
A.L.C. Bazzan, M. Craven, and N.F. Martins (Eds.): BSB 2008, LNBI 5167, pp. 1–12, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multi-label Hierarchical Classification of Protein
Functions with Artificial Immune Systems

Roberto T. Alves1, Myriam R. Delgado1, and Alex A. Freitas2

1 Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, UFTPR
Av. Sete de Setembro, 3165, CEP: 80230-901, Curitiba – PR – Brazil

roberto.t.alves@gmail.com, myriamdelg@utfpr.edu.br
2 Computing Laboratory and Centre for BioMedical Informatics, University of Kent,

CT2 7NF, Canterbury, U.K.
A.A.Freitas@kent.ac.uk

Abstract. This work proposes two versions of an Artificial Immune System
(AIS) - a relatively recent computational intelligence paradigm – for predicting
protein functions described in the Gene Ontology (GO). The GO has functional
classes (GO terms) specified in the form of a directed acyclic graph, which
leads to a very challenging multi-label hierarchical classification problem where
a protein can be assigned multiple classes (functions, GO terms) across several
levels of the GO's term hierarchy. Hence, the proposed approach, called MHC-
AIS (Multi-label Hierarchical Classification with an Artificial Immune System),
is a sophisticated classification algorithm tailored to both multi-label and
hierarchical classification. The first version of the MHC-AIS builds a global
classifier to predict all classes in the application domain, whilst the second
version builds a local classifier to predict each class. In both versions of the
MHC-AIS the classifier is expressed as a set of IF-THEN classification rules,
which have the advantage of representing comprehensible knowledge to
biologist users. The two MHC-AIS versions are evaluated on a dataset of DNA-
binding and ATPase proteins.

Keywords: Artificial Immune System, Hierarchical and Multi-label Classification,
Prediction of Protein Function.

1 Introduction

Artificial Immune Systems (AIS) are one of the most recent natural computing
approaches to emerge from computer science. The immune system is a distributed
system, capable of constructing and maintaining a dynamical and structural identity,
learning to identify previously unseen invaders and remembering what it has learnt.
These computational techniques have many potential applications, such as in
distributed and adaptive control, machine learning, pattern recognition, fault and
anomaly detection, computer security, optimization, and distributed system design [1].

In data mining, ideally the discovered knowledge should be not only accurate, but
also comprehensible to the user [2]. This work addresses the multi-label hierarchical
classification task of data mining, where the goal is to discover a classification model

2 R.T. Alves, M.R. Delgado, and A.A. Freitas

that predicts more than one class for an example (data instance) across several levels
of a class hierarchy, based on the values of the predictor attributes for that example.

Bioinformatics is an inter-disciplinary field, involving the areas of computer
science, mathematics, biology, etc. [3]. Among many bioinformatics problems, this
paper focuses on the prediction of protein functions from information associated with
the protein's primary sequence. As proteins often have multiple functions which are
described hierarchically, the use of multi-label hierarchical techniques for the
induction of classification models in Bioinformatics is a promising research area. At
present, the biological functions that can be performed by proteins are defined in a
structured, standardized dictionary of terms called the Gene Ontology (GO) [4].

The AIS algorithms proposed in this paper combine the adaptive global search of
the AIS paradigm with advanced concepts and methods of data mining (hierarchical
and multi-label classification), in order to solve a challenging bioinformatics problem
(protein function prediction – assigns GO terms (classes) to proteins). The AIS
presented in this paper discovers knowledge interpretable by the user, in the form of
IF-THEN classification rules, unlike other methods proposed in the literature, whose
classification model is typically a "black box" which normally does not provide any
insight to the user about interesting hidden relationships in the data [5].

2 Multi-label Hierarchical Classification

The classification task of data mining [2] consists of building, in a training phase, a
classification model that maps each example ti to a class c ∈ C of the target application
domain, with i = 1, 2, ..., n, where n represents the number of examples in the training set.

The majority of classification algorithms cope with problems where each example
ti is associated with a single class c ∈ C. These algorithms are called single label.
However, some classification problems are considerably more complex because each
example ti is associated with a subset of classes C ∈ C of the application domain.
Protein function prediction is a typical case of this type of problem, since a protein
can perform several biological functions. Algorithms for coping with this kind of
problem are called multi-label [6].

There has been a very large amount of research on conventional “flat” (non-
hierarchical) classification problems, where the classes to be predicted are not
hierarchically organized. However, in some problems the classes are hierarchically
organized, which makes the classification problem much more challenging. Problems
of this type are known as hierarchical classification problems [7].

In hierarchical classification problems, typically the classes are hierarchically
organized in one of the following two forms: as a tree (where each class has at most
one parent class) or as a direct acyclic graph (DAG), where each class can have more
than one parent. In bioinformatics, two of the most well-known hierarchical structures
for classifying protein functions are the enzyme commission hierarchy [8] – organized
in the form of a tree and GO [4] – organized in the form of a DAG. The GO consists
of a dictionary that defines gene products independent from species. GO actually
consists of 3 separate "domains" (very different types of GO terms): molecular
function, biological process and cellular component. The GO is structurally organized

 Multi-label Hierarchical Classification of Protein Functions 3

in the form of a direct acyclic graph (DAG), where each GO term represents a node of
the hierarchical structure.

In hierarchical classification, there are basically two types of classifiers that can be
built to cope with the full set of classes to be predicted: local or global classifiers. In
local classifiers, for each class c ∈ C a (local) classifier is built to predict whether or
not each class c is associated with an example ti. After all classifiers are built, an
example ti is submitted to all those classifiers (one for each class) in order to
determine which classes are predicted for that example. In global classifiers, a single
(global) classifier is built to discriminate among all classes of the application domain
and so ti is submitted to a single (potentially very complex) classifier [7].

3 Multi-label Hierarchical Classification with an Artificial
Immune System

The immune system as a biological complex adaptive system has provided inspiration
for a range of innovative problem solving techniques, including classification tasks
[9] In this paper, the construction of a immune-based learning algorithm is explored
whose recognition, distributed, and adaptive nature offer many potential advantages
over more traditional models. The AIS algorithm used in this paper is called MHC-
AIS (Multi-label Hierarchical Classification with an Artificial Immune System).
MHC-AIS is based on the following natural immunology principles: clonal selection,
immune network and somatic hypermutation [10,11]. In AIS, antibodies (ab)
represent candidate solutions to the target problem, whilst antigens (ag) represent
specific instances of the problem. In the context of this work, ab´s represent IF-THEN
classification rules and ag´s represent proteins in the training set whose classes have
to be predicted by the AIS.

In essence, in the clonal selection theory antibodies are cloned in proportion to
their degree of matching ("affinity") to antigens, so that the antibodies which are
better in recognizing antigens produce more clones of themselves. The just-generated
clones are then subject to a process of somatic hypermutation, where the rate of
mutation applied to a clone is inversely proportional to its affinity with the antigens.
In computer science terms, the best antibodies are cloned more often and undergo a
smaller rate of mutation (have fewer parts of their candidate solution modified) than
the worst antibodies. With time this process of clonal selection and hypersomatic
mutation leads to better and better candidate solutions to the target problem.

In essence, the theoretical immunology principle of immune networks states that
antibodies can recognize not only antigens but also other antibodies. The first kind of
recognition stimulates antibody production, but the latter suppresses antibodies, which
in computer science terms mean a candidate solution tends to suppress other similar
candidate solutions, which has the effect of improving the diversity of the search for a
(near-)optimal candidate solution.

The training phase MHC-AIS is performed by two major procedures, called
Sequential Covering (SC) and Rule Evolution (RE) procedures. The SC procedure
iteratively calls the RE procedure until (almost) all “antigens” (proteins, examples)
are covered by the discovered rules. The RE procedure essentially evolves artificial
“antibodies” (IF-THEN classification rules) that are used to classify antigens. Then,

4 R.T. Alves, M.R. Delgado, and A.A. Freitas

the best evolved antibody is added to discovered rule set. Each antibody (candidate
classification rule) consists of two parts: the rule antecedent (IF part), represented by
a vector of conditions (attribute-value pairs), and the rule consequent (THEN part)
that represents the classes predicted by the rule. In this work the classes correspond to
GO terms denoting protein functions. This work proposes two versions of the MHC-
AIS, viz.: local and global versions (more details in the following subsections).

3.1 Global Version

In biological databases a protein is annotated only with its most specific GO term.
Given the semantics of the GO’s functional hierarchy, this implicitly means the
protein also contains all the functional classes of its ancestral GO terms in the GO's
DAG. Hence, in a data preprocessing step, MHC-AIS explicitly assigns to each
antigen (protein) both its most specific class(es) (GO term(s)) and all its ancestral
classes. MHC-AIS also considers the semantics of the GO’s functional hierarchy
when creating classification rules – i.e., it guarantees that, if a rule predicts a given
GO term, all its ancestral GO terms are also predicted by the rule.

Fig. 1 shows the high-level pseudocode of the SC procedure.

Input: full protein training set;
Output: set of discovered rules;
DiscoveredRuleSet = ∅;
TrainSet = {set of all protein training examples};
Re-label TrainSet regarding GO's functional class hierarchy;
WHILE |TrainSet| > MaxUncovExamp

BestRule = RULE-EVOLUTION(TrainSet); //based on AIS
DiscoveredRuleSet = DiscoveredRuleSet U BestRule;
updateCoveredClasses(TrainSet, BestRule)
removeExamplesWithAllClassesCovered(TrainSet);

END WHLE

Fig. 1. Sequential Covering (SC) procedure

First, it initializes the set of discovered rules with the empty set and initializes the
training set with the set of all original training examples. Next, each example in the
training set is extended to contain both the original class and all its ancestral classes in
the GO hierarchy. Thereafter, the algorithm starts a WHILE loop which, at each
iteration, calls the RE procedure. The latter receives, as parameters, the current
training set and use AIS algorithm to discover classification rules. The RE procedure
returns the best classification rule discovered by the AIS for the current training set.
Then the SC procedure adds that rule to the discovered rule set and removes the
training examples covered by that rule, as follows. In conventional rule induction
algorithms for single-label classification, examples correctly covered by the just
discovered rule are removed from the training set. However, in multi-label
classification this process is more complex, since different rules and different training
examples have different numbers of classes. In the global version of the AIS, the
process of example removal works as follows. First, the training examples covered by
the just-discovered rule (i.e. examples satisfying the rule's antecedent) are identified.

 Multi-label Hierarchical Classification of Protein Functions 5

For each of those examples, its annotated (true) classes which are predicted by the
just-discovered rules are marked as covered. As more and more rules are discovered,
more and more of the annotated classes of each example will be covered. Only when
all the classes of an example are covered that example is removed from the training
set. The process of rule discovery terminates when the number of examples in the
current training set becomes smaller than a user-defined parameter called
MaxUncovExamp. Such procedure avoids the discovery of rules covering too few
examples, unlikely to generalize well to the test set [12].

Fig. 2 shows the high-level code of the RE procedure, where rules are obtained by
the proposed MHC-AIS. First, the initial population of antibodies ABt=0 is created,
where the consequent of each rule contains (initially) all GO classes in the data being
mined. At the end of the evolutionary process, the AIS updates the consequent of the
discovered rule (to be returned by the RE procedure) to contain only a subset of
classes, representing the classes predicted by that rule, as will be explained later.

Input: current TrainSet; Output: the best evolved rule;
ABt=0 = Create initial population of antibodies at random;
Computefitness(ABt=0,TrainSet);
FOR t = 1 to Number of Generations

CL = ProduceClones(ABt-1);
CL* = MutateClones(CL);
ABt = ABt-1 U CL*;
Computefitness(ABt,TrainSet);
Suppresion(ABt);
Elitism(ABt+1);

END FOR t;
Determine the final subset of classes of the best antibody found so far;
return(best antibody);

Fig. 2. Rule Evolution (RE) procedure

After its creation, the fitness (quality measure) of each antibody abi
t=0 of the initial

population is calculated on the training set, where each example represents an antigen
agj. The fitness of each abi is computed in two stages. First, a fitness value is
associated with each kth-class ck

i contained in the consequent of rule (antibody) abi.
The value of this fitness is computed according to the following equation:

() i i
k k

i i i i
k k k k

c ci
k

c c c c

TP TN
fit c

TP FN TN FP
= ×

+ +
 (1)

where:

• TP (true positives) = number of training examples satisfying affinity(abi,agj) ≥ δAF
and having the annotated class ck

i.
• TN (true negatives) = number of training examples satisfying affinity(abi,agj) < δAF

and not having the annotated class ck
i.

• FP (false positives) = number of training examples satisfying affinity (abi,agj) ≥
δAF and not having the annotated class ck

i.
• FN (false negatives) = number of training examples satisfying affinity (abi,agj) <

δAF and having the annotated class ck
i.

6 R.T. Alves, M.R. Delgado, and A.A. Freitas

The function affinity (abi,agj) returns the degree of matching between the rule abi
and the training example agj. The value of the parameter δAF represents the minimum
degree of matching required for the antigen agj to be deemed as classified by the rule
abi. It is important to note that δAF is a user-specified parameter, which gives more
flexibility to the use of the algorithm, allowing the use of a partial or total degree of
matching (δAF = 1.0) in the classification process. MHC-AIS is a hierarchical
classification algorithm, and so it must consider the hierarchical structure of classes in
the classification process, to reduce classification errors. A common hierarchical
classification error occurs when a classifier correctly predicts a given class c for an
example but does not predict an ancestral class of c. Recall that all the ancestral
classes of a given predicted class must also be predicted by the trained classifier, due
to the semantics of the class hierarchy in the GO. Some hierarchical classification
algorithms try to correct hierarchical classification errors after the classifier has been
built, in a post-processing phase. By contrast, MHC-AIS maintains a set of consistent
hierarchical classifications during the construction of the global classifier. This kind
of consistency is given by equation (2):

() () ()* * *max , , ()i i i i i
k k k k kfit c fit c fit c c Ancestors c⎡ ⎤= ∈⎣ ⎦

 (2)

Hence, if the fitness of some ancestral class ck*
i is smaller than the fitness of its

descendant class ck
i, then the fitness of ck

i is assigned to its ancestral class, therefore
maintaining the consistency of hierarchical classifications during training.

The fitness of an entire rule (computed as an aggregated value of the fitness of all
the classes predicted by the rule) is calculated by equation (3):

() () ()1
, i i

i k k F Tfitness ab fit c fit c
n

δ= > (3)

where n indicates the number of classes ci
k with fitness greater than the value of the

parameter δFT.
Next, the AIS starts to evolve the population of antibodies. Once the global fitness

of the entire rule has been calculated for each abi, the algorithm executes the clonal
expansion process, typical in AIS [1]. Each abi produces NumCl clones of itself,
where NumCl is proportional to the fitness of abi. The number of clones to be
produced for each abi is determined by equation (4):

()()inti iNumCl fitness ab NumMaxCl ClRate= × × (4)

where the value of NumCl ∈ [1,NumMaxCl]. The parameter NumMaxCl represents
the maximum number of clones that can be generated for a given ab. The function int
truncates the fractional part of its parameter. The ClRate is calculated in every
iteration with the goal of controlling the size of the antibody population, stimulating
or inhibiting the production of clones. The value of ClRate is given by equation (5):

 Multi-label Hierarchical Classification of Protein Functions 7

if

0 if

1 otherwise

HyperClRate AB nIP

ClRate AB nMaxP

AB nIP

nMaxP nIP

⎧
⎪

<⎪
⎪= >⎨
⎪ ⎛ − ⎞⎪ − ⎜ ⎟⎪ −⎝ ⎠⎩

(5)

where HyperClRate, nIP and nMaxP are specified in the beginning of the execution of
the algorithm and indicate, respectively, clonal hyper-expansion rate, initial antibody
population size and maximum antibody population size. It is important to emphasize
that the parameter nMaxP does not represent the maximum size that the antibody
population AB can take during the evolution. Rather, it indicates that, if the size of AB is
greater than the value of that parameter, the generation of clones proportional to
antibody fitness is turned off. Next, the population CL of clones undergoes a process of
somatic hypermutation just on the IF part of the rule. A mutation rate applied to each
clone cl is inversely proportional to the fitness of the antibody ab from which the clone
was produced. The mutation rate is determined by equation (6):

() ()()1clMutRate mutMin mutMax mutMin fitness cl= + − × − (6)

where MutMin and MutMax indicate, respectively, the minimum and maximum
mutation rates to be applied to a clone cl; and the function fitness(cl) is presented in
equation (3). The MutRate represents the probability that each gene (rule condition –
IF antecedent) will undergo mutation. The population CL*, which is formed only by
clones that underwent some mutation, is then inserted in AB. Other procedures are
also applied to AB during the rule evolution procedure: suppression of antibodies and
elitism. The suppression procedure, characteristic of AIs based on the immune
network theory, removes from ABt similar antibodies. More precisely, if two
antibodies abi and abi

* have a similarity degree greater than or equal to the value of
δSIM, then, out of those two antibodies, the one with the smallest fitness is removed.
The degree of similarity between two antibodies is computed as the number of
conditions (attribute-value pairs) in the rule antecedents of both antibodies divided by
the number of conditions in the rule antecedent of the antibody with the greatest
number of conditions – which produces a measure of antibody similarity normalized
in the range from 0 (no rule conditions in common) to 1 (identical rule antecedents).
Elitism, a mechanism quite common in evolutionary algorithms [13], selects the
antibody with the best fitness to be included in the next-iteration population ABt+1.

During the rule evolution procedure all the classes occurring in the data being
mined are represented in the consequent. The choice of the final subset of classes to
be assigned to the consequent of the best discovered rule is given by equation (7):

PC = U ck ∈ C | fit(ck) > δFT (7)

where PC represents the set of classes predicted by the best discovered rule whose
fitness value is greater than δFT.

8 R.T. Alves, M.R. Delgado, and A.A. Freitas

3.2 Local Version

Like the global MHC-AIS, the local MHC-AIS consists of the SC (Fig. 3) and RE
procedures, but with some differences. In the local version, the SC procedure labels
the training examples as positive or negative. Positive examples represent examples
associated with the class of the current node of the GO’s DAG (a classifier is trained
for each node of the GO’s DAG), denoted class Y, whilst examples that do not have
the class Y are labeled as negative examples. MHC-AIS is an algorithm for
constructing hierarchical classifiers, and therefore the hierarchical structure has to be
coped with like in the global version. Hence, all training examples labeled with any
descendant class or ancestor class of the current class Y are labeled as positive class.
Concerning the latter type of positive examples, it is often the case that, when a
hierarchical classifier is being built, examples annotated with an ancestor class of the
current class Y are removed, since they are considered as ambiguous – they do not
have an annotation suggesting that they have class Y, but maybe they actually have
class Y, which was not annotated yet simply due to the lack of evidence for its
presence (note that “absence of evidence is different from evidence of absence”).
However, in this work we use examples with an annotated class that is an ancestral of
the current class Y in order to increase the number of positive examples and so
hopefully increase the predictive accuracy of the algorithm.

Input: full training set; Output: set of discovered rules;
DiscoveredRuleSet = ;
FOR EACH class c

TrainSet = {set of all training examples};
WHILE |TrainSet| > MaxUncovExamp

 BestRule = RULE-EVOLUTION(TrainSet, class c);//based on AIS
 DiscoveredRuleSet=DiscoveredRuleSet U BestRule;

 TrainSet = TrainSet – {examp. correctly covered by BestRule};
 END WHILE;
END FOR EACH class;

Fig. 3. Sequential Covering (SC) procedure for Local Version

In this local version, MHC-AIS first discovers as many classification rules as
necessary in order to cover the positive examples. Next, the algorithm discovers as
many rules as necessary to cover the negative examples. Every time that a given rule
is discovered, all the examples correctly covered by that rule (i.e. examples satisfying
the conditions in the rule antecedent and having the class predicted by the rule
consequent) are removed from the current training set, as usual in rule induction
algorithms. This iterative process of rule discovery and removal of training examples
is repeated until the number of examples in the current training set becomes smaller
than a user-defined threshold MaxUncovExamp.

The other procedures of the local MHC-AIS are the same as in the global version
of the algorithm, described in the previous subsection.

 Multi-label Hierarchical Classification of Protein Functions 9

4 Computational Results

The two versions of the MHC-AIS were evaluated on a dataset of proteins created
from information extracted from the well-known UNIPROT database [14]. This
dataset contains two protein families: DNA-binding and ATPase [15]. These two
protein families were chosen for our experiments because there are many proteins that
belong to both families, increasing the difficult of the problem of building a multi-
label classifier. The dataset used in the experiments contains 7877 proteins, where
each protein (example) is described by 40 predictor attributes, 38 of which are
PROSITE1 patterns and 2 of which are continuous attributes (molecular weight and
the number of amino acids in the primary sequence). In total, the dataset contains 214
classes (GO terms) to be predicted.

As previously discussed, in data mining the discovered knowledge should be not
only accurate, but also comprehensible to the user [2,5]. In this spirit, the results can
be evaluated according to two criteria, viz. the predictive accuracy and simplicity of
the discovered rule set. In this paper, the predictive accuracy is evaluated by the F-
measure (adapted to the scenario of multi-label hierarchical classification), which
involves computing the precision and recall of the discovered rule set on the test set
(unseen during training). Interpretability will be measured in terms of the size of the
discovered rule set, an approach which is not ideal but is still used in the literature.

In the global version, the set of GO terms predicted for a test example t, denoted
PredGO(t), consists of the union of all GO terms in the consequent of all rules
covering t – i.e. all rules whose conditions are satisfied by t’s attribute values.

In the local version of MHC-AIS, each test example t is submitted to the n trained
classifiers. Each classifier consists of a set of discovered rules. The class predicted by
each classifier is the class represented in the consequent of the rule with the greatest
fitness value (computed during training) out of all rules discovered by that classifier
that cover the example t. If no discovered rule covers the example t, the latter is
classified by the default rule, which predicts the majority class in the training set.
Hence, PredGO(t) consists of all GO terms whose trained classifiers predicted their
corresponding positive class for the example t.

MHC-AIS computes the Precision and Recall for a test example t – denoted P(t)
and R(t), respectively – as per equations (8) and (9), where TrueGO(t) is the set of
true GO terms for test example t.

P(t) = |PredGO(t) ∩ TrueGO(t)| / PredGO(t) (8)

R(t) = |PredGO(t) ∩ TrueGO(t)| / TrueGO(t) (9)

Thus, precision is the proportion of true classes among all predicted classes, whilst
recall is the proportion of predicted classes among all true classes. The F-measure for
a test example t is given by equation (10), the harmonic mean of P and R.

F(t) = (2 × P(t) × R(t)) / (1 + P(t) + R(t)) (10)

1 PROSITE patterns are motifs well-known in bioinformatics [16] and they are represented as

binary attributes – i.e., each attribute indicates whether or not the corresponding PROSITE
pattern occurs in the sequence of amino acids of a protein.

10 R.T. Alves, M.R. Delgado, and A.A. Freitas

Finally, once P(t) and R(t) have been computed for each test example t, the system
computes the overall F-measure over the entire test set T by equation (11), where |T|
denotes the cardinality of the test set T.

Predictive Accuracy = F(T) = (Σt∈T F(t)) / |T| (11)

Table 1 shows the predictive accuracy for precision, recall and F-measure for
global and local version. The numbers after the "±" symbol represent the standard
deviations associated with a well-known 10-fold cross-validation procedure [2]. In the
columns F-measure, the best result (out of both version of MHC-AIS) is shown in
bold. The results presented in Table 1 consider different affinity (matching)
thresholds for both versions of MHC-AIS, to evaluate the predictive performance of
the algorithms using partial matching (δAF < 1.0) or total matching (δAF = 1.0).

Table 1. Predictive accuracy (%) of MHC-AIS versions on the used protein data set

Global Version Local Version Affinity
Threshold Precision Recall F-Measure Precision Recall F-Measure

0.8 45.93±2.71 98.23±0.61 58.35±2.23 80.58±1.01 44.65±1.59 55.65±1.45
0.9 50.79±3.18 92.86±3.76 58.34±2.86 75.61±1.12 52.57±2.35 59.75±1.77
1.0 28.91±1.31 99.50±0.12 42.84±1.37 58.56±1.01 69.91±1.13 61.37±0.82

Table 1 shows that the global MHC-AIS performed worst (according to the F-
measure) when using total matching. Note that the global MHC-AIS obtained the worst
results for the precision measure with all affinity threshold values. By contrast, the global
MHC-AIS obtained very good recall values with all affinity thresholds. This performance
behavior of global MHC-AIS indicates that the trained global classifier has a bias
favoring the prediction of a large number of classes, mainly because the set of classes
predicted for a test example consists of the union of all classes in the consequents of all
rules covering that example - regardless of the fitness of the individual rules in question
and the fact that the predictions of some of those rules might be inconsistent with each
other. This tends to predict more classes than the actual number of true classes for a given
test example, which tends to increase recall but reduce precision (given the definition of
these terms).

In both cases of MHC-AIS, as the value of the affinity threshold δAF increases the
value of precision is reduced, showing a disadvantage in the use of total matching. As
expected, due to the trade-off between precision and recall, the local version of the
algorithm had the opposite performance behavior in the case of recall, where the
largest value was obtained with total matching.

Table 2. Simplicity of the discovered rule set of MHC-AIS versions

Global Version Local Version Threshold
Affinity #rules #Conditions #rules #Conditions

0.8 63.90±1,59 1164,30±28.20 788.00±3.68 2901.30±42.83
0.9 58.09±3.08 1066.60±53.39 1016.80 ±8.09 4829.80±67.44
1.0 79.90±1.83 1361.00±41.16 1232.90±16.07 7069.53±18298

 Multi-label Hierarchical Classification of Protein Functions 11

Table 2 shows the results of both local and global versions of MHC-AIS with
respect to the simplicity (interpretability) of the discovered rule set. This simplicity
was measured by the number of discovered rules and total number of rule conditions
(in all rules). The averages were computed over 10-fold cross-validation.

Note that, as shown in Table 2, the global MHC-AIS obtained much better results
concerning rule set simplicity than the local MHC-AIS, in all experiments. This
advantage of the global MHC-AIS is probably due to the fact that, by building a
single set of rules predicting all classes in a single run of the algorithm, the algorithm
can avoid the need for discovering redundant rules covering the same set of true
classes for some examples. In particular, when the local version discovers rules
predicting the “negative” class at each node of the GO’s DAG, it should be noted that
those rules predicting the negative class tend to be redundant with respect to rules
predicting positive classes in other nodes of the GO’s DAG, since some of the
negative class examples for a given GO node will inevitably be positive class
examples in another GO node. An example of a rule discovered rule by global MHC-
AIS in the used data set is presented below:

IF (PS00676 == 1) and (PS00390 == 1) and (MOLECULAR_WEIGHT < 29353)
then (5488, 5515, 51087)

The biological interpretation of this rule is: if a protein presents “Sigma-54
interaction domain signatures and profile” and “Sodium and potassium ATPases beta
subunits signatures” signatures and “molecular weight is less than 29353” then the
predicted classes (biological functions) are: “binding” (5488) and “protein binding”
(5515) and “chaperone binding” (51087). Note that the GO hierarchy was
considered, i.e. the true hierarchical path is 5488 → 5515 → 51087 (from shallower
to deeper nodes).

5 Conclusion and Future Work

This work described an artificial immune system (AIS)-based rule induction
algorithm to the prediction of protein function. The paper proposed two versions of
the AIS algorithm, a global version, where a single global classifier is built predicting
all classes of the application domain; and a local version, where a local classifier is
built for each node of the GO class hierarchy. Both versions have the advantage of
discovering IF-THEN classification rules, constituting a type of knowledge
representation that can, in principle, be easily interpretable by biologist users. The
global and local versions of the AIS have different (roughly dual) advantages and
disadvantages with respect to predictive accuracy, but the global version at least has
the advantage of discovering much simpler (smaller) rule sets.

Future work involves: (a) comparing the predictive performance of both versions
of the AIS with other classification algorithms designed for hierarchical classification
(e.g. [17]); (b) investigating new criteria for selecting, out of all classes in the
consequent of the rules covering a test example in the global approach, which classes
should be actually predicted for the test example; (c) incorporating an explicit
mechanism during the training phase to improve the rules´ interpretability (d) analyzing
the biological relevance of the discovered rules; and (e) evaluating the proposed AIS
in datasets of other protein families and other types of predictor attributes.

12 R.T. Alves, M.R. Delgado, and A.A. Freitas

References

1. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, Berlin (2002)

2. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques,
2nd edn. Morgan Kaufmann, San Mateo (2005)

3. Fogel, G.B., Corne, D.W.: Evolutionary Computation in Bioinformatics. Morgan
Kaufmann Publishers, San Franciso (2003)

4. The Gene Ontology Consortium. The Gene Ontology (GO) Database and Informatics
Resource. Nucleic Acids Research 32(1), 258–261 (2004)

5. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Springer, Berlin (2002)

6. Tsoumakas, G., Katakis, I.: Multi-Label Classification: An Overview. International Journal
of Data Warehousing and Mining 3(3), 1–13 (2007)

7. Sun, A., Lim, E.-P., Ng, W.-K.: Performance Measurement Framework for Hierarchical
Text Classification. Journal of the American Society for Information Science and
Technology 54(11), 1014–1028 (2003)

8. E. Nomenclature, of the IUPAC-IUB. American Elsevier Pub. Co., New York, NY 104
(1972)

9. Freitas, A.A., Timmis, T.: Revisiting the foundations of artificial immune systems for data
mining. IEEE Trans. on Evolutionary Computation 11(4), 521–540 (2007)

10. Ada, G.L., Nossal, G.V.: The Clonal Selection Theory. Scientific American 257, 50–57
(1987)

11. Jerne, N.K.: Towards a Network Theory of Immune System. Ann. Immunol (Inst.
Pasteur) 125C, 373–389 (1974)

12. Alves, R.T., Delgado, M.R., Lopes, H.S., Freitas, A.A.: An artificial immune system for
fuzzy-rule induction in data mining. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J.,
Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P.
(eds.) PPSN 2004. LNCS, vol. 3242, pp. 1011–1020. Springer, Heidelberg (2004)

13. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning.
Addison-Wesley, Reading (1989)

14. The UniProt Consortium. The Universal Protein Resource (UniProt). Nucleic Acids
Res. 35, D193–D197 (2007)

15. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Water, P.: Molecular Biology of
the Cell, 4th edn. Garland Science, New York (2002)

16. Hulo, N., Bairoch, A., Bulliard, V., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S.,
Pagni, M., Sigrist, C.J.A.: The PROSITE Database. Nucleic Acids Res. 34, D227–D230
(2006)

17. Wolstencroft, K., Lord, P.W., Tabernero, P., Brass, P., Stevens, R.: Protein classification
using ontology classification. Bioinformatics 22, 530–538 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

