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ABSTRACT 

Motivation: The bioinformatics problem being addressed in this 

paper is to predict whether or not a protein has post-synaptic activ-

ity. This problem is of great intrinsic interest because proteins with 

post-synaptic activities are connected with functioning of the nerv-

ous system. Indeed, many proteins having post-synaptic activity 

have been functionally characterized by biochemical, immunological 

and proteomic exercises. They represent a wide variety of proteins 

with functions in extracellular signal reception and propagation 

through intracellular apparatuses, cell adhesion molecules and scaf-

folding proteins that link them in a web. The challenge is to auto-

matically discover features of proteins’ primary sequences that typi-

cally occur in proteins with post-synaptic activity but rarely (or never) 

occur in proteins without post-synaptic activity, and vice-versa. In 

this context, we used data mining to automatically discover classifi-

cation rules that predict whether or not a protein has post-synaptic 

activity. The discovered rules were analyzed with respect to their 

predictive accuracy (generalization ability) and with respect to their 

interestingness to biologists (in the sense of representing novel, 

unexpected knowledge). 

1 INTRODUCTION  

One of the great challenges of our era is to predict the functions of 
proteins based on their primary sequence. This is a very difficult 
problem, since the relationship between protein sequence and func-
tion is very complex (Gerlt and Babbitt, 2000), (Devos and Valen-
cia, 2000), (Nagl, 2003). Indeed, although there is a vast amount of 
data stored in protein databases, there is still a large gap between 
the huge amount of data about protein sequences and the knowl-
edge necessary for understanding the process of protein folding 
and associated protein functions.  

Intuitively, however, protein databases contain important “hid-
den relationships” (knowledge) between protein sequence and 
protein function. There is a clear and urgent motivation for discov-
ering this hidden knowledge from protein databases for a number 
of reasons, such as a better understanding of diseases, designing 
more effective medical drugs, etc. This creates both a need and an 
opportunity to apply data mining techniques to the problem of 
automatically discovering knowledge from protein databases. 

Data mining is a multi-disciplinary field, which consists of using 
methods of several research areas (arguably, mainly machine 
learning and statistical pattern recognition) to extract interesting 
  
* Correspondence should be addressed to the third author.  

knowledge from real-world data sets (Witten and Frank, 2000), 
(Fayyad et al., 1996).  

This paper proposes a data mining approach to the problem of 
predicting whether or not a protein has post-synaptic activity, 
based on features of the protein’s primary sequence. The proposed 
approach will be described later, in sections 3 and 4. In this Intro-
duction we just emphasize a major difference between the pro-
posed data mining approach and a more traditional bioinformatics 
approach for predicting protein function, as follows. 

In general, the most used approach to predict the function of a 
new protein – for which we know only its sequence – consists of 
performing a similarity search in a protein database. In essence, the 
program finds the most similar protein(s) to the new protein, and if 
that similarity is higher than a threshold, the function of the most 
similar protein is transferred to the new protein. Although this 
approach is very useful in many cases, it also has some limitations, 
as follows. 

First, it is well-known that two proteins might have very similar 
sequences and perform different functions, or have very different 
sequences and perform the same or similar function (Syed and 
Yona, 2003), (Gerlt and Babbitt, 2000). Second, the proteins being 
compared may be similar in regions of the sequence that are not 
determinants of function (Schug et al., 2002). Third, the prediction 
of function is based only on sequence similarity, ignoring many 
relevant biochemical properties of proteins (Karwath and King, 
2002), (Syed and Yona, 2003). Fourth, it does not produce a model 
for predicting function, so that it does not give insights about the 
relationship between the sequence, biochemical properties and 
function of proteins.  

Another approach consists of inducing, from protein data, a 
model describing (in a very summarized form) the data, so that 
new proteins can be classified by the model. This is the data min-
ing approach followed in this project. We emphasize that this 
model-induction approach aims at complementing – rather than 
replacing – the conventional similarity-based approach. In any 
case, the model-induction approach followed in this project has 
two important advantages (King et al., 2001). First, it can predict 
the function of a new protein even in the absence of sequence simi-
larity between that protein and other proteins with known function. 
Second, if the discovered model is expressed in a comprehensible 
form (which is the case in this research, where knowledge is ex-
pressed by intuitively comprehensible IF-THEN rules), it can be 
used by biologists, to give new insights and possibly suggest new 
biological experiments. Indeed, in this research the rules discov-
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ered by a data mining algorithm were not only automatically 
evaluated with respect to their predictive accuracy – as usual in 
data mining – but also manually interpreted in the context of rele-
vant biochemical knowledge, in order to determine how interesting 
they were with respect to providing novel insights – unknown in 
the current literature – about the relationship between some protein 
sequence patterns and post-synaptic activity. This two-criteria 
evaluation reinforces the inter-disciplinary nature of this project, 
which is, of course, a desirable feature in a bioinformatics project. 

The remainder of this paper is organised as follows. Section 2 
describes the target biological problem. Section 3 describes the 
preparation of the data set for mining purposes, by using protein 
data available in UniProt/SwissProt and Prosite. Section 4 dis-
cusses the proposed data mining approach and the corresponding 
analysis of results. Finally, section 5 reports the conclusions and 
future research directions. 

2 THE TARGET BIOLOGICAL PROBLEM 

In essence, postysnaptic sites represent points where one nerve cell 
receives signals from another. As indicated in Fig. 1, multiple 
types of proteins are expected to be found at these sites for recep-
tion and propagation of signals, and for joining the two nerve cells 
to each other. Note that Fig. 1 is a very minimal summary of the 
types of proteins found in postsynaptic sites. 

The bioinformatics problem being addressed in this paper is to 
predict whether or not a protein has post-synaptic activity. This 
problem is of great intrinsic interest because proteins with post-
synaptic activities are connected with functioning of the nervous 
system. Indeed, many proteins having post-synaptic activity have 
been functionally characterized by biochemical, immunological 
and proteomic exercises (see e.g. (Husi et al., 2000), (Walikonis et 
al., 2000)), and are now extensively catalogued and annotated in 
the Uniprot/SwissProt database. They represent a wide variety of 
proteins with functions in extracellular signal reception and propa-
gation through intracellular apparatuses, cell adhesion molecules 
and scaffolding proteins that link them in a web.  

The challenge is to automatically discover features of proteins’ 
primary sequences that typically occur in proteins with post-
synaptic activity but rarely (or never) occur in proteins without 
post-synaptic activity, and vice-versa. These discovered features 
constitute the essence of the knowledge discovered by a data min-
ing algorithm. If the algorithm is successful in discovering knowl-
edge with a high predictive power, that knowledge can be used to 
accurately discriminate between the two classes of proteins. In 
addition, and most important, the fact that in this project discov-
ered knowledge will be expressed in a comprehensible form – as 
mentioned in the Introduction – represents a potentially valuable 
knowledge by itself, because it can potentially give new insights to 
biologists about which sequence features are predictive of post-
synaptic activity.  
 

 
 
Fig. 1: Main elements involved in presynaptic and postsy-
naptic activity. A synapse is the point where two nerve cells 
communicate with each other by transmission of a chemical 
known as a neurotransmitter. The main elements found in 
synapses are shown in Figure 1. The cells are held together 
by cell adhesion molecules (1). In the cell where the signal 
is coming from (the pre-synaptic cell) neurotransmitters are 
stored in bags called synaptic vesicles. When signals are to 
be transmitted from the presynaptic cell to the post-synaptic 
cell, synaptic vesicles fuse with the presynaptic membrane 
and release their contents into the synaptic cleft between the 
cells. The transmitters then diffuse within the cleft, and 
some of them meet a post-synaptic receptor (2), which rec-
ognises them as a signal. This activates the receptor, which 
then transmits the signal on to other signalling components 
such as voltage-gated ion channels (3), protein kinases (4) 
and phosphatases (5). To ensure that the signal is terminated 
and to clear up residual neurotransmitters after the signal 
has terminated, transporters (6) remove neurotransmitters 
from the cleft. Within the post-synaptic cell, the signalling 
apparatus is organised by various scaffolding proteins (7).  

3 METHODS 

The goal of this project is to predict – with a data mining algorithm 
– whether or not a protein has post-synaptic activity. The algorithm 
is used to discover interesting relationships between sequence fea-
tures that are often present in post-synaptic proteins but usually 
absent in proteins without post-synaptic proteins, and vice-versa. 
Therefore, in order to discover this kind of knowledge, we need 
not only a set of post-synaptic proteins but also a control set of 
proteins which do not have post-synaptic activity.  

In data mining terminology, the set of proteins with post-
synaptic activity is called the set of positive examples, whereas the 
control set of proteins (without post-synaptic activity) is called the 
set of negative examples. The problem of finding sequence fea-
tures that discriminate between these two kinds of proteins is then 
cast as a classification problem, where the goal is to predict the 
value of a class attribute for each example (protein) based on a set 
of predictor attributes for that example. The classes are whether or 
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not a protein has post-synaptic activity, and the predictor attributes 
are mainly Prosite patterns, as described below. 

More precisely, the data set mined in this project was con-
structed in two phases. In the first phase we carefully selected rele-
vant proteins from the UniProt database. UniProt (Universal Pro-
tein Resource) was created by the union of Swiss-Prot, TrEMBL 
and PIR databases, and is a repository for protein sequence and 
functional data (Uniprot, 2004). UniProt was chosen as the source 
of the data to be mined because it is the world standard non-
redundant, comprehensive protein sequence database. UniProt is 
divided in 3 database layers: UniParc (UniProt Archive), UniProt 
Knowledgebase (UniProt/SwissProt) and UniProt NREF (UniRef). 
In this research we have used UniProt/SwissProt, which is the 
richest annotated layer. One of its great advantages of this layer is 
the comprehensive annotation of SwissProt. This is curated to en-
sure minimal redundancy, accurate and comprehensive annotation 
of function, expression, sequence features (e.g., domain struc-
tures), literature references, links to other databases, etc.  

The second phase of data preparation used the links from Unit-
Prot/SwissProt to the Prosite database, in order to retrieve informa-
tion from Prosite that was used to create the predictor attributes. 
These two phases are described in detail next. 

3.1 Phase 1: Selecting Positive and Negative Examples 

Table 1 shows the queries submitted to UniProt/SwissProt in order 
to select the set of positive examples (proteins with post-synaptic 
activity) and the set of negative examples (proteins without post-
synaptic activity). For each query, the table shows the specification 
of the query and the number of examples (proteins) returned by 
that query. The specification of each query consists of keywords 
and the logical operator “NOT” (!).  

Note that the queries did not specify any specific species, i.e. 
proteins from all species were considered. This was done in order 
to maximize the number of examples in the data to be mined. Posi-
tive examples were selected not only by the presence of the key-
word “postsynaptic” but also by the absence of the keyword 
“toxin”. The reason for this latter criterion is that several entries in 
UniProt/SwissProt refer to the toxin α-latrotoxin. This protein acts 
postsynaptically, but it is not, of course, a post-synaptic protein.  

The selection of the negative examples was more difficult, since 
of course the UniProt/SwissProt entries do not have an explicit 
“not postsynaptic” keyword. The trivial “solution” of retrieving all 
entries that do not explicitly have the keyword “postsynaptic” is 
not satisfactory, for two reasons. First, this would produce a very 
large number of negative examples, which would be much larger 
than the number of positive examples. This would create a data set 
with an extremely unbalanced class distribution, and it would be 
very difficult for the classification algorithm to discover rules that 
correctly classify the positive (postsynaptic) class. Second, and 
most important, many of the negative examples would be “trivial”, 
leading to uninteresting, trivial rules for the discrimination be-
tween positive and negative examples. For instance, there is no 
need to discover rules discriminating plant proteins from post-
synaptic proteins, since it is obvious that plants do not have a 

nervous system. Hence, including plant proteins in the set of nega-
tive examples would only contribute to the discovery of uninterest-
ing, trivial classification rules. 

Table 1: Queries Submitted to UniProt/SwissProt to Create the Data Set 

Selection of Positive Examples 

Query No. Query Specification # Examples 

1 Postsynaptic !toxin  356 
 Total number of positive examples 356 

Selection of Negative Examples 

 Query / Keywords # Examples 
2 Heart !(result of query 1) 3106 
3 Cardiac !(results of queries 1,  2) 331 
4 Liver !(results of queries 1, 2, 3) 2794 
5 Hepatic !(results of queries 1, 2, 3, 4) 256 
6 Kidney !(results of query 1, 2, 3, 4, 5) 988 
 Total number of negative examples 7475 

 
The goal is to select a set of negative examples where, although 

the proteins do not have post-synaptic activity, they have some 
characteristics that could be confused with some of the characteris-
tics of post-synaptic proteins (the positive examples), making it 
difficult to discriminate between these two kinds of proteins. Intui-
tively, the higher the similarity between positive and negative ex-
amples, the harder the classification problem, and so the stronger 
the motivation to use a data mining algorithm to discover interest-
ing classification rules representing novel knowledge to a biolo-
gist. (Recall that the ultimate goal is to automatically discover 
interesting, novel rules that provide new insight to biologists about 
which sequence features are most correlated with the presence or 
absence of post-synaptic activity.) 

Note that, although the positive and negative examples must 
have enough similarity to lead to the discovery of interesting, non-
trivial rules, they also must be different enough to allow the dis-
covery of reliable classification rules for each class. Hence, the 
challenge is to find a good trade-off between these two goals. 

In this spirit, the negative examples were selected by using the 
keywords “heart”, “cardiac”, “liver”, “hepatic” and “kidney”. Con-
sider, for instance, the query 4 in Table 1: “Liver !(results of que-
ries 1, 2, 3)”. This query means that all UniProt/SwissProt entries 
that had the keyword “liver” and were not already included in the 
results of the previous queries (1, 2, 3) were selected as negative 
examples. The latter selection criterion was necessary to avoid the 
possibility that two or more copies of the same data entry – i.e., a 
data entry having two or more of the above-mentioned keywords – 
were duplicated in the set of negative examples.  

The previously-mentioned five keywords were chosen as the ba-
sis for obtaining negative examples for two reasons. First, it is 
known that, in general, proteins found in these sites do not present 
post-synaptic activity. Second, proteins found in these sites often 
have some characteristics similar to post-synaptic proteins. Indeed, 
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in the context of this project, many of the same types of proteins 
represented at postsynaptic sites (kinases/phosphatases/channels, 
etc.) are present in abundance in heart, liver and kidney tissues.  

It should be noted that the queries listed in Table 1 searched for 
the corresponding keywords in all the fields of the Uni-
Prot/SwissProt entries. This means that the selection criteria are 
not perfect, since those keywords could be present in fields where 
the presence of the keyword does not mean that the protein has the 
corresponding function/characteristic. This potentially introduces 
some “noise” in the data set being mined. However, this was nec-
essary, because queries searching for keywords only in the field 
“KEYWORD” of UniProt/SwissProt returned too few proteins. In 
any case, the amount of noise introduced by the imperfect selection 
criteria seems to be relatively small, since the data mining algo-
rithm was able to discovery quite accurate classification rules, as 
will be shown later. 

3.2 Phase 2: Generating the Predictor Attributes 

Once the set of examples to be mined has been selected from Uni-
prot/Swissprot, the next step was to generate a set of predictor 
attributes representing relevant properties of those proteins’ se-
quences. The predictor attributes must have a good predictive 
power and be easily interpretable by biologists. In this project we 
have focused mainly on generating attributes based on Prosite 
patterns associated with the proteins – a type of attribute satisfying 
both the previously-mentioned properties. The Prosite database 
stores significant patterns and profiles that help to identify the 
family of a new protein (Hulo et al., 2004). We decided to use 
attributes based only on Prosite patterns, and not Prosite profiles, 
for two reasons. First, the matching between a Prosite pattern and a 
protein can be exactly computed, producing a simple binary attrib-
ute – i.e., the pattern either occur or does not occur in a given pro-
tein. This reduces the size of the search space for the data mining 
algorithm and simplifies the interpretation of the rule by biologists. 
By contrast, the matching between a Prosite profile and a protein is 
an approximate matching, and the data mining algorithm would 
have to search in a correspondingly much larger search space. 
Second, the use of both patterns and profiles would lead to a very 
large number of attributes, which would again increase too much 
the size of the search space, and so would significantly increase the 
risk of overfitting the induced model to the data. It should be noted 
that, even considering only the binary attributes derived from 
Prosite patterns, this led to 443 attributes (as explained next), 
which corresponds to a huge search space of size 2443. 

For each protein selected in phase 1 (regardless of the protein 
being a positive or a negative example), we retrieved all Prosite 
entry id’s that occurred in the field Database cross-References 
(DR) of UniProt/SwissProt. For each Prosite entry id, we “fol-
lowed the link” from UniProt/SwissProt to Prosite, in order to 
access information about that Prosite entry. Once this was done for 
all proteins selected in phase 1, we had a large set of Prosite en-
tries. We then selected, to be used as predictor attributes, the en-
tries that: 

a) were marked as a “pattern” in the ID line of that entry in the 
Prosite database;  

b) were not commented (in the CC line of the Prosite database) as 
very general patterns (/SKIP_FLAG = TRUE) – it was neces-
sary to exclude those patterns because they appear in almost 
all proteins, and so are not useful to discriminate between the 
two classes of proteins; 

c) occurred in at least two proteins of the data set being mined – 
this was necessary to remove extremely specific patterns, oc-
curring in just one protein of the data set, which do not have 
any generalisation power. 

Finally, each of the selected Prosite patterns was encoded as one 
binary attribute of the data set being mined, taking on the value 
“yes” or “no” for each protein – indicating whether or not the pat-
tern occurs in that protein, respectively.  

Note that a few proteins in the data set to be mined did not have 
any Prosite pattern, i.e., they had the value “no” for all predictor 
attributes based on Prosite patterns. These proteins were removed 
from the data to be mined. 

In addition to the previously-described attributes based on 
Prosite patterns, we added to the data set two simple predictor 
attributes derived directly from the proteins’ sequences, namely the 
sequence length and the molecular weight of the protein (both 
attributes are available from the corresponding fields in Uni-
Prot/SwissProt entries). Other kinds of attributes will be consid-
ered in future research, but for now it is interesting to note that 
even the current set of predictor attributes is enough to discover 
quite accurate classification rules, as will be shown later. 

After all this data preparation process, we ended up with a data 
set composed by 4303 examples (260 belonging to the positive 
class and 4043 belonging to the negative class) and 445 predictor 
attributes. These 445 attributes include 443 Prosite patterns, the 
sequence length and the molecular weight of each protein. 

4 RESULTS 

In order to discover knowledge from the data set described in the 
previous section, we have used the well-known C4.5Rules rule 
induction algorithm (Quinlan, 1993). This algorithm was chosen as 
the data mining algorithm in our experiments mainly because it 
produces comprehensible knowledge, represented by a set of high-
level, easily-interpretable classification rules of the form: IF (con-
ditions) THEN (class). This kind of rule has the intuitive meaning 
that, if an example (protein) satisfies the conditions in the rule 
antecedent, the example is assigned to the class predicted by the 
rule consequent. It should be noted that the comprehensibility of 
discovered knowledge is a very important issue in bioinformatics 
(see e.g. (Mirkin and Ritter, 2000), (Clara and King, 2002), (Seb-
ban et al., 2002)), because the discovered knowledge should be 
interpreted and validated by biologists, rather than being blindly 
trusted as a “black box”.  

We used the default parameters of C4.5Rules. The classification 
rules discovered by C4.5Rules were evaluated according to two 
criteria, namely predictive accuracy and interestingness to biolo-
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gists, as follows. Predictive accuracy was estimated by a well-
known 10-fold cross-validation procedure (Witten and Frank, 
2002), as usual in data mining. In essence, the data set was divided 
into 10 partitions, with approximately the same number of exam-
ples (proteins) in each partition. In the i-th iteration, i=1,2,…,10, 
the i-th partition was used as the test set and the other 9 partitions 
were temporarily merged and used as the training set. In each itera-
tion C4.5Rules discovered a rule set from the training set and used 
that rule set to classify examples in the test set (unseen during 
training), in order to evaluate the generalisation ability of discov-
ered knowledge. The classification accuracy rate of the discovered 
rules can then be computed as the average accuracy rate over the 
10 test sets, and this is the measure of predictive accuracy most 
popular in the literature. In our experiments, this produced an accu-
racy rate of 97.85%.  

It should be noted, however, that in the context of this project 
this traditional measure of accurate rate is not a very effective one. 
The reason is that the class distribution is very unbalanced: only 
6.4% of the examples have the positive class. Hence, as a baseline 
solution for this classification problem, the “majority classifier” – 
which predicts the majority (negative) class for all examples – 
would trivially obtain an accuracy rate of 93.9%, without provid-
ing any insight about the relationship between the predictor attrib-
utes and the classes.  

Therefore, we use a more “demanding” measure of predictive 
accuracy, for which a high value can be obtained only by accu-
rately classifying examples of both classes. The measure in ques-
tion is the product: True Positive Rate (TPR) × True Negative Rate 
(TNR) (Hand, 1997). These terms (which are sometimes referred to 
as Sensitivity and Specificity, respectively) are defined as follows. 

TPR = TP / (TP + FN)         TNR = TN / (TN + FP),      where: 

TP = Number of true positives – i.e., the number of examples that 
were predicted as positive class by the discovered rule set and 
indeed have the positive class; 

FN = Number of false negatives – i.e., the number of examples that 
were predicted as negative class but actually have the posi-
tive class; 

TN = Number of true negatives – i.e., the number of examples that 
were predicted as negative class and indeed have the negative 
class; 

FP = Number of false positives – i.e., the number of examples that 
were predicted as positive class but actually have the nega-
tive class. 

In our experiments the average values (over the 10 iterations of 
the cross-validation procedure) of the TPR and TNR were 0.85 and 
0.98 respectively, resulting in the final measure of predictive accu-
racy as TPR × TNR = 0.84 (with a standard deviation of 0.09). 
Note that the baseline majority classifier obtains TPR × TNR = 0 × 
93.9 = 0, i.e., it is very strongly penalized (as it should be) for 
never predicting the positive class. 

It should also be noted that, although the vast majority of the 
data mining literature focuses on measuring only the predictive 

accuracy of the discovered rules, the ultimate goal of data mining 
is to discover knowledge that is comprehensible and interesting 
(novel, unexpected) to the user (Fayyad et al., 1996), (Han and 
Kamber, 2001). We emphasize that a very accurate rule will not be 
useful to the user if it represents a previously known pattern. Con-
sider, for instance, the following hypothetical example. In a hospi-
tal’s medical database a data mining algorithm could discover the 
rule: IF (patient is pregnant) THEN (patient’s gender is female). 
This rule is extremely accurate, but it is also completely useless, 
since it represents an obvious pattern. As a real-world example of 
the difficult of discovering novel, unexpected rules, (Tsumoto, 
2000) reports that, in experiments with two medical data sets, less 
than 1% of the discovered rules were found to be interesting or 
unexpected to medical experts. 

Taking into account our ultimate goal of discovering novel, un-
expected rules, the rules discovered by C4.5Rules were also manu-
ally evaluated with respect to how surprising they are, by compari-
son with current biochemical knowledge in the area. In other 
words, the goal of this evaluation is to determine the extent to 
which the discovered rules represent novel, unexpected knowl-
edge, leading to novel insights about which Prosite patterns are 
most strongly associated with the presence or absence of post-
synaptic activity in proteins. 

In order to perform this evaluation, we need to re-visit Fig. 1. 
Most of the types of proteins shown in Fig. 1 – objects (1)–(7) in 
that figure – contain signatures within its sequence that can be 
recognised in specific Prosite patterns. The only exception is pro-
tein type (3), voltage-gated ion channels, for which there is no 
Prosite pattern. For each of the other protein types, relevant Prosite 
patterns include:  
 (1) CADHERIN_1; (2) NEUROTR_ION_CHANNEL; (4) 
PROTEIN_KINASE_ST; (5) SER_THR_PHOSPHATASE; (6) 
NA_DICARBOXYL_SYMP_1, 43_KD_POSTSYNAPTIC; (7) 
GUANYLATE_KINASE_1. 
Since these are all expected, a particularly surprising rule would be 
one whose conditions (in the “IF part” of the rule) referred to other 
Prosite patterns, which are considered unrelated to the presence or 
absence of post-synaptic activity. A rule could also be surprising 
even if it referred only to the above mentioned patterns, as long as 
the rule referred to an unexpected combination of those patterns. 

Table 2 shows the complete set of discovered rules. Note that 
several discovered rules are “expected”, representing well-known 
patterns, and therefore not useful for a biologist expert in the field. 
For instance, Rule 32 is a typical example of an expected rule: 

32: IF (NEUROTR_ION_CHANNEL = yes) THEN (class = yes). 

Rule 32 reflects the abundance of ligand-gated ion channels (a 
type of neurotransmitter receptor that includes important gluta-
mate, serotonin and acetylcholine receptors) at postynaptic sites 
(protein type 2 in Fig. 1). This rule has an accuracy of 99.2%, 
which confirms our earlier remark that a rule can be very accurate 
but useless to the user, when the rule is pretty obvious like this 
one. (The accuracy of a rule is essentially measured by the condi-
tional probability of the rule consequent given the rule antecedent. 
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In other words, it is computed as the number of examples satisfy-
ing both the antecedent and the consequent of the rule divided by 
the number of examples satisfying the antecedent of the rule.) 
Other strongly expected rules include: Rule 19 (protein type 1 in 
Fig. 1); Rules 29 and 34 (protein type 7 in Fig. 1); Rule 35 (protein 
type 6 in Fig. 1).  

Table 2: Rules discovered by C4.5Rules 

Id Classification rule 

32 IF (NEUROTR_ION_CHANNEL = yes) THEN (class = yes) 
19 IF (CADHERIN_1 = yes) AND (920 < seq_length <= 1025)  

THEN (class = yes) 
29 IF (GUANYLATE_KINASE_1 = yes) AND (78928 < mol_weigth 

<= 113386)  
THEN (class = yes) 

34 IF (43_KD_POSTSYNAPTIC = yes) THEN (class = yes) 
35 IF (NA_DICARBOXYL_SYMP_1 = yes) THEN (class = yes) 
8 IF (CARBOXYLESTERASE_B_2 = yes) AND (seq_length > 828) 

THEN (class = yes) 
33 IF (DYNAMIN = yes) THEN (class = yes) 
6 IF (LIPASE_SER = yes) AND (seq_length > 699)  

THEN (class = yes) 
10 IF (G_PROTEIN_RECEP_F1_1 = yes)  

AND (11287 < mol_weigth <= 14398) 
THEN (class = yes) 

14 IF (C1Q = yes) AND (seq_length <= 194) THEN (class = yes) 
23 IF (A4_EXTRA = yes) AND (BPTI_KUNITZ_1 = no)  

THEN (class = yes) 
26 IF (PPTA = yes) AND (G_PROTEIN_RECEP_F2_1 = no)  

AND (seq_length > 895)  
THEN (class = yes) 

17 IF (SER_THR_PHOSPHATASE = yes) AND (seq_length > 318)  
THEN (class= yes) 

21 IF (G_PROTEIN_RECEP_F3_1 = yes) 
AND (mol_weight <= 114180) THEN (class = yes) 

2 IF (C1Q = no) AND (EGF_1 = no)  
AND (GUANYLATE_KINASE_1 = no)  
AND (LIPASE_SER = no)  
AND (CARBOXYLESTERASE_B_2 = no)  
AND (SER_THR_PHOSPHATASE = no)  
AND (NA_DICARBOXYL_SYMP_1= no)  
AND (43_KD_POSTSYNAPTIC = no) AND (DYNAMIN = no)  
AND (A4_EXTRA = no) 
AND (NEUROTR_ION_CHANNEL = no)  
AND (G_PROTEIN_RECEP_F1_1 = no)  
AND (seq_length <= 895) 
THEN (class = no) 

7 IF (C1Q = no) AND (GUANYLATE_KINASE_1 = no)  
AND (SER_THR_PHOSPHATASE = no)  
AND (NA_DICARBOXYL_SYMP_1= no) 
AND (KD_POSTSYNAPTIC = no) AND (A4_EXTRA = no) 
AND (NEUROTR_ION_CHANNEL = no)  
AND (G_PROTEIN_RECEP_F1_1 = no) 
AND (seq_length <= 828) 
THEN (class = no) 

12 IF (SER_THR_PHOSPHATASE = no)  
AND (43_KD_POSTSYNAPTIC = no) 
AND (NEUROTR_ION_CHANNEL = no)  
AND (307 < seq_length <= 437) 
THEN (class = no) 

4 IF (C1Q = no) AND (PPTA = no) AND 
(GUANYLATE_KINASE_1 = no) AND  

(LIPASE_SER = no) AND (CARBOXYLESTERASE_B_2 = no) 
AND (SER_THR_PHOSPHATASE = no)  
AND (NA_DICARBOXYL_SYMP_1= no) 
AND (43_KD_POSTSYNAPTIC = no) AND (DYNAMIN = no)  
AND (A4_EXTRA = no) AND (CADHERIN_1 = no)  
AND (NEUROTR_ION_CHANNEL = no)  
AND (G_PROTEIN_RECEP_F1_1 = no) 
AND (G_PROTEIN_RECEP_F3_1 = no) 
THEN (class = no) 

16 IF (NEUROTR_ION_CHANNEL = no) AND (seq_length <= 318) 
THEN (class = no) 

20 IF (seq_length > 1025) THEN (class = no) 
 (default rule) IF (protein does not satisfy any of the above rules) 

THEN (class = no) 

 
Some rules that might be expected were not discovered by 

C4.5Rules. For example, several other ion channels (such as in-
wardly rectifying K+ channels) are associated with postsynaptic 
structures. However, the Prosite database – even though it is one of 
the most comprehensive databases of its type – does not contain a 
signature for these channels, so this represents a limitation of the 
predictor attributes that we have chosen to generate in this project. 

Some expected rules have a very limited accuracy, in particular 
Rule 17 (IF (SER_THR_PHOSPHATASE = yes) AND 
(seq_length > 318) THEN (class= yes)), with accuracy = 31.4% 
and Rule 21 (IF (G_PROTEIN_RECEP_F3_1 = yes) AND 
(mol_weight <= 114180) THEN (class = yes)), also with accuracy 
= 31.4%. The low accuracy of these two rules comes from the fact 
that ser/thr phosphatases and G-protein coupled receptors are ex-
pressed in every human cell, and not just post-synaptically.  

The unexpected rules are much more complicated, but they are 
very surprisingly accurate. Therefore, in general they represent 
interesting knowledge to biologists who are experts in post-
synaptic proteins. 

For example, Rule 7 states that if 8 specific Prosite signatures 
are absent, then the protein is not post-synaptic with 99.8% accu-
racy. Similarly, Rule 2 states the same thing with 12 Prosite signa-
tures. These rules could not have been predicted a priori with just 
biological knowledge. What Rules 2 and 7 do is to take a number 
of Prosite signatures that appear in individual ‘expected’ rules and 
combine them in a way that says that, when none of those signa-
tures are present, then the proteins are not postsynaptic. This has 
real utility in classifying novel proteins, excluding them from the 
postsynaptic class.  

In order to better understand those rules, we also retrieved, from 
the data set being mined, the proteins which are exceptions to each 
of those rules – i.e., proteins that satisfy the conditions in the rule 
antecedent but have a class different from the one predicted by the 
rule consequent. These exceptions are quite revealing.  

An exception to Rule 7 is the SPOCK protein (Uniprot: 
TIC1_MOUSE). This is an extracellular matrix (ECM) protein that 
is associated with the postsynaptic area of pyramidal neurons. The 
signatures in Rule 7 are membrane-associated or cytoplasmic; thus 
they do not cover this extracellular matrix protein. The synaptic 
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cleft is rather poor in ECM proteins, so most other ECM proteins 
(collagen etc.) are accurately included in this rule.  

Rule 2 has some interesting exceptions, and again points to limi-
tations in the method used to generate the predictor attributes. The 
protein b-Raf is a protein kinase that is ubiquitous in animal tis-
sues, and has a role in mitogenic signalling. It is also found in syn-
aptic structures. In neurons, it is thought to be part of the system 
that responds to growth factors such as NGF. In this sense it is not 
classically part of the system that responds to neurotransmitters, 
but rather has a role in development and maintenance of the nerv-
ous system. B-raf from human and mouse (Uniprot entries: 
BRAF_HUMAN and BRAF_MOUSE) are exceptions to rule 2. 
This exception reflects both the ubiquity of b-Raf and the fact that 
it represents the nature of the signalling pathways it is involved in. 

5 CONCLUSIONS 

This paper proposed a data mining approach to generate compre-
hensible rules that predict whether or not a protein has post-
synaptic activity, based on Prosite patterns occurring (or not) in the 
protein, as well as on a couple of simple protein properties com-
puted directly from the protein’s primary sequence (namely the 
sequence length and the molecular weight of the protein).  

The discovered rules were evaluated with respect to both their 
predictive accuracy and their degree of surprisingness (unexpect-
edness) to the user. The discovered rules were very successful with 
respect to predictive accuracy. The main contribution of this paper, 
however, is the analysis of the rules with respect to their surpris-
ingess. Although this is a very important issue in data mining (as 
discussed earlier), and particularly crucial in the context of scien-
tific discovery, this issue is largely ignored in virtually all the lit-
erature about prediction of protein function from sequence.  

From a biological perspective, the discovered rules overall re-
veal interesting features of this approach to mining functional data 
from Uniprot/SwissProt. A number of expected rules accurately 
predict some aspects of postsynaptic function. Other rules (unex-
pectedly) can exclude postsynaptic function with astonishing accu-
racy. Still other rules indicate the limitation of this approach. The 
lack of voltage-gated ion channel Prosite patterns (related to type 3 
proteins in the notation of Fig. 1) reflects limitations in Prosite: 
future approaches to this problem will need to consider this. In the 
future we also plan to generate a more diverse set of predictor at-
tributes, capturing information about other relevant properties of 
protein sequences. 

A direction for future research would be to estimate the “inter-
estingness” of the discovered rules by using some data-driven rule 
interestingness measures proposed in the literature. Then we would 
be able to automatically rank the discovered rules according to 
those interestingness measures, and present the rules to the user in 
decreasing order of estimated interestingness. We could also 
measure the correlation between the value of those data-driven 
interestingness measures and the subjective, real interest of the 
rules to a biologist. This would allow us to evaluate how effective 
those data-driven interestingness measures are in the sense of be-

ing good estimators of the real human interest in the rules. It would 
also be interesting to analyze the rules discovered by other data 
mining algorithms. 
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