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ABSTRACT 

Motivation 

G protein-coupled receptors (GPCRs) play an important role in 
many physiological systems by transducing an extracellular signal 
into an intracellular response. Over 50% of all marketed drugs are 
targeted towards a GPCR. There is considerable interest in de-
veloping an algorithm that could effectively predict the function of 
a GPCR from its primary sequence. Such an algorithm is useful 
not only in identifying novel GPCR sequences but in characteris-
ing the interrelationships between known GPCRs. 

Results 

An alignment-free approach to GPCR classification has been 
developed using techniques drawn from data mining and proteo-
chemometrics. A dataset of over 8,000 sequences was con-
structed to train the algorithm. This represents one of the largest 
GPCR datasets currently available. A predictive algorithm was 
developed based upon the simplest reasonable numerical repre-
sentation of the protein’s physicochemical properties. A selective 
top-down approach was developed which used a classifier to 
assign sequences to subdivisions within the GPCR hierarchy.  
The predictive performance of the algorithm was assessed 
against several standard data mining classifiers and further vali-
dated against Support Vector Machine-based GPCR prediction 
servers. The selective top-down approach achieves significantly 
higher accuracy than standard data mining methods in almost all 
cases.  
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1 INTRODUCTION  

1.1 The G Protein-Coupled Receptors 
The G protein-coupled receptors (GPCR) are composed of a 
diverse range of integral membrane proteins that regulate many 
important physiological functions (Christopoulos et al., 2002; 
Gether et al., 2002; Bissantz, 2002). GPCRs control and/or af-
fect processes as diverse as neurotransmission, cellular metabo-
lism, secretion, cellular differentiation and inflammatory re-
sponses (Hebert et al., 1998). The binding of a ligand on the cell 
surface causes the GPCR to become active, and subsequently 
bind and activate ubiquitous guanine nucleotide-binding regula-
tory (G) proteins within the cytosol. An extremely heterogene-
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ous set of molecules can act as GPCR ligands including ions, 
hormones, neurotransmitters, peptides and proteins. The GPCRs 
are a common target for therapeutic drugs and approximately 
50% of all marketed drugs target GPCRs (Flower, 1999; Kla-
bunde et al., 2006). In spite of their functional and sequence 
diversity, there are certain structural features common to all 
GPCRs. All GPCRs contain seven highly conserved transmem-
brane segments. The sequences also contain three extracellular 
loops (EL1-3), three intracellular loops (IL1-3) as well as the 
protein N and C termini. The transmembrane segments form 
seven α-helices in a flattened two-layer structure known as the 
transmembrane bundle, a structure seen in all GPCRs (Milligan, 
2006). The GPCRs shows a far greater conservation with regard 
to the three-dimensional structure than to the primary sequence.  
The diversity of the GPCRs means it is difficult to develop a 
comprehensive classification system for all of the GPCR sub-
types (Davies et al., 2007). One of the first GPCR classification 
systems was introduced by Kolakowski for the now defunct 
GCRDb database (Kolakowski, 1994). GPCRs were divided into 
seven groups, designated A-F and O, derived from original stan-
dard similarity searches. This system was further developed for 
the GPCRDB database (Horn et al., 2003), which divides the 
GPCRs into six classes. These are the Class A Rhodopsin-like, 
which account for over 80% of all GPCRs in humans, Class B 
Secretin-like, Class C Metabotropic glutamate receptors, Class 
D Pheromone receptors, Class E cAMP receptors and the Class 
F Frizzled/smoothened family. There are at least 286 human 
non-olfactory Class A receptors, the majority of which bind 
peptides, biogenic amines or lipid-like substances (Fridmanis et 
al., 2006). Class B receptors bind large peptides such as secretin, 
parathyroid hormone, glucagon, calcitonin, vasoactive intestinal 
peptide and pituitary adenylyl cyclase activating protein (Car-
doso et al., 2006). Class C Metabotropic glutamate receptors 
(mGluRs) are a type of glutamate receptor that are activated 
through an indirect metabotropic process (Das et al., 2006). 
There are two other GPCR families that are considerably 
smaller. Class D is composed of pheromone receptors, which are 
used for chemical communication (Nakagawa et al., 2005) while 
Class E, the cAMP receptors, form part of the chemotactic sig-
nalling system of slime molds (Prabhu et al., 2006). There is 
also an additional minor class, the Frizzled/Smoothened recep-
tors, which are necessary for Wnt binding and the mediation of 
hedgehog signalling, a key regulator of animal development 
(Foord et al., 2002). The six different classes can be further 
divided into sub-families and sub-subfamilies based upon the 
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function of a GPCR and the specific ligand to which it binds. In 
this paper, the following terminology is used to describe the 
classification of GPCR sequences. The six major GPCR families 
are termed 'Classes', the secondary level of classification is 
termed 'Sub-families' and the third level of classification is 
termed 'Sub-subfamilies'. Not all human GPCRs can be effec-
tively classified using this system, there are approximately 60 
“orphan” GPCRs that show the sequence properties of Class A 
Rhodopsin-like receptors yet have no defined ligands or func-
tions (Gloriam et al., 2005). It is possible that many of these 
orphan receptors have ligand-independent properties, for exam-
ple, the regulation of ligand-binding GPCRs on the cell surface. 
 

1.2 GPCR Prediction Servers 
 
Previous attempts at predicting the function of a GPCR from its 
primary sequence, and therefore its position within a given hier-
archical system, have included motif-based classification tools 
(Attwood, 2001; Flower et al., 2002) and machine learning 
methods such as Hidden Markov Models (Wistrand et al., 2006). 
These approaches have applications not only in discovering and 
characterising novel protein sequences but also in better under-
standing relationships between known GPCRs. The majority of 
predictive techniques, however, have used Support Vector Ma-
chines (SVMs) (Karchin et al., 2002), machine-learning algo-
rithms based on statistical learning theory. In two-class prob-
lems, a SVM maps the input vectors (data points representing 
protein descriptions) into a higher dimensional feature space and 
then constructs the optimal hyperplane to separate the classes, 
while avoiding overfitting. This is a powerful form of classifica-
tion because, although it is linear in the higher dimensional fea-
ture, it is non-linear in the original attribute space of the input 
vectors. The optimal hyperplane is the one with a maximum 
distance to the closest data point from each of the two classes. 
The distance is called the margin, and the optimal hyperplane is 
called the maximal margin hyperplane. The input vectors closest 
to the optimal hyperplane are called the support vectors. Al-
though SVM are more commonly used to solve 2-class prob-
lems, this technique can be applied to the classification of GPCR 
data by successively trying to classify one class against all oth-
ers (Karchin et al., 2002). 
Several publicly available SVM-based GPCR classifiers exist. 
PRED-GPCR (http://athina.biol.uoa.gr/bioinformatics/PRED-
GPCR/) (Papasaikas et al., 2004; Guo et al., 2005) was devel-
oped as a fast fourier transform with SVMs on the basis of the 
hydrophobicity of the amino acid sequence. Quantitative de-
scriptions of the proteins relating to hydrophobicity, bulk and 
electronic properties were derived from the hydrophobicity 
model, composition-polarity-volume (c-p-v) model and the elec-
tron-ion interaction potential (EIIP) model. Three different hy-
drophobicity scales - the Kyte-Doolittle Hydrophobicity 
(KDHΦ), Mandell Hydrophobicity (MHΦ) and Fauchére Hy-
drophobicity (FHΦ) - were used. The sequences are trans-
formed, first, into numerical representations of the sequence 
based upon the EIIP values and, second, into the frequency do-
main using the discrete Fourier transform, a method by which 
sequences of different length can be normalised. The output of 
these transformations is used as the input for the SVM. In the 
case of an n-class classification problem, where n > 2, as is the 
case for the GPCR families, each ith SVM, i=1,…,n, is trained. 
When using the FHΦ hydrophobicity scale, the technique 

achieved a reported accuracy of 93.3% and a Matthew’s correla-
tion coefficient of 0.95. However, the range of accuracies be-
tween the subfamilies varied between 66.7 and 100% (Papasai-
kas et al., 2004). 
GPCRPred is another SVM-based classifier that determines 
whether a sequence is or is not a GPCR; if it is a GPCR, to 
which class it belongs; and then, if it is a Class A protein, to 
which subfamily it belongs (Bhasin et al., 2004). The vectors are 
based upon the dipeptide composition, whereby each of the 400 
possible pairs of amino acids is associated with a vector compo-
nent representing the percentage of the primary sequence con-
sisting of that pair. Again, the one-vs-rest SVM is used to char-
acterise each Class and subfamily. The program was reported as 
having a 99.5% predictive accuracy at the GPCR vs non-GPCR 
level, 97.3% accuracy at the Class level and 85% accuracy at the 
subfamily level. A third server, GPCRsclass (Bhasin et al., 
2005), concentrates on the Class A aminergic receptor subfam-
ily. In the first round of analysis, an SVM is generated to distin-
guish amines from all other GPCRs. Then multiclass SVMs are 
set up to classify amines into the acetylcholine, adrenoreceptor, 
dopamine and serotonin subgroups. The SVM requires patterns 
of fixed length for training and testing. The sequences are trans-
formed to fixed length format by measuring the amino acid and 
dipeptide compositions, giving vectors of 20 and 400 dimen-
sions, respectively. The dipeptide composition has proved to be 
far more reliable than the amino acid, scoring 99.7% accuracy at 
discriminating amine from non-GPCRs and 92% accuracy at 
discriminating between the four sub-subfamilies. A similar 
method involving amino acid, dipeptide and tripeptide composi-
tions (Guo et al., 2006) claimed 98% accuracy at the Class level. 
GPCRsclass gave 94% accuracy at the Class level when tested 
with the same dataset.  
Here, a new selective top-down approach using a hierarchical 
classifier is applied to GPCR classification. The technique was 
validated, first, against standard data mining classifiers and, 
second, against several SVM-based GPCR predictive servers. 

2 METHODS 

2.1 GPCR DATASET (GDS) 
In order to develop an effective algorithm for the classification 
of GPCR sequences, it was necessary to build as large and com-
prehensive a dataset of GPCR sequences as possible with which 
to train and test the classifier. Protein sequences for the dataset 
were identified using the Entrez search and retrieval system 
(Wheeler et al., 2007). The system searches protein databases 
such as SwissProt, PIR, PRF, PDB, as well as translations from 
annotated coding regions in DNA databases, such as GenBank 
and RefSeq. Text-based searching was used to identify all se-
quences within each sub-subfamily of the hierarchy. These com-
posite groups were then used to build each GPCR sub-family 
and Class level dataset. The datasets contain only human protein 
sequences, with the exception of Class D proteins, which are 
found only in fungi and Class E, which are found in Dictyos-
telium. All proteins shorter than 280 amino acids in length were 
removed in order to eliminate incomplete protein sequences, and 
all identical sequences within the dataset were removed to avoid 
redundancy. This left 8354 protein sequences in 5 classes at the 
family level (A-E), 40 classes at the sub-family level, and 108 
classes at the sub-subfamily level. Class F was not considered as 
it contains too few sequences from which to develop an accurate 
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classification algorithm (this class has also been excluded from 
the PRED-GPCR and GPCRPred predictive programs). For the 
sake of convenience, this dataset will be referred to as the GDS 
(GPCR Data Set).  

2.2 Sequence Representation 
 
Rather than using the primary sequence to perform the classifi-
cation, the system uses an alternative form of protein data repre-
sentation. Alignment-independent classification systems use the 
physiochemical properties of amino acids to determine differ-
ences between protein sequences. Proteochemometrics is a tech-
nique whereby 5 “z-values” (z1-z5) are derived from 26 real 
physiochemical properties through the application of principal 
component analysis (Sandberg et al., 1998, Lapinsh et al., 
2002). The z1 value accounts for the amino acid’s lipophilicity, 
the z2 values account for steric properties, such as bulk and 
polarisability, and the z3 value describes the polarity of the 
amino acid. The electronic components of the amino acids are 
described by the z4 and z5 values. These five values are calcu-
lated for each amino acid in the sequence, generating a matrix 
that provides a purely numerical description of the protein’s 
character. Several sequences in the GDS contain non-standard 
amino acid codes that are not present in the table of z-values. In 
such cases, the following substitutions were made. Where the 
sequence contained a ‘B’ (either an asparagine or aspartic acid) 
the residue was assigned as an asparagine ‘N’. Where the se-
quence contained a ‘Z’ (i.e. either a glutamine or a glutamic 
acid), the residue was assigned as a glutamine ‘Q’. Where the 
sequence contained a ‘U’, indicating selenocysteine, the se-
quence was changed to cysteine ‘C’. All unknown residues ‘X’ 
were given as alanines ‘A’. 
The data mining algorithms used cannot cope with variable 
numbers of predictor attributes. It is therefore essential to nor-
malise these values such that each protein is described by a set 
number of predictor attributes. Normalisation of sequences has 
previously been carried out using Auto Cross Covariance (ACC) 
(Wold et al., 1993). In previous work (Secker et al., 2007) we 
described a normalization method where the arithmetic mean for 
each z value is computed over the whole protein. This was found 
to retain predictive accuracy while significantly reducing proc-
essing time and storage requirements, compared to ACC. For 
each attribute (z-value) x, the mean value for that attribute x  is 
the mean of the values of that attribute in a  protein over all 
amino acids (a) where the total number of amino acids in the 
protein is represented as N.  
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The equation above is therefore applied five times, once for each 
attribute, where each attribute corresponds to a z-value. 
In this investigation, we use an augmented version of this attrib-
ute creation method. In this case, 15 attributes are used to de-
scribe each protein. Five are created as described above but in 
addition to this, five more are created from the N-terminus of the 
protein while a further five are created using the C-terminus. 
The termini of a GPCR protein have the ability to be powerful 
predictors of function since the ends of the GPCR will be in-
volved in either intracellular or extracellular binding. Therefore, 
in the case of the N-terminus, the means for each of the five z-

values are computed for only the first 150 amino acids while in 
the case of the C-terminus, the means over the last 150 amino 
acids are determined. In reality, the actual lengths of the N and 
C-termini will vary between GPCRs; the value of 150 amino 
acids was found, in controlled experiments, to give in the largest 
improvement in predictive accuracy. 
 

2.3 Classification Algorithm 
 
In order for the algorithm to be effective, it must be able to pre-
dict protein function based on an established classification sys-
tem for the GPCRs. The GPCRDB database suggests a workable 
hierarchy for GPCR sequences and so it is the one used by GDS 
(although alternative hierarchies exist, such as the GRAFS Clas-
sification system (Schiöth et al., 2005)). In the data mining lit-
erature, there exists a range of strategies for predicting hierarchi-
cal classes (Freitas et al., 2007). The simplest is to flatten the 
dataset to the most specific level of the hierarchy, then use one 
of the plethora of standard classification algorithms to predict to 
what class each sequence belongs. However, this strategy does 
not take advantage of the information implicit in the class struc-
ture. An alternative is the so-called “big bang” approach, which 
uses a single, and typically complex, hierarchical classification 
algorithm. In the test phase, each example may be assigned to 
one class at each level of the hierarchy by one single application 
of the learned model. Perhaps due to its complexity, implemen-
tations of such an approach are scarce, although such a model 
has been used to predict gene function in Saccharomyces Cere-
visiae (Claire et al., 2003). 
A middle ground between these two strategies is the top-down 
approach, where the hierarchical classification process is con-
verted into a number of flat classification problems that may be 
solved independently by running a standard classifier for each 
(Freitas et al., 2007; Costa et al., 2007). The advantage with this 
strategy over the others is, as is the case with flat classification, 
no special classifier must be written to perform the task (other 
than the scaffolding required to support a classifier tree). The 
structure of the tree aids the classifier and reduces the number of 
classes that must be considered at the most specific level (see 
Figure 1).  
The standard top-down approach proceeds as follows. Given, for 
example, the class tree in Figure 1 (a), a tree of classifiers is 
built to reflect the structure of the classes, as shown in Figure 1 
(b). Thus a tree of classifiers is generated such that the output of 
one classifier constitutes the input for another. To train the clas-
sifiers in the hierarchy, all data in the training set is used to train 
the root classifier while only the relevant subsets of data are 
used to train at the levels of the subfamily and the sub-
subfamily. When an unknown sequence is presented to the clas-
sifier tree, the root level classifier will assign it a class then pass 
it down to the appropriate classifier at the next level until the 
sequence is assigned to a subfamily and a sub-subfamily.  
A novel version of the top-down approach was developed and 
used as the chosen strategy for classifying the GDS. The top-
down approach takes advantage of the hypothesis that some 
characteristics may be important to discern between two protein 
subsets at one classification level while being less important at 
another. The top-down approach exploits this, as any classifier 
in the tree is trained using only data instances of the classes they 
are required to classify between. In the standard top-down ap-
proach the same classification algorithm is used in each node in 
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the class tree. It is, however, possible that different classifiers 
may be more suited to different nodes in the class tree and that 
therefore the classification accuracy may be increased by using 
different algorithms in the classifier hierarchy. Importantly, 
these classifiers are selected in a data-driven manner using train-
ing data. This is referred to as the selective top-down approach. 
 

 

 

Figure 1. Example of a hierarchical dataset (a) and how that hierarchy 
may be reflected in a tree of classifiers (b) ready for a top-down ap-
proach to classification. 

The selective top-down approach generates a tree of classifiers 
in a similar manner to the standard top-down approach but with 
some additional stages during training.. At each node, the train-
ing data for that node is split into sub-training and validation 
sets, with data instances being assigned randomly. A number of 
different classifiers are then trained using this sub-training data 
and tested using the validation set. The classifier that yields the 
highest classification accuracy in the validation set is selected as 
the classifier for this node in the class tree. The sub-training and 
validation sets are then merged to produce the original training 
set (for that node), and the selected classifier is then re-trained. 
Eight standard classification techniques were used (Witten et al., 
2005). These were the Naïve Bayes method, a Bayesian net-
work, an SVM (Keerthi et al., 2001), nearest neighbour (using 
Euclidean distance), a decision list (Frank et al., 2007), J48 (a 
decision tree algorithm much like C4.5), a Naïve Bayes tree (a 
decision tree with a naïve Bayes classifier at each node), AIRS2 
(a classifier based on the Artificial Immune System paradigm 
(Watkins et al., 2004)) and a conjunctive rule learner. This list 
of classifiers was carefully chosen to include a wide range of 
paradigms. All code was written using the WEKA data mining 
package (Brownlee, 2006) and the default parameters were used 
for each algorithm. 
 

3 RESULTS 
Two separate studies were undertaken to assess the quality of 
the selective top-down technique. The first (Section 3.1) was to 

compare the effectiveness of the approach in comparison with 
the standard top-down technique. The second (Section 3.2) tests 
the accuracy of the algorithm in comparison with three publicly 
available GPCR classifiers and tests it against datasets that have 
been used to train the three servers. Where accuracies are re-
ported for each level, the accuracy is computed as the percentage 
of correct classifications at that level. 
 

3.1 Cross-validation experiments 
In order to compare the quality of the selective top-down classi-
fier, it was tested on the prepared GDS dataset. All experiments 
were carried out using a 10-fold cross-validation method. As 
data instances are added randomly to each fold, each test was 
repeated 30 times and the mean values are reported. Whilst data 
instances were randomly assigned to folds, care was taken to 
ensure that at least one instance of each class was present in each 
fold. For this reason the decision was taken that any class con-
taining fewer than 10 examples was discarded for this test. This 
left 87 classes at sub-subfamily level, 38 at the sub-family level 
and 5 classes at the family level. In total, 8222 proteins remained 
in the dataset. When training the selective top-down classifier, 
each of the 9 classifiers was trained using 80% of the training 
data (sub-training set) available to that node, and evaluated us-
ing the remaining 20% (validation set). 
To validate the algorithm, results for a standard top-down ap-
proach are shown for each classifier that the selective top-down 
algorithm has a choice between. A value denoting the signifi-
cance of the difference between the accuracy of the selective 
approach and each particular algorithm was computed using the 
corrected resampled t-test (Witten et al., 2005). This test at-
tempts to eliminate the issues encountered when a standard t-test 
is used over multiple runs of a cross-validation procedure. In 
Table 1, a shaded cell indicates that the corresponding accuracy 
value of the selective top-down classifier is significantly greater 
than the shaded value. The significance threshold was set at 1% 
and a 2-tailed test was used.  
The results show that the novel selective top-down approach 
compares favourably with the standard top-down approach and 
in almost all cases surpasses these established data mining tech-
niques. The nearest neighbour classifier was the classifier pre-
dominantly chosen by the selective approach at the top level and 
as such it is no surprise that there is no statistically significant 
difference between the nearest neighbour classifier at this level. 
One disadvantage of the top-down approach (both the selective 
and standard types) is that any example misclassified at one 
level has no possibility of being correctly classified at deeper 
levels and therefore misclassifications can be seen to accrue as 
the level depth increases.  

Table 1: Predictive accuracy (%) of the selective top-down 
technique at each level compared against several standard classi-
fiers. A shaded cell indicates that the corresponding accuracy 
value of the selective top-down classifier is significantly greater 
than the shaded value. 

Level Family Sub-family 
Sub-sub-
family 

Selective top-down 95.87% 80.77% 69.98% 
Naïve Bayes 77.29% 52.60% 36.66% 
Bayesian Network 85.54% 64.27% 50.69% 

 
All data 

A B
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Root Classifier 

A class 
classifier 

B class 
classifier 
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SMO 80.21% 56.67% 35.96% 
Nearest Neighbour 95.87% 78.68% 69.40% 
PART 93.27% 78.73% 65.68% 
J48 92.93% 77.49% 64.30% 
Naïve Bayesian Tree 93.07% 76.92% 64.78% 
AIRS2 91.98% 74.58% 62.68% 
Conjunctive Rules 76.19% 49.93% 16.49% 
 

3.2 Empirical comparison with GPCR classification 
servers 

While there is evidence that the novel selective top-down ap-
proach may lead to better classification accuracy compared with 
standard top-down classifiers, it is important to validate the 
novel approach by testing with other datasets and against other 
classifiers specific for GPCR prediction. The PRED-GPCR, 
GPCRpred and GPCRsclass servers, all three of which are pub-
licly available, were selected for this purpose. Additionally, the 
datasets that were used to train and test the three servers were 
kindly supplied by their authors. The GPCRPred dataset is com-
posed of 1008 Class A sequences, 56 Class B, 16 Class C, 11 
Class D and 3 Class E, making a total of 1096 sequences. The 
PRED-GPCR program was trained using 403 sequences from 17 
sub-families from GPCR Classes B, C, D and F. GPCRsclass 
dataset is composed of four amine sub-subfamilies, 31 Acetyl-
choline sequences, 44 Adrenoreceptors, 38 Dopamine and 54 
Serotonin, making a total of 167 sequences. For a full assess-
ment of the technique, it was necessary to run all of the datasets 
against the developed algorithm and the three servers. 
For this test, the selective top-down classifier was trained using 
the full GDS dataset (8354 protein sequences) then tested using 
each of the GPCR server datasets as test data. This simulates the 
situation in which the selective top-down approach, trained with 
the GDS dataset, could be deployed as a public server. The pre-
dictive accuracy at each level of the hierarchy is shown in Table 
2. A separate sub-table is displayed for each dataset so the qual-
ity of the classification can be directly compared between each 
server. In the experiments, every classification method has been 
tested using every dataset and the resultant classification accura-
cies are presented. For the sake of completeness, each sub-table 
includes the instances where a method has been tested using its 
own dataset although it is acknowledged that these values are of 
limited use has been trained and tested using the same data. 
Rows in the table where this occurs have been italicised, as the 
figures contained in this row will represent results heavily biased 
in favour of that particular classifier. 
The selective top-down approach generally exceeds PRED-
GPCR at the Class level and is comparable at the Sub-family 
level. Both the selective top-down and PRED-GPCR are shown 
to be notably better than GPCRPred at all levels of the hierar-
chy. GPCRsclass was the most successful classifier at the most 
specific level but this is likely to be due to the fact that the clas-
sifier can only be applied at the sub-subfamily level and is there-
fore highly specialised. The other classifiers, however, have to 
classify at all three levels and in the case of the selective top-
down classifier, accuracy at the sub-subfamily level will suffer 
from misclassification at the Class and Subfamily stage.  
 
 
 

Table 2. Benchmark results of the GPCR datasets comparing 
the GPCR servers against the Selective Top-down Approach. 

GDS dataset    
Server Class Sub-family Sub-sub-family 
Selective top-down 99.6% 91.8% 87.0% 
PRED-GPCR 73.2% 72.2% 67.6% 
GPCRpred 64.7% 46.1% - 
GPCRsclass - - 94.0% 
    
PRED-GPCR dataset    
Server Class Sub-family Sub-sub-family 
Selective top-down 96.3% 85.7% 76.6% 
PRED-GPCR 95.1% 95.1% 94.5% 
GPCRpred 70.1% 55.6% - 

GPCRsclass - - 83.0% 

    
GPCRpred dataset    
Server Class Sub-family Sub-sub-family 
Selective top-down 92.1% 76.2% 57.8% 
PRED-GPCR 80.7% 73.8% 59.9% 
GPCRpred 87.2% 67.1% - 
GPCRsclass - - 100.0% 
    
GPCRSCLASS dataset    
Server Class Sub-family Sub-sub-family 
Selective top-down 100.0% 82.3% 78.1% 
PRED-GPCR 100.0% 100.0% 92.8% 
GPCRpred 65.2% 59.7% - 
GPCRsclass - - 82% 

 
 

4 CONCLUSION 
 
The classification of GPCR sequences has proven difficult for 
conventional bioinformatics classification approaches such as 
sequence similarity or the identification of specific motifs. How-
ever, the structural and functional consistency of GPCR proteins 
suggests that there is an overall conservation of certain key 
properties that are necessary to maintain the transmembrane 
bundle that characterises the group. The effectiveness of proteo-
chemometrics for this type of analysis has already been demon-
strated by previous research. However, this is the first time an 
alignment-free approach has been used on a dataset of this size. 
A straightforward representation was used that was a develop-
ment over previously published work. While it appeared to work 
well, we expect that other more complex representations will be 
necessary as the work is extended to other problems in bioin-
formatics. The advantages of the selective top-down approach 
over standard (“flat” classification) data mining techniques and 
the current GPCR servers is clearly demonstrated by the accura-
cies achieved. It demonstrates that each stage of the classifica-
tion problem is dependent on unique criteria. 
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Any supervised learning (classification) algorithm has intrinsic 
limitations. For example, a classification model constructed 
from a particular training set will only have good predictive 
accuracy on a test set if that set has the same (or at least similar) 
probability distribution to the training set. If an unusual class 
distribution in the training set was used to build a classification 
model, it is unlikely that the model would have a very high pre-
dictive accuracy if applied to a large set of GPCR sequences 
with a more usual class distribution. Both PRED-GPCR and 
GPCRPred struggled to accommodate the full diversity of the 
GDS, while the selective top-down approach proved to be 
adaptable to both a generalised dataset (PRED-GPCR) and a 
specialised one (GPCRsclass). 
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