents the parameters of each base classifier.

The proposed PBIL-Auto-Ens extends the original PBIL
[8] and its more recent variants [16] in two ways. First, it
uses a hierarchically structured probability vector, with three
levels of solution component probabilities that mirror the three
levels of the search space shown in Figure 1. Second, the
creation of individuals by sampling solution components from
the probability vector is adapted to follow the hierarchical
structure of the probability vector, as described next.

At each generation, each individual is created by sampling
solution components from the hierarchical probability vector
in a top-down fashion, as follows. First, one of the 15 types
of classifiers at the first level of Figure 1 is selected. This will
define the type of ensemble or the choice of using a single base
classifier instead. If the sampled component was a single base
classifier or a Random Forest method, the individual creation
procedure skips the second level and jumps straight to the third
level. Otherwise, the ensemble type chosen at the first level is
used to identify which solution components (which types of
base classifiers) are candidate for selection at the second level.
Finally, at the third level, the candidate parameter settings are
determined by the choice of the base classifier at the second
level (or at the first level, if that was the case).

At each of the three levels, the selection of one solution
component among all candidate components is done via a
probabilistic sampling from the corresponding level of the
probability vector. At the start of the evolution (generation 0),
all solution components in the three levels of the probability
vector are initialized with a uniform probability distribution.
At the end of each generation, the 50% best individuals of
that generation are selected and their solution components
are used to update the corresponding component probabilities
in the three levels of the probability vector. This updating
consists of increasing the probability for each component in
proportion to the relative frequency of use of that component
among the selected individuals (the 50% best ones), and also
in proportion to the learning rate parameter. More precisely,
for each i-th solution component, its probability at the end of
generation g, denoted by p[i]g , is updated using the formula:

TABLE I
DESCRIPTION OF THE DATASETS.

Id Dataset # # Disc. # Cont. #
Instances Attr. Attr. Classes

d1 Abalone 4,177 1 7 28
d2 Adult 32,561 8 6 2
d3 Arrhythmia 452 0 260 13
d4 Car 1,728 0 6 4
d5 Ecoli 336 0 7 8
d6 German-Credit 1,000 13 7 2
d7 KR-vs-KP 3,196 36 0 2
d8 Madelon 2,600 0 500 2
d9 Nursery 12,960 8 0 5
d10 Secom 1,567 0 590 2
d11 Semeion 1,593 0 256 10
d12 Sonar 208 0 60 2
d13 Waveform 5,000 0 40 3
d14 Wine-quality 4,898 0 11 11
d15 Yeast 1,484 0 8 10

p[i]g = (1 – LR) * p[i]g−1 + LR * RelFreq[i]g , where LR is
the learning rate and RelFreq[i]g is the relative frequency of
the i-th solution component among the individuals selected at
generation g. Hence, by iteratively selecting the best candidate
solutions and increasing the probabilities of each of their
components in the probability vector, gradually the probability
vector evolves to contain higher probability values for the
best solution components, leading to the creation of better
and better classifier ensembles. This evolutionary process
terminates when a predefined runtime limit is reached.

V. EXPERIMENTAL METHODOLOGY

A. Datasets Used in the Experiments

In order to evaluate the proposed PBIL-Auto-Ens method,
we used 15 classification datasets, available for download from
the well known UCI machine learning repository. The majority
of these datasets have also been used in recent Auto-ML
studies [4], [6], [21]. Table I shows the number of instances,
attributes (separately for continuous and discrete attributes)
and classes in each of the used datasets.

B. Auto-ML Methods Compared in the Experiments

PBIL-Auto-Ens was compared against a strong baseline
Auto-ML method, namely Auto-WEKA [4], using a nested
version of the well-known cross-validation (CV) procedure.
Both methods have been run with an external 5-fold CV, and
an internal 10-fold CV. Hence, at the external CV level, the
input dataset is randomly divided into 5 folds (each with about
20% of the instances), and then PBIL-Auto-Ens and Auto-
WEKA are run 5 times, each using a different fold as the test
set and the other 4 folds as the training set. In each of those
5 runs, the training set (80% of the full dataset) is divided
into 10 folds, each with about 10% of the training set (i.e.,
about 8% of the full dataset). Then, whenever a candidate
solution (ensemble method or base classifier) is generated by
PBIL-Auto-Ens or Auto-WEKA, that solution is evaluated by
running its configuration using the internal 10-fold CV, so that
each of the 10 runs of that candidate solution uses 9 internal



folds (72% of the full dataset) as a learning set (to learn the
classification model) and one internal fold (8% of the full
dataset) as a validation set to evaluate the predictive accuracy
of the learned model. The quality measure of that candidate
solution is given by the mean error rate of the learned model
over the 10 internal validation sets. Hence, the evaluation of
each candidate solution uses only the training set, not the
external test set, which is reserved for measuring the predictive
accuracy of the best solution returned by PBIL-Auto-Ens and
Auto-WEKA.

Note that both PBIL-Auto-Ens and Auto-WEKA are non-
deterministic search methods, i.e. their results depend on
a seed number used to randomly initialize the candidate
solutions. Each reported result is the mean over the results
obtained by a method with two random seeds (the same seeds
are used by both methods), running an external 5-fold CV for
each seed as explained above – i.e., each reported result is the
mean over 10 results (with 10 different test sets).

We used all default parameter settings of Auto-WEKA,
including the classification error rate (the proportion of in-
correctly classified instances) as the evaluation function to be
optimized during training. To make the comparison between
PBIL-Auto-Ens and Auto-WEKA fair, we also used error
rate as the fitness function of PBIL. Both methods used the
same runtime limit, 60 minutes for each run, where one run
means one execution of one iteration of the external 5-fold CV
(applying the method to the training set of that iteration) for
a single value of the random seed, for each dataset. Hence,
in total each method was run for 150 hours, considering 5
external CV iterations times 2 seeds times 15 datasets.

PBIL was run with the following parameter settings: popu-
lation size of 50, learning rate of 0.5, and 50% of the best
individuals of the current generation selected for updating
the probability model. The latter two parameter settings are
relatively standard in the PBIL literature, whilst the population
size was set based on preliminary experiments. Note that,
unlike most PBIL (and EA) implementations, PBIL-Auto-Ens
does not have a parameter for the number of generations,
because its stopping criterion is a runtime limit.

PBIL-Auto-Ens has been implemented in Java using the
WEKA API. We run the experiments on a desktop PC with
Windows 10 professional 64 bit operating system driven by
an Intel Core i7-3770S 3.10GHz Processor with 8GB RAM.

VI. EXPERIMENTAL RESULTS

A. An Analysis of the Mean Error Rate

Table II presents the mean error rates for Auto-WEKA (3rd
column) and PBIL-Auto-Ens (4th column), and the normalized
error rate reductions (5th column), in % values. The latter mea-
sure is calculated by substracting the PBIL-Auto-Ens’ error
rate from the Auto-WEKA’s error rate and dividing this result
by the greater between those two error rates. This produces a
normalized error rate reduction, with possible values varying
in the range [-1,1], where the greater the positive (negative)
value, the better the result of PBIL-Auto-Ens (Auto-WEKA).

TABLE II
ERROR RATE ON THE TEST SET (MEAN OVER 10 RUNS).

Id Dataset Auto- PBIL- Error Rate
WEKA Auto-Ens Reduction (%)

d1 Abalone 0.7371 0.7454 -1.11
d2 Adult 0.1438 0.1388 3.48
d3 Arrhythmia 0.2993 0.2864 2.32
d4 Car 0.0029 0.0012 58.62
d5 Ecoli 0.1370 0.1325 3.28
d6 German-Credit 0.2785 0.2495 10.41
d7 KR-vs-KP 0.0587 0.0058 90.12
d8 Madelon 0.2702 0.2533 6.25
d9 Nursery 0.0038 0.0099 -61.62

d10 Secom 0.0664 0.0660 0.60
d11 Semeion 0.1098 0.0618 43.72
d12 Sonar 0.2265 0.1832 19.12
d13 Waveform 0.1357 0.1495 -9.23
d14 Wine-quality 0.3349 0.3185 4.90
d15 Yeast 0.4064 0.4060 0.10
Number of wins 3 12 —-
Mean Error Rate Reduction —- 11.40%

This normalization is important because, as the datasets repre-
sent different problem domains, an (unnormalized) error rate
reduction could be relatively large in some cases but relatively
small in others. As shown in the penultimate row of Table II,
PBIL-Auto-Ens achieved a smaller error than Auto-WEKA in
12 out of the 15 datasets. In addition, as shown in the last
row of the table, PBIL-Auto-Ens achieved a mean normalized
error rate reduction of 11.40% across all 15 datasets.

In order to conduct a more robust analysis of the results,
the Wilcoxon Signed-Rank statistical test was used (at the
conventional significance level of 5%) to determine whether
or not there is a statistically significant difference between
the mean error rates of PBIL-Auto-Ens and Auto-WEKA
across the 15 datasets. This test was chosen because it is
non-parametric (avoiding the assumption of normality), being
based on the relative rank of the two methods across the
datasets. This test produced a p-value = 0.03572 (two-tailed),
so that the difference between the error rates of the two
methods can be considered statistically significant.

B. An Analysis of the Returned Best Solutions

Table III presents the 10 best solutions (classifiers) returned
by each method (one solution for each run) for each of the
15 datasets. The numbers in brackets right after a classifier’s
acronym are the number of times that classifier was selected,
out of the 10 runs. Due to lack of space, this table shows only
the name of the selected classifiers, not their full configuration.
Recall that, although the search space of PBIL-Auto-Ens and
Auto-WEKA includes mainly classifier ensembles and their
configurations (both methods use the same search space), it
also includes the option of selecting and configuring only a
single base classifier. The latter is a useful option, since it is
possible that in some datasets a single classifier can perform
very well, without the need for the extra computational cost
and complexity of an ensemble.

As shown in Table III, broadly speaking, the classification
algorithms selected by PBIL-Auto-Ens are more diverse than
the ones selected by Auto-WEKA. Hence, it seems that PBIL-



TABLE III
BEST ALGORITHMS RETURNED BY EACH METHOD.

Dataset Auto-WEKA PBIL-Auto-Ens
d1 MLP(5), KST(2), RF(2), VT(1) RF(4), MLP(2), DCT(2), IBK(1), RC(1)
d2 NET(4), J48(3), RF(3) DCT(4), NET(3), BAG(2), J48(2)
d3 NET(3), NB(2), J48(1), RF(1), VT(3) NB(8), DCT(2)
d4 MLP(6), SVM(4) MLP(2), SVM(7), RC(1)
d5 SVM(4), RF(3), IBK(2), VT(1) ADA(1), BAG(3), RC(3), RF(3)
d6 MLP(2), RF(3), VT(5) MLP(3), RF(6), BAG(1)
d7 RF(8), MLP(1), VT(1) RF(5), ADA(1), MLP(2), SVM(1), DCT(1)
d8 RF(4), J48(4), DCT(2) RF(10)
d9 MLP(4), SVM(4), RF(1), VT(1) ADA(5), RF(5)
d10 RF(8), STA(1), IBK(1) RT(4), SVM(4), DCT(1), RC(1)
d11 RF(9), KST(1) RF(6), SVM (4)
d12 SVM(4), KST(3), IBK (1), MLP (1) MLP(2), KST(2), SVM(1), IBK(1), ADA(2), STA(2)
d13 MLP(6), SVM(4) MLP(5), BAG(2), RC(3)
d14 RF(9), KST(1) RF(6), KST(3), IBK(1)
d15 RF(6), VT(3), SVM(1) RF(4), VT(2), NET(1), SVM(1), IBK(1), RC(1)

Auto-Ens is exhibiting more flexibility in selecting the best
algorithm for each dataset, which is the core motivation for
Auto-ML. In addition, Auto-WEKA selected an ensemble
(rather a single base classifier) in 49.3% (74 / 150) of the cases,
whilst PBIL-Auto-Ens selected an ensemble a little more often,
in 53.33% (80 / 150) of the cases.

VII. CONCLUSION AND FUTURE WORK

This work proposed a new evolutionary algorithm (PBIL-
Auto-Ens) for the Auto-ML problem of automatically selecting
the best ensemble method and its best hyper-parameter setting
for an input dataset. PBIL-Auto-Ens was compared against
Auto-WEKA [4], a strong baseline Auto-ML method. Both
methods used the same search space of candidate solutions
and the same evaluation function (classification error rate) to
guide their search; hence the difference in their results reflect
mainly their different search methods, as discussed earlier.

The results have shown that PBIL-Auto-Ens obtained a
smaller error rate than Auto-WEKA in 12 of the 15 datasets
used in the experiments; and on average, across all datasets,
PBIL-Auto-Ens’ error rate was about 11% smaller than Auto-
WEKA’s error rate – a normalized error reduction value,
which takes into account the differences of scale of the error
rates across the datasets. In addition, the difference of error
rates between the two methods was statistically significant,
according to a Wilcoxon Signed-Rank test (p-value = 0.03572
– two-tailed test).

In this work we used as evaluation function the error rate
since it is the default in Auto-WEKA, but in future work we
intend to use different evaluation functions, such as the Area
Under the Receiver Operating Characteristic curve (AUROC)
and the F-measure. Another future work would be to extend
the experiments to consider other Auto-ML methods, like the
one very recently proposed in [19].

ACKNOWLEDGMENTS

This work has been financially supported by the Brazilian
Research Council (CNPq - process no. 150748/2017-5).

REFERENCES

[1] Zhi-Hua Zhou, (2012). Ensemble Methods: Foundations and Algorithms.
Chapman & Hall/CRC, 1st edition.

[2] L.I. Kuncheva, (2004). Classifier Ensembles for Changing Environments.
In: Roli F., Kittler J., Windeatt T. (eds) Multiple Classifier Systems.
Lecture Notes in Computer Science 3077, pages 1–15. Springer.

[3] L.I. Kuncheva, (2004). Combining Pattern Classifiers: Methods and
Algorithms. Wiley-Interscience.

[4] C. Thornton, F. Hutter, H.H. Hoos and K. Leyton-Brown, (2013). Auto-
WEKA: Combined Selection and Hyperparameter Optimization of Classi-
fication Algorithms. Proc. 19th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 847–855. ACM Press.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten,
(2009). The WEKA data mining software: an update. ACM SIGKDD
Explorations Newsletter, volume 11(1), pages 10–18.

[6] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, (2015). Efficient and Robust Automated Machine Learning.
Advances in Neural Info. Processing Systems 28, pages 2962–2970.

[7] P. Larrañaga, J.A. Lozano, (2002). Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Kluwer, Boston, MA.

[8] S. Baluja and R. Caruana, (1995). Removing the Genetics from the
Standard Genetic Algorithm, Proc. 12th Int. Conf. on Machine Learning,
pages 38–46, California, July, 1995.

[9] M. Fernández-Delgado, E. Cernadas, S. Barro and D. Amorim, (2014).
Do We Need Hundreds of Classifiers to Solve Real World Classification
Problems?, J. of Mach. Learn. Res., 15(1), pages 3133–3181.

[10] P. Brazdil, C. Giraud-Carrier, C. Soares and R. Vilalta, (2009). Met-
alearning: Applications to Data Mining, Springer.

[11] L. Kotthoff, C. Thornton, H.H. Hoos, F. Hutter and K. Leyton-Brown,
(2017). Auto-WEKA 2.0: Automatic Model Selection and Hyperparameter
Optimization in WEKA, J. of Mach. Learn. Res., 18(1), pages 826–830.

[12] A.A. Freitas, (2002). Data Mining and Knowledge Discovery with
Evolutionary Algorithms, Springer.

[13] A.E. Eiben and J.E. Smith, (2015). Introduction to Evolutionary Com-
puting, 2nd edition, Springer.

[14] I. Inza, P. Larrañaga and B. Sierra, (2002). Feature subset selection by
estimation of distribution algorithms, Estimation of Distribution Algo-
rithms, pages 269–293, Springer.

[15] K. Shelke, S. Jayaraman, S. Ghosh, J. Valadi, (2013). Hybrid feature
selection and peptide binding affinity prediction using an EDA based
algorithm, Proc. IEEE Congress on Evolutionary Computation (CEC),
pages 2384–2389.

[16] M. Zangari, R. Santana, A. Mendibury, A.T.R. Pozo, (2017). Not all
PBILs are the same: unveiling the different learning mechanisms of PBIL
variants, Applied Soft Computing, 53, pages 88–96, April 2017.

[17] X. Yang, H. Dong and H. Zhang, (2009). Naive Bayes Based on
Estimation of Distribution Algorithms for Classification, International
Conference on Information Science and Engineering, pages 908-911.

[18] Y. Saeys, S. Degroeve, D. Aeyels, P. Rouz and Y. Van de Peer, (2004).
Feature selection for splice site prediction: A new method using EDA-
based feature ranking, BMC Bioinformatics, 5(64), 11 pages, 2004.

[19] P. Kordı́k, Jan Černý and T. Frýda, (2018). Discovering Predictive
Ensembles for Transfer Learning and Meta-learning, Machine Learning,
107(1), pages 177–207, January, 2018.

[20] S. B. Kotsiantis, (2007). Supervised machine learning: A review of
classification techniques, Emerging Artificial Intelligence Applications in
Computer Engineering, pages 3–24, IOS Press, 2007.

[21] M. Wistuba, N. Schilling and L. Schmidt-Thieme, (2017). Automatic
Frankensteining: Creating Complex Ensembles Autonomously, Proc.
SIAM Int. Conf. on Data Mining, pages 741–749, SIAM, 2017.

[22] J. Lévesque, C. Gagné and R. Sabourin, (2016). Bayesian Hyper-
parameter Optimization for Ensemble Learning, Proc. 32nd Conference
on Uncertainty in Artificial Intelligence (UAI), pages 437–446. Jersey
City, New Jersey, USA, 2016.

[23] A. Lacoste, H. Larochelle, F. Laviolette and M. Marchand, (2014).
Sequential Model-Based Ensemble Optimization, Computing Research
Repository (CoRR), 2014.

[24] R. Olson, R. Urbanowicz, P. Andrews, N. Lavender, L. Kidd, and
J.H. Moore, (2016). Automating Biomedical Data Science Through Tree-
Based Pipeline Optimization, European Conference on the Applications
of Evolutionary Computation, pages 123–137. Springer, 2016.

[25] A.G.C. de Sá, G.L. Pappa and A.A. Freitas, (2018). Automated selection
and configuration of multi-label classification algorithms with grammar-
based genetic programming, To appear in Proc. of the 15th International
Conf. on Parallel Problem Solving from Nature (PPSN-2018), to be held
in Coimbra, Portugal, Sep. 2018.

[26] A.G.C. de Sá, W.J.G.S. Pinto, L.O.V.B. Oliveira, G.L. Pappa, (2017).
RECIPE: A Grammar-based Framework for Automatically Evolving Clas-
sification Pipelines, Proc. of the 20th European Conference on Genetic
Programming (EuroGP’17), LNCS 10196, pages 246–261. Springer.


