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ABSTRACT

Motivation: The bioinformatics problem being addressed in this
paper is to predict whether or not a protein has post-synaptic activ-
ity. This problem is of great intrinsic interest because proteins with
post-synaptic activities are connected with functioning of the nerv-
ous system. Indeed, many proteins having post-synaptic activity
have been functionally characterized by biochemical, immunological
and proteomic exercises. They represent a wide variety of proteins
with functions in extracellular signal reception and propagation
through intracellular apparatuses, cell adhesion molecules and scaf-
folding proteins that link them in a web. The challenge is to auto-
matically discover features of proteins’ primary sequences that typi-
cally occur in proteins with post-synaptic activity but rarely (or never)
occur in proteins without post-synaptic activity, and vice-versa. In
this context, we used data mining to automatically discover classifi-
cation rules that predict whether or not a protein has post-synaptic
activity. The discovered rules were analyzed with respect to their
predictive accuracy (generalization ability) and with respect to their
interestingness to biologists (in the sense of representing novel,
unexpected knowledge).

1 INTRODUCTION

One of the great challenges of our era is to pteélde functions of
proteins based on their primary sequence. Thisverg difficult
problem, since the relationship between proteimsege and func-
tion is very complex (Gerlt and Babbitt, 2000), (©s and Valen-
cia, 2000), (Nagl, 2003). Indeed, although them v&st amount of
data stored in protein databases, there is slidlge gap between
the huge amount of data about protein sequenceshankinowl-
edge necessary for understanding the process tdipriolding
and associated protein functions.

Intuitively, however, protein databases contain dntgnt “hid-
den relationships” (knowledge) between protein sega and
protein function. There is a clear and urgent nadion for discov-
ering this hidden knowledge from protein databdees number
of reasons, such as a better understanding of sdisedesigning
more effective medical drugs, etc. This create$ boheed and an
opportunity to apply data mining techniques to tireblem of
automatically discovering knowledge from proteinatses.

Data mining is a multi-disciplinary field, which gsists of using
methods of several research areas (arguably, maidghine
learning and statistical pattern recognition) tdraot interesting

* Correspondence should be addressed to the thindrau

knowledge from real-world data sets (Witten andnkra2000),
(Fayyadet al.,1996).

This paper proposes a data mining approach to ribleigm of
predicting whether or not a protein has post-syinagttivity,
based on features of the protein’s primary sequeHoe proposed
approach will be described later, in sections 3 4nbh this Intro-
duction we just emphasize a major difference betwie pro-
posed data mining approach and a more traditioiahformatics
approach for predicting protein function, as folfow

In general, the most used approach to predictuhetion of a
new protein — for which we know only its sequenceonsists of
performing a similarity search in a protein dat&bads essence, the
program finds the most similar protein(s) to thevmeotein, and if
that similarity is higher than a threshold, thediion of the most
similar protein is transferred to the new protefithough this
approach is very useful in many cases, it alscshage limitations,
as follows.

First, it is well-known that two proteins might tevery similar
sequences and perform different functions, or haarg different
sequences and perform the same or similar fundByed and
Yona, 2003), (Gerlt and Babbitt, 2000). Second,dtateins being
compared may be similar in regions of the sequehatare not
determinants of function (Schag al, 2002). Third, the prediction
of function is based only on sequence similarignoring many
relevant biochemical properties of proteins (Katwand King,
2002), (Syed and Yona, 2003). Fourth, it does nodgce amodel
for predicting function, so that it does not giveights about the
relationship between the sequence, biochemical epties and
function of proteins.

Another approach consists of inducing, from protdata, a
model describing (in a very summarized form) théadao that
new proteins can be classified by the modéis is the data min-
ing approach followed in this projectWVe emphasize that this
model-induction approach aims at complementing therathan
replacing — the conventional similarity-based appto In any
case, the model-induction approach followed in thisject has
two important advantages (Kirgg al., 2001). First, it can predict
the function of a new protein even in the abseric@quence simi-
larity between that protein and other proteins Wwitlbwn function.
Second, if the discovered model is expressed iangpeehensible
form (which is the case in this research, wherewfedge is ex-
pressed by intuitively comprehensible IF-THEN rylés can be
used by biologists, to give new insights and pdgsbggest new
biological experiments. Indeed, in this researah thles discov-
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ered by a data mining algorithm were not only awttoally
evaluated with respect to their predictive accuracgs usual in
data mining — but also manually interpreted in ¢batext of rele-
vant biochemical knowledge, in order to determioe linteresting
they were with respect to providing novel insightsinknown in
the current literature — about the relationshimeein some protein
sequence patterns and post-synaptic activity. Tiws-criteria
evaluation reinforces the inter-disciplinary natafethis project,
which is, of course, a desirable feature in a ligymatics project.

The remainder of this paper is organised as folld®exction 2
describes the target biological problem. Sectiode3cribes the
preparation of the data set for mining purposesusing protein
data available in UniProt/SwissProt and PrositectiSe 4 dis-
cusses the proposed data mining approach and thesponding
analysis of results. Finally, section 5 reports toaclusions and
future research directions.

2 THE TARGET BIOLOGICAL PROBLEM

In essence, postysnaptic sites represent pointeevame nerve cell
receives signals from another. As indicated in Hig.multiple
types of proteins are expected to be found at thitse for recep-
tion and propagation of signals, and for joining ttvo nerve cells
to each other. Note that Fig. 1 is a very minimahmary of the
types of proteins found in postsynaptic sites.

The bioinformatics problem being addressed in fi@iper is to
predict whether or not a protein has post-synagtidvity. This
problem is of great intrinsic interest because ginst with post-
synaptic activities are connected with functionofgthe nervous
system. Indeed, many proteins having post-synaaiiivity have
been functionally characterized by biochemical, imalogical
and proteomic exercises (see e.g. (Husl.,2000), (Walikoniset
al., 2000)), and are now extensively catalogued ambtated in
the Uniprot/SwissProt database. They representde wariety of
proteins with functions in extracellular signal eption and propa-
gation through intracellular apparatuses, cell aittme molecules
and scaffolding proteins that link them in a web.

The challenge is to automatically discover featwkproteins’
primary sequences that typically occur in proteiagh post-
synaptic activity but rarely (or never) occur inogins without
post-synaptic activity, and vice-versa. These disped features
constitute the essence of the knowledge discoveyesl data min-
ing algorithm. If the algorithm is successful irsctbvering knowl-
edge with a high predictive power, that knowledgae be used to
accurately discriminate between the two classegrofeins. In
addition, and most important, the fact that in thisject discov-
ered knowledge will be expressed in a comprehenddyin — as
mentioned in the Introduction — represents a pitiytvaluable
knowledge by itself, because it can potentiallyegiew insights to
biologists about which sequence features are pregliof post-
synaptic activity.

Pre-synaptic nerve ending
o O © o
O O 0 O

Synaptic vesicles

Post-synaptic nerve ending

Fig. 1: Main elements involved in presynaptic and postsy-
naptic activity A synapse is the point where two nerve cells
communicate with each other by transmission ofenibal
known as a neurotransmitter. The main elementsdfaon
synapses are shown in Figure 1. The cells aretbgkther
by cell adhesion molecules (1). In the cell whére signal
is coming from (the pre-synaptic cell) neurotrartsens are
stored in bags called synaptic vesicles. When tsgme to
be transmitted from the presynaptic cell to thet4sgsaptic
cell, synaptic vesicles fuse with the presynaptembrane
and release their contents into the synaptic bietfiveen the
cells. The transmitters then diffuse within theftclend
some of them meet a post-synaptic receptor (2)ctwiec-
ognises them as a signal. This activates the regephich
then transmits the signal on to other signallinghponents
such as voltage-gated ion channels (3), proteiadds (4)
and phosphatases (5). To ensure that the sigtehsnated
and to clear up residual neurotransmitters after dignal
has terminated, transporters (6) remove neurotrdtess
from the cleft. Within the post-synaptic cell, thignalling
apparatus is organised by various scaffolding pisté’).

3 METHODS

The goal of this project is to predict — with aalatining algorithm
— whether or not a protein has post-synaptic dgtifihe algorithm
is used to discover interesting relationships betwsequence fea-
tures that are often present in post-synaptic pretbut usually
absent in proteins without post-synaptic protearsj vice-versa.
Therefore, in order to discover this kind of knogde, we need
not only a set of post-synaptic proteins but alscoatrol set of
proteins which do not have post-synaptic activity.

In data mining terminology, the set of proteins hwipost-
synaptic activity is called the set of positive exdes, whereas the
control set of proteins (without post-synaptic wty) is called the
set of negative examples. The problem of findingusece fea-
tures that discriminate between these two kindgrofeins is then
cast as a classification problem, where the goab ipredict the
value of a class attribute for each example (pnpteased on a set
of predictor attributes for that example. The atasare whether or
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not a protein has post-synaptic activity, and tregljgtor attributes
are mainly Prosite patterns, as described below.

More precisely, the data set mined in this projeeis con-
structed in two phases. In the first phase we ollyedelected rele-
vant proteins from the UniProt database. UniPratiyersal Pro-
tein Resource) was created by the union of Swies-HrEMBL
and PIR databases, and is a repository for pratequence and
functional data (Uniprot, 2004). UniProt was chossrthe source
of the data to be mined because it is the worladsted non-
redundant, comprehensive protein sequence databaserot is
divided in 3 database layers: UniParc (UniProt Arejy UniProt
Knowledgebase (UniProt/SwissProt) and UniProt NRERiRef).
In this research we have used UniProt/SwissProictwis the
richest annotated layer. One of its great advastaf¢his layer is
the comprehensive annotation of SwissProt. Thiuiated to en-
sure minimal redundancy, accurate and comprehemsimetation
of function, expression, sequence features (egmath struc-
tures), literature references, links to other dasals, etc.

The second phase of data preparation used the flioks Unit-
Prot/SwissProt to the Prosite database, in ordegtt@ve informa-
tion from Prosite that was used to create the ptediattributes.
These two phases are described in detail next.

3.1 Phase 1: Selecting Positive and Negative Examples

Table 1 shows the queries submitted to UniProt/Siist in order
to select the set of positive examples (proteirth wost-synaptic
activity) and the set of negative examples (prateiithout post-
synaptic activity). For each query, the table shtvesspecification
of the query and the number of examples (proteieg)rned by
that query. The specification of each query cossigtkeywords
and the logical operator “NOT” (!).

Note that the queries did not specify any spedfecies, i.e.
proteins from all species were considered. This e in order
to maximize the number of examples in the dateetonned. Posi-
tive examples were selected not only by the presefiche key-
word “postsynaptic” but also by the absence of Kegword
“toxin”. The reason for this latter criterion isathseveral entries in
UniProt/SwissProt refer to the toxirtlatrotoxin. This protein acts
postsynaptically, but it is not, of course, a pgtaptic protein.

The selection of the negative examples was mofeuif since
of course the UniProt/SwissProt entries do not haweexplicit
“not postsynaptic” keyword. The trivial “solutiordf retrieving all
entries that do not explicitly have the keyword $tsynaptic” is
not satisfactory, for two reasons. First, this vdoptoduce a very
large number of negative examples, which would lehmarger
than the number of positive examples. This woukhts a data set
with an extremely unbalanced class distributiord &nwould be
very difficult for the classification algorithm wiscover rules that
correctly classify the positive (postsynaptic) slaSecond, and
most important, many of the negative examples wbeldtrivial”,
leading to uninteresting, trivial rules for the daigination be-
tween positive and negative examples. For instatiwre is no
need to discover rules discriminating plant pratefrom post-
synaptic proteins, since it is obvious that pladts not have a

nervous system. Hence, including plant proteinthéset of nega-
tive examples would only contribute to the discgvelr uninterest-
ing, trivial classification rules.

Table 1: Queries Submitted to UniProt/SwissProt to Createllata Set

Selection of Positive Examples
Query No. Query Specification # Examples
1 Postsynaptic !toxin 356
Total number of positive examples 356
Selection of Negative Examples
Query / Keywords # Examples
2 Heart !(result of query 1) 3106
3 Cardiac !(results of queries 1, 2) 331
4 Liver !(results of queries 1, 2, 3) 2794
5 Hepatic !(results of queries 1, 2, 3, 4) 256
6 Kidney !(results of query 1, 2, 3, 4, 5) 988
Total number of negative examples 7475

The goal is to select a set of negative example=raytalthough
the proteins do not have post-synaptic activitgytihave some
characteristics that could be confused with somé®tharacteris-
tics of post-synaptic proteins (the positive exaspl making it
difficult to discriminate between these two kindgpooteins. Intui-
tively, the higher the similarity between positiged negative ex-
amples, the harder the classification problem, smdhe stronger
the motivation to use a data mining algorithm tecdver interest-
ing classification rules representing novel knowledo a biolo-
gist. (Recall that the ultimate goal is to autowlty discover
interesting, novel rules that provide new insighbiologists about
which sequence features are most correlated wéhpthsence or
absence of post-synaptic activity.)

Note that, although the positive and negative exesnpnust
have enough similarity to lead to the discoverynédresting, non-
trivial rules, they also must be different enoughatiow the dis-
covery of reliable classification rules for eaclasd. Hence, the
challenge is to find a good trade-off between thesegoals.

In this spirit, the negative examples were seletiedising the
keywords “heart”, “cardiac”, “liver”, “hepatic” antkidney”. Con-
sider, for instance, the query 4 in Table 1: “LiWgesults of que-
ries 1, 2, 3)". This query means that all UniPreif&Prot entries
that had the keyword “liver” and were not alreadgliided in the
results of the previous queries (1, 2, 3) werecsetkas negative
examples. The latter selection criterion was nexgs® avoid the
possibility that two or more copies of the sameadattry — i.e., a
data entry having two or more of the above-mentickeywords —
were duplicated in the set of negative examples.

The previously-mentioned five keywords were chaagithe ba-
sis for obtaining negative examples for two reasdtisst, it is
known that, in general, proteins found in thesessito not present
post-synaptic activity. Second, proteins foundhiase sites often
have some characteristics similar to post-synaptiteins. Indeed,
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in the context of this project, many of the samgety of proteins
represented at postsynaptic sites (kinases/phasggsdthannels,
etc.) are present in abundance in heart, liverkigmky tissues.

It should be noted that the queries listed in Tdbsearched for
the corresponding keywords in all the fields of thni-
Prot/SwissProt entries. This means that the seleatriteria are
not perfect, since those keywords could be preisefi¢lds where
the presence of the keyword does not mean thairtitein has the
corresponding function/characteristic. This potahti introduces
some “noise” in the data set being mined. Howethes, was nec-
essary, because queries searching for keywords inrtlye field
“KEYWORD” of UniProt/SwissProt returned too few pems. In
any case, the amount of noise introduced by theifapt selection
criteria seems to be relatively small, since th&a daining algo-
rithm was able to discovery quite accurate classin rules, as
will be shown later.

3.2 Phase 2: Generating the Predictor Attributes

Once the set of examples to be mined has beertesiieom Uni-
prot/Swissprot, the next step was to generate efsgredictor
attributes representing relevant properties of éhpeoteins’ se-
quences. The predictor attributes must have a gwedictive
power and be easily interpretable by biologiststhis project we
have focused mainly on generating attributes basedProsite
patterns associated with the proteins — a typetobate satisfying
both the previously-mentioned properties. The Reosiatabase
stores significant patterns and profiles that helpidentify the
family of a new protein (Hul@t al, 2004). We decided to use
attributes based only on Prosite patterns, andPnasite profiles,
for two reasons. First, the matching between aiferpattern and a
protein can be exactly computed, producing a sirbpiary attrib-
ute — i.e., the pattern either occur or does notioin a given pro-
tein. This reduces the size of the search spacthéodata mining
algorithm and simplifies the interpretation of tlue by biologists.
By contrast, the matching between a Prosite prafilé a protein is
an approximate matching, and the data mining algoriwould
have to search in a correspondingly much largercheapace.
Second, the use of both patterns and profiles wimald to a very
large number of attributes, which would again iasetoo much
the size of the search space, and so would significincrease the
risk of overfitting the induced model to the ddtashould be noted
that, even considering only the binary attributesivetd from
Prosite patterns, this led to 443 attributes (aplagéxed next),
which corresponds to a huge search space of &%e 2

For each protein selected in phase 1 (regardleskeoprotein
being a positive or a negative example), we re¢deall Prosite
entry id’'s that occurred in the field Database sfBgferences
(DR) of UniProt/SwissProt. For each Prosite entty we “fol-
lowed the link” from UniProt/SwissProt to Prosit@, order to
access information about that Prosite entry. Ohisevtas done for
all proteins selected in phase 1, we had a largefserosite en-
tries. We then selected, to be used as predictiobwges, the en-
tries that:

a) were marked as a “pattern” in the ID line oftteatry in the
Prosite database;

b) were not commented (in the CC line of the Peodidtabase) as
very general patterns (/SKIP_FLAG = TRUE) — it weses-
sary to exclude those patterns because they appeémost
all proteins, and so are not useful to discrimireveen the
two classes of proteins;

¢) occurred in at least two proteins of the databséng mined —
this was necessary to remove extremely specifieipet, oc-
curring in just one protein of the data set, whichnot have
any generalisation power.

Finally, each of the selected Prosite patternsemasded as one
binary attribute of the data set being mined, tgkim the value
“yes” or “no” for each protein — indicating whether not the pat-
tern occurs in that protein, respectively.

Note that a few proteins in the data set to be chitid not have
any Prosite pattern, i.e., they had the value “fun”all predictor
attributes based on Prosite patterns. These psotegne removed
from the data to be mined.

In addition to the previously-described attributbased on
Prosite patterns, we added to the data set twolesimdictor
attributes derived directly from the proteins’ seqeces, namely the
sequence length and the molecular weight of theeproboth
attributes are available from the correspondinddgiein Uni-
Prot/SwissProt entries). Other kinds of attributél be consid-
ered in future research, but for now it is inteérestto note that
even the current set of predictor attributes isughoto discover
quite accurate classification rules, as will bevahdater.

Atfter all this data preparation process, we endedvith a data
set composed by 4303 examples (260 belonging toptsétive
class and 4043 belonging to the negative classydbdpredictor
attributes. These 445 attributes include 443 Rrogidtterns, the
sequence length and the molecular weight of eaateipr

4 RESULTS

In order to discover knowledge from the data setdbed in the
previous section, we have used the well-known Cdl&Rrule
induction algorithm (Quinlan, 1993). This algorithwas chosen as
the data mining algorithm in our experiments maibhBcause it
produces comprehensible knowledge, representedsky af high-
level, easily-interpretable classification rulestioé form: IF (con-
ditions) THEN (class). This kind of rule has théuitive meaning
that, if an example (protein) satisfies the coodii in the rule
antecedent, the example is assigned to the clasicted by the
rule consequent. It should be noted that the congmsbility of
discovered knowledge is a very important issueidginbbrmatics
(see e.g. (Mirkin and Ritter, 2000), (Clara and d<i2002), (Seb-
banet al, 2002)), because the discovered knowledge shoald
interpreted and validated by biologists, rathemtha&ing blindly
trusted as a “black box”.

We used the default parameters of C4.5Rules. Tdssification
rules discovered by C4.5Rules were evaluated airaprih two
criteria, namely predictive accuracy and interggtess to biolo-
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gists, as follows. Predictive accuracy was estichdig a well-
known 10-fold cross-validation procedure (WittendaRrank,
2002), as usual in data mining. In essence, thee skdtwas divided
into 10 partitions, with approximately the same bemof exam-
ples (proteins) in each partition. In the i-th dtéon, i=1,2,...,10,
the i-th partition was used as the test set andther 9 partitions
were temporarily merged and used as the trainingrseach itera-
tion C4.5Rules discovered a rule set from the imgiset and used
that rule set to classify examples in the test(saseen during
training), in order to evaluate the generalisatiility of discov-
ered knowledge. The classification accuracy ratdefdiscovered
rules can then be computed as the average acciatryver the
10 test sets, and this is the measure of predictoceiracy most
popular in the literature. In our experiments, fhisduced an accu-
racy rate of 97.85%.

It should be noted, however, that in the contexthig project
this traditional measure of accurate rate is nrg effective one.
The reason is that the class distribution is vergalanced: only
6.4% of the examples have the positive class. Haxea baseline
solution for this classification problem, the “mafp classifier” —
which predicts the majority (negative) class for etamples —
would trivially obtain an accuracy rate of 93.9%theut provid-
ing any insight about the relationship betweenpteslictor attrib-
utes and the classes.

Therefore, we use a more “demanding” measure dligiee
accuracy, for which a high value can be obtainely by accu-
rately classifying examples of both classes. Thasuee in ques-
tion is the productTrue Positive Rate (TPR) True Negative Rate
(TNR)(Hand, 1997). These terms (which are sometimesresféo
asSensitivityand Specificity respectively) are defined as follows.

TPR = TP /(TP + FN) TNR = TN/ (TN + FP), where:

TP = Number of true positives — i.e., the numbeexadmples that
were predicted as positive class by the discoveredset and
indeed have the positive class;

FN = Number of false negatives —i.e., the numtb@xamples that
were predicted as negative class but actually tlageposi-
tive class;

TN = Number of true negatives — i.e., the numbesxamples that
were predicted as negative class and indeed haveetative
class;

FP = Number of false positives — i.e., the numidexxamples that
were predicted as positive class but actually Hheenega-
tive class.

In our experiments the average values (over thiéet8tions of
the cross-validation procedure) of the TPR and TidfRe 0.85 and
0.98 respectively, resulting in the final measureredictive accu-

racy as TPRx TNR = 0.84 (with a standard deviation of 0.09).

Note that the baseline majority classifier obtaif$Rk x TNR = 0x
93.9 = 0, i.e., it is very strongly penalized (ashould be) for
never predicting the positive class.

It should also be noted that, although the vasbritgjof the
data mining literature focuses on measuring only pinedictive

accuracy of the discovered rules, the ultimate gbalata mining
is to discover knowledge that is comprehensible imeresting
(novel, unexpected) to the user (Fayyetdal., 1996), (Han and
Kamber, 2001). We emphasize that a very accurégenill not be
useful to the user if it represents a previouslgvn pattern. Con-
sider, for instance, the following hypothetical exde. In a hospi-
tal's medical database a data mining algorithm @¢aliscover the
rule: IF (patient is pregnant) THEN (patient’'s gends female).
This rule is extremely accurate, but it is also ptetely useless,
since it represents an obvious pattern. As a realdnexample of
the difficult of discovering novel, unexpected mjlgTsumoto,
2000) reports that, in experiments with two medaata sets, less
than 1% of the discovered rules were found to lerésting or
unexpected to medical experts.

Taking into account our ultimate goal of discovgrimovel, un-
expected rules, the rules discovered by C4.5Ruées also manu-
ally evaluated with respect to how surprising they, by compari-
son with current biochemical knowledge in the arba.other
words, the goal of this evaluation is to determihe extent to
which the discovered rules represent novel, undrge&nowl-
edge, leading to novel insights about which Propdéerns are
most strongly associated with the presence or @kseh post-
synaptic activity in proteins.

In order to perform this evaluation, we need toviegt Fig. 1.
Most of the types of proteins shown in Fig. 1 —eal§ (1)—(7) in
that figure — contain signatures within its seqeetitat can be
recognised in specific Prosite patterns. The owbeption is pro-
tein type (3), voltage-gated ion channels, for Whibere is no
Prosite pattern. For each of the other proteingypalevant Prosite
patterns include:

(1) CADHERIN_1; (2) NEUROTR_ION_CHANNEL; (4)
PROTEIN_KINASE_ST; (5) SER_THR_PHOSPHATASE; (6)
NA_DICARBOXYL_SYMP_1, 43 _KD_POSTSYNAPTIC; (7)
GUANYLATE_KINASE_1.

Since these are all expected, a particularly ssimgirule would be
one whose conditions (in the “IF part” of the rulejerred to other
Prosite patterns, which are considered unrelateébetgresence or
absence of post-synaptic activity. A rule couldoate surprising
even if it referred only to the above mentionedgrast, as long as
the rule referred to an unexpected combinatiomade patterns.

Table 2 shows the complete set of discovered riNese that
several discovered rules are “expected”, reprasgntiell-known
patterns, and therefore not useful for a biologigiert in the field.
For instance, Rule 32 is a typical example of gueeted rule:

32: IF (NEUROTR_ION_CHANNEL = yes) THEN (class = yes)

Rule 32 reflects the abundance of ligand-gatedciwennels (a
type of neurotransmitter receptor that includes artgmt gluta-
mate, serotonin and acetylcholine receptors) atypaptic sites
(protein type 2 in Fig. 1). This rule has an accyraf 99.2%,
which confirms our earlier remark that a rule canviery accurate
but useless to the user, when the rule is pretiyool like this
one. (The accuracy of a rule is essentially meashyethe condi-
tional probability of the rule consequent given thke antecedent.
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In other words, it is computed as the number ofrglas satisfy-
ing both the antecedent and the consequent ofutbedivided by
the number of examples satisfying the antecedenthefrule.)
Other strongly expected rules include: Rule 19 t@girotype 1 in
Fig. 1); Rules 29 and 34 (protein type 7 in Fig.Ryle 35 (protein
type 6 in Fig. 1).

Table 2: Rules discovered by C4.5Rules

Id Classification rule

4 IF (C1Q = no) AND (PPTA = no) AND
(GUANYLATE_KINASE_1 = no) AND

(LIPASE_SER = no) AND (CARBOXYLESTERASE_B_2 = no)

AND (SER_THR_PHOSPHATASE = no)

AND (NA_DICARBOXYL_SYMP_1= no)

AND (43_KD_POSTSYNAPTIC = no) AND (DYNAMIN = no)

AND (A4_EXTRA = no) AND (CADHERIN_1 = no)

AND (NEUROTR_ION_CHANNEL = no)

AND (G_PROTEIN_RECEP_F1_1 = no)

AND (G_PROTEIN_RECEP_F3_1 = no)

THEN (class = no)

32 IF (NEUROTR_ION_CHANNEL = yes) THEN (class = yes

16 IF (NEUROTR_ION_CHANNEL = no) AND (seq_length 818)
THEN (class = no)

19 IF (CADHERIN_1 = yes) AND (920 < seq_length <G25)
THEN (class = yes)

20 IF (seqg_length > 1025) THEN (class = no)

29 IF (GUANYLATE_KINASE_1 = yes) AND (78928 < mol_eigth
<=113386)
THEN (class = yes)

(default rule) IF (protein does not satisfy anytted above rules)
THEN (class = no)

34 IF (43_KD_POSTSYNAPTIC = yes) THEN (class = yes)

35 | IF (NA_DICARBOXYL_SYMP_1 = yes) THEN (class =s)e

8 IF (CARBOXYLESTERASE_B_2 = yes) AND (seq_lengti328)
THEN (class = yes)

33 IF (DYNAMIN = yes) THEN (class = yes)

6 IF (LIPASE_SER = yes) AND (seq_length > 699)
THEN (class = yes)

10 IF (G_PROTEIN_RECEP_F1_1 =yes)
AND (11287 < mol_weigth <= 14398)
THEN (class = yes)

14 IF (C1Q = yes) AND (seq_length <= 194) THEN ¢cl& yes)

23 IF (A4_EXTRA =yes) AND (BPTI_KUNITZ_1 = no)
THEN (class = yes)

26 IF (PPTA =yes) AND (G_PROTEIN_RECEP_F2_1 = no)
AND (seq_length > 895)
THEN (class = yes)

17 IF (SER_THR_PHOSPHATASE = yes) AND (seq_leng8i8)
THEN (class= yes)

21 | IF (G_PROTEIN_RECEP_F3_1 = yes)
AND (mol_weight <= 114180) THEN (class = yes)

2 IF (C1Q = no) AND (EGF_1 = no)

AND (GUANYLATE_KINASE_1 = no)
AND (LIPASE_SER = no)

AND (CARBOXYLESTERASE_B_2 =no)
AND (SER_THR_PHOSPHATASE = no)
AND (NA_DICARBOXYL_SYMP_1= no)
AND (43_KD_POSTSYNAPTIC = no) AND (DYNAMIN = no)
AND (A4_EXTRA = no)

AND (NEUROTR_ION_CHANNEL = no)
AND (G_PROTEIN_RECEP_F1_1 = no)
AND (seg_length <= 895)

THEN (class = no)

7 IF (C1Q = no) AND (GUANYLATE_KINASE_1 = no)
AND (SER_THR_PHOSPHATASE = no)

AND (NA_DICARBOXYL_SYMP_1= no)

AND (KD_POSTSYNAPTIC = no) AND (A4_EXTRA = no)
AND (NEUROTR_ION_CHANNEL = no)

AND (G_PROTEIN_RECEP_F1_1 = no)

AND (seq_length <= 828)

THEN (class = no)

12 IF (SER_THR_PHOSPHATASE = no)
AND (43_KD_POSTSYNAPTIC = no)
AND (NEUROTR_ION_CHANNEL = no)
AND (307 < seq_length <= 437)

THEN (class = no)

Some rules that might be expected were not disedvéry
C4.5Rules. For example, several other ion chanfseish as in-
wardly rectifying K+ channels) are associated wpthstsynaptic
structures. However, the Prosite database — ewemlthit is one of
the most comprehensive databases of its type —mistesontain a
signature for these channels, so this represelitsitation of the
predictor attributes that we have chosen to geaémathis project.

Some expected rules have a very limited accuracparticular
Rule 17 (IF (SER_THR_PHOSPHATASE = yes) AND
(seq_length > 318) THEN (class= yes)), with accurac31.4%
and Rule 21 (IF (G_PROTEIN_RECEP_F3_1 = yes) AND
(mol_weight <= 114180) THEN (class = yes)), alsthvéccuracy
= 31.4%. The low accuracy of these two rules cofraa the fact
that ser/thr phosphatases and G-protein couplezbtexs are ex-
pressed in every human cell, and not just postysicsly.

The unexpected rules are much more complicatedthieyt are
very surprisingly accurate. Therefore, in genelayt represent
interesting knowledge to biologists who are expartspost-
synaptic proteins.

For exampleRule 7 states that if 8 specific Prosite signatures
are absent, then the protein is not post-synaptic 99.8% accu-
racy. Similarly,Rule 2 states the same thing with 12 Prosite signa-
tures. These rules could not have been pred&tedori with just
biological knowledge. WhaRules 2 and7 do is to take a number
of Prosite signatures that appear in individuaptoted’ rules and
combine them in a way that says that, when nonthaxfe signa-
tures are present, then the proteins are not pagitig. This has
real utility in classifying novel proteins, excladi them from the
postsynaptic class.

In order to better understand those rules, we raisieved, from
the data set being mined, the proteins which aceions to each
of those rules — i.e., proteins that satisfy theditions in the rule
antecedent but have a class different from thepoedicted by the
rule consequent. These exceptions are quite rexgeali

An exception toRule 7 is the SPOCK protein (Uniprot:
TIC1_MOUSE). This is an extracellular matrix (ECptptein that
is associated with the postsynaptic area of pyrahmdurons. The
signatures irRule 7 are membrane-associated or cytoplasmic; thus
they do not cover this extracellular matrix protelihe synaptic
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cleft is rather poor in ECM proteins, so most otB€&M proteins
(collagen etc.) are accurately included in thigrul

Rule 2 has some interesting exceptions, and agartspto limi-
tations in the method used to generate the predittobutes. The
protein b-Raf is a protein kinase that is ubiqustom animal tis-
sues, and has a role in mitogenic signalling. &l$® found in syn-
aptic structures. In neurons, it is thought to bet pf the system
that responds to growth factors such as NGF. kganse it is not
classically part of the system that responds tarateansmitters,
but rather has a role in development and maintenahthe nerv-
ous system. B-raf from human and mouse (Uniprotiemt
BRAF_HUMAN and BRAF_MOUSE) are exceptions to rule 2
This exception reflects both the ubiquity of b-Rafl the fact that
it represents the nature of the signalling pathwiaigsinvolved in.

5 CONCLUSIONS

This paper proposed a data mining approach to geneompre-
hensible rules that predict whether or not a proteas post-
synaptic activity, based on Prosite patterns ogayi(or not) in the
protein, as well as on a couple of simple proteipprties com-
puted directly from the protein’s primary sequerfpamely the
sequence length and the molecular weight of thiejorp

The discovered rules were evaluated with respetioth their
predictive accuracy and their degree of surpris#sgn(unexpect-
edness) to the user. The discovered rules weresumgessful with
respect to predictive accuracy. The main contrilsutf this paper,
however, is the analysis of the rules with respedheir surpris-
ingess. Although this is a very important issuel@ta mining (as
discussed earlier), and particularly crucial in toatext of scien-
tific discovery, this issue is largely ignored imtwually all the lit-
erature about prediction of protein function froegsence.

From a biological perspective, the discovered ralesrall re-
veal interesting features of this approach to ngirfimctional data
from Uniprot/SwissProt. A number of expected ruisurately
predict some aspects of postsynaptic function. Othies (unex-
pectedly) can exclude postsynaptic function wittomishing accu-
racy. Still other rules indicate the limitation thiis approach. The
lack of voltage-gated ion channel Prosite pattéreiated to type 3
proteins in the notation of Fig. 1) reflects lintitens in Prosite:
future approaches to this problem will need to @ersthis. In the
future we also plan to generate a more diversefsptedictor at-
tributes, capturing information about other reldvproperties of
protein sequences.

A direction for future research would be to estindte “inter-
estingness” of the discovered rules by using soate-driven rule
interestingness measures proposed in the literaftien we would
be able to automatically rank the discovered r@esording to
those interestingness measures, and present ggetauthe user in
decreasing order of estimated interestingness. Wadcalso
measure the correlation between the value of thizde-driven
interestingness measures and the subjective, mézdest of the
rules to a biologist. This would allow us to evatuaow effective
those data-driven interestingness measures ateeiganse of be-

ing good estimators of the real human interesténrtiles. It would
also be interesting to analyze the rules discovéneather data
mining algorithms.
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