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ABSTRACT 

Motivation 

There is much interest in reducing the complexity inherent in the 
representation of the twenty standard amino acids within bioin-
formatics algorithms by developing a so-called reduced alphabet. 
Although there is no universally-applicable residue grouping, there 
are numerous physiochemical criteria upon which one can base 
groupings. Local descriptors are a form of alignment-free analysis, 
the efficiency of which is dependent upon the correct selection of 
amino acid groupings. 

Results 

Within the context of G-protein coupled receptor (GPCR) classifi-
cation, an optimisation algorithm was developed able to identify 
the most efficient grouping when used to generate local descrip-
tors. The algorithm was inspired by the relatively new computa-
tional intelligence paradigm of Artificial Immune Systems. A num-
ber of amino acid groupings produced by this algorithm were 
evaluated with respect to their ability to generate local descriptors 
capable of providing an accurate classification algorithm for 
GPCRs. 
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1 INTRODUCTION 
The twenty standard amino acids can be grouped or classified 
using a wide variety of distinct criteria, since each amino acid 
side chain possesses many different attributes. From an evolu-
tionary perspective, it can be assumed that the presence of 
twenty different residues confers a selective advantage upon 
organisms, one that provides sufficient variety to build func-
tional proteins without overcomplicating the transcription of 
proteins from RNA. It is also possible that proteins were once 
created from a much smaller set of amino acids. Research into 
amino acid evolution suggests the abiotic environment may have 
contained many hydrophobic and charged amino acids but few 
polar residues (Matthews and Moser 1967; López et al., 2007). 
Studies into proteins containing predominantly the residues ly-
sine, alanine and isoleucine suggested that is possible to gener-
ate stable structures based purely on hydrophobic and electro-
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static interactions, provided the protein is stabilised by a Gly-
Gly-Tyr C terminus. Moreover, a reduced alphabet is capable of 
reproducing complex protein structures experimentally (Luthra 
et al., 2007). The Baker group produced a S3 fold using only 
five amino acids (Riddle et al., 1997) (Ile-Ala-Glu-Lys-Gly) 
while Stroud et al. generated a 108 residue protein with a four-
helix bundle using only seven different amino acids (Schafmeis-
ter et al., 1997). 
 
Presumably, the greater diversity of amino acids has been in-
strumental in allowing larger and more intricate protein struc-
tures to evolve. However, from a computational viewpoint, there 
are significant advantages in reducing the number of amino ac-
ids within a representation. It is more computationally efficient 
to deal with a smaller number of variables than 20. Moreover, by 
grouping amino acids into a reduced alphabet, and thus minimis-
ing noise, a more accurate protein sequence representation may 
be created. The grouping may allow conserved structural and 
functional properties to be identified that are independent of 
specific motifs. Thus, reduced alphabet approaches have a wide 
range of potential applications within bioinformatics. 
 
Determining accurate amino acid groupings is extremely diffi-
cult due to the astronomically large number of possible ways to 
group twenty objects. The actual number of groupings can be 
calculated using Stirling Numbers of the Second Kind (Luthra et 
al., 2007). There are approximately 5.172 x 1013 possible group-
ings that can be formed from 20 amino acids. Numerous group-
ings have been proposed based on the biochemical properties of 
the amino acids. An obvious grouping separates hydrophilic and 
hydrophobic residues, as these are fundamental to the behaviour 
of amino acids in solution (Melo and Marti-Renom et al., 2006). 
Other obvious groups include acidic residues (Glu and Asp), the 
basic residues (Lys and Arg) and the alcohols (Ser and Thr). 
Other residues present properties seemingly unique amongst 
amino acids (Li et al., 2007): cysteine, which forms disulphide 
bonds; proline, which forms a bond with its own side chain; and 
glycine, which is much more flexible than other residues. 
 
Dayhoff’s substitution matrix was perhaps the first systematic 
attempt at grouping. It measured the tendency of one amino acid 
to be replaced by another (Dayhoff et al., 1978a). Taylor later 
combined information from substitution matrices with physico-
chemical properties to derive amino acid groupings (Taylor 
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1986). More recently, Wang & Wang (1999) classified amino 
acids using a Miyazawa-Jernigan-like matrix to obtain reduced 
alphabets based on inter-group energetic interactions. Jing and 
Wei (2007), who undertook sequence alignment of reduced al-
phabets, and Li et al. (2003) used both alignment scoring and 
substitution matrices within a Monte Carlo approach to obtain 
the best grouping. Cannata et al. (2002) used the BLOSUM and 
PAM substitution matrices to evaluate all possible simplified 
alphabets using a “branch and bound” algorithm.  
 
A principle focus of bioinformatics is the identification and clas-
sification of protein structure and function from primary se-
quence. The GPCR superfamily is a large and diverse multigene 
superfamily of integral membrane proteins that perform many 
important physiological functions (Christopoulos and Kenakin 
2002; Gether et al., 2002; Bissantz 2003). Approximately 50% 
of marketed drugs target GPCRs and they are themselves a com-
mon target for virtual screening (Flower 1999). Previous work 
using reduced alphabets to classify GPCRs used functional (four 
letter), hydrophobic (two letter), chemical (eight letter) and 
structural (three letter) alphabets to represent their sequences and 
developed motifs based upon such representations (Gangal and 
Kumar 2007). The reduced alphabet motifs were shown to per-
form as accurately as PROSITE (Hulo et al., 2006) and PRINTS 
(Attwood et al., 2002, Flower and Attwood 2004). Structure is 
better conserved than sequence within the GPCR superfamily, 
thus alignment-free approaches have often been more effective 
at classification than techniques based solely on sequence simi-
larity (Davies et al., 2007a; Davies et al., 2007b). Local descrip-
tors are an alignment-free approach (Cui et al., 2007; Zhang et 
al., 2007) used previously to classify several protein families. 
The effectiveness of techniques using local descriptors depends 
largely on the underlying amino acid grouping. Thus accuracy 
should improve if the grouping is optimised. Research on re-
duced alphabets has shown that the number of different group-
ings is very high and it is impractical to determine which is best 
a priori. To overcome this, we have optimised amino acid 
groupings, used for local descriptor-based GPCR classification, 
by improving the quality of the solution over and above the use 
of pre-defined groupings. This paper proposes optimising the 
groups in a data driven manner, using a procedure for the opti-
misation of amino acid grouping based on Artificial Immune 
Systems, a relatively new computational intelligence paradigm 
for optimisation and machine learning/data mining. The advan-
tage of such an optimiser is that a classifier may be used to 
gauge the quality of a solution or solutions at each stage during 
optimisation. Optimisation of the representation (groupings) is 
guided by the classification algorithm used during final testing. 
Therefore, the representation will exploit any bias in that classi-
fier to improve the prediction. 
 
 

 

Figure 1: The 10 descriptor regions (A-J) for a theoretical protein se-
quence of 16 amino acids. Adapted from Zhang et al. (unpublished). The 
regions A-J are determined by firstly dividing the entire sequence into 
four equal regions (A-D) and then two equal regions (E-F). G represents 
the central 50% of the sequence, while H the first 75%, I the final 75% 
and J the central 75%. 

2 METHODS 

2.1 GPCR Classification 
In order to develop an effective algorithm for GPCR sequence 
classification, it was necessary to build a large and comprehen-
sive dataset of GPCR sequences with which to train and test the 
classifier. Protein sequences were identified using the Entrez 
search and retrieval system. The system searches protein data-
bases such as SwissProt, PIR, PRF, PDB, as well as translations 
from annotated coding regions in DNA databases, such as Gen-
Bank and RefSeq. Text-based searching identified all sequences 
within each sub-subfamily of the hierarchy. These composite 
groups were then used to build each GPCR sub-family and Class 
level dataset. Sequences shorter than 280 amino acids were ex-
cluded to eliminate incomplete protein sequences, and all identi-
cal sequences within the dataset were removed to avoid redun-
dancy. This left 8354 protein sequences in 5 classes at the family 
level (A-E). Class F was not considered as it contains too few 
sequences from which to develop an accurate classification algo-
rithm.  

2.2 Local Descriptors 

In developing their local-descriptors technique, Cui et al. (2007) 
divided the amino acids into three functional groups: hydropho-
bic (CVLIMFW), neutral (GASTPHY), and polar (RKEDQN), 
as suggested by Chothia and Finkelstein et al. (1990). The varia-
tion of these groups within a sequence is the basis of the three 
local descriptors: composition (C), transition (T), and distribu-
tion (D). C is the proportion of amino acids with a particular 
property (such as hydrophobicity). T is the frequency with 
which amino acids with one property are followed by amino 
acids with a different property. D measures the chain length 
within which the first, 25%, 50%, 75% and 100% of the amino 
acids of a particular property are located. Given that the amino 
acids are divided into three groups in this instance, the calcula-
tion of the C, T and D descriptors generates 21 attributes in total 
(3 for C, 3 for T and 15 for D). While this technique would be 
valid if applied over the whole amino acid sequence, Zhang et 
al. (2005) split the amino acid sequences into 10 overlapping 
regions in order to better capture epitope binding patterns (see 
Figure 1). For sequences A-D and E-F there may be cases where 
the sequence cannot be divided exactly, in which case each sub-
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sequence may be extended by one residue. Each descriptor - C, 
T, and D - is calculated over the 10 subsequences, resulting in 
210 features describing the protein. For such a representation, 
we need not define a specialised data mining (classification) 
algorithm, as the protein can be represented by 210 numerical 
attributes. Thus, predictions can be made using any of the many 
suitable, well-documented classification algorithms with little or 
no modification. 

2.3 Optimiser 
The opt-aiNet algorithm (de Castro and Von Zuben 2001; An-
drews and Timmis 2005; Timmis and Edmonds 2004) was used 
to optimise groupings. Opt-aiNet belongs to a class of algo-
rithms known as Artificial Immune Systems (AIS) (de Castro 
and Timmis 2002a; de Castro and Timmis 2002b). The artificial 
immune system that has been used (opt-aiNET) has previously 
been benchmarked against other evolutionary algorithms, such 
as genetic algorithms, and has been found to be very competi-
tive. Such immune algorithms are either population-based 
(where every individual in the population encode potential solu-
tion) or network-based (where individuals again encode poten-
tial solution but interact via some form of simulation and/or 
suppression). The algorithm is evolutionary in nature and uses a 
selective pressure applied to the whole population of candidate 
solutions to the groupings. This has the effect, over many gen-
erations, of improving the average quality of the population. The 
algorithm uses a combination of the clonal selection principle 
and idiotypic network theory to drive the optimisation process. 
A population of individuals (artificial immune cells) is generated 
where each member encodes a grouping scheme for the 20 
amino acids.  
 
5 amino acids are assigned to 3 groups. Each position in a cell’s 
string represents an amino acid; the value at that position repre-
sents the group ID to which the amino acid is assigned. During 
initialisation of the algorithm, each member of the population is 
initialised by placing random values in each position in the arti-
ficial immune cell, thus generating random groupings of amino 
acids. The quality of each cell is assessed, each cell is then 
cloned and mutated with a rate inversely proportional to their 
parent’s (and therefore their) quality. The better the solution that 
the cell encodes, the fewer positions that are mutated. When all 
the cells in the population have been cloned and mutated, a 
small number of poorly performing cells are discarded through a 
process of suppression and interaction between the cells, which 
replaces them in the population with an equal number of ran-
domly generated cells. The injection of randomly configured 
cells discourages premature convergence on a local optimum. 

 

2.4 Fitness function 
Several procedures are required to assess the representation as 
encoded by the cell. The groupings defined by a cell must be 
translated from that cell’s representation. The groups are then 
used as described above (Local Descriptors section) to create 
numerical attributes for every protein within the dataset. A data-
set was produced consisting of 70n predictor attributes (where n 
is the number of groups defined by the cell). This dataset (the 
training data) was then split into two further sets, sub-training 
and validation sets, in the ratio 80%/20%. A classification algo-
rithm was trained on the sub-training data and tested using the 

validation data. The quality of the cell is the percentage predic-
tive accuracy output by the classifier on the validation data. 
Since each cell encodes a different set of groups, creating a new 
training set from the encoded groupings and then training and 
testing the classifier must be repeated for fitness evaluation. 
 

2.5 Protocol 
A Naïve Bayes classification algorithm from the WEKA data 
mining toolkit (Witten and Frank 2005) provided the fitness 
function, along with several auxiliary functions regarding data 
manipulation. Naïve Bayes was chosen as the classifier for the 
evaluation function of the optimiser mainly because it is compu-
tationally fast, which is an important consideration given the 
very time-consuming nature of the optimisation process.The 
optimiser was run 10 times and the output recorded. Each run 
was one single fold of a 10-fold cross validation test over the 
entire dataset. To reduce the probability of overfitting and re-
duce computing time, for each fold the number of training items 
was reduced randomly to half its size. A balance must be struck 
between optimising the representation using the training data 
rather than optimising for the training data. In the original opt-
aiNet, the algorithm terminates when there is no improvement 
beyond a population threshold between successive iterations. As 
the present problem is more complex, several iterations could 
pass without improvement, and so the system was terminated 
after a specified number of iterations. The opt-aiNet optimiser is 
run for a total of 50 generations, using a population size of 20 
individuals (artificial cells). The parameters of the algorithm are 
shown in Table 1. 
 
Number of initial cells in the network 20 
Number of clones generated for each network cell 20 
Maximum number of algorithm iterations 50 
Suppression threshold for network cell affinities 0.5 
Max number of groups 16 

 

Table 1: Defined parameters for the opt-aiNet optimiser 

While the algorithm could form groups using any combination 
of amino acids, a total of 16 groups was enforced: this allowed 
fair comparison with the seeded groupings, as defined below. 
Moreover, enforcing such a maximum is a compromise between 
the time needed for fitness evaluation as the number of groups 
and predictor attributes increases and not constraining the sys-
tem so that it produces sub-optimal groupings. Preliminary tests 
showed that groupings that performed well rarely contained 
more than 12 groups, thus 16 was a safe threshold. 
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Groupings 
Groups 

No. Reference 
CMFILVWY AGTSNQDEHRKP 2 Li et al.  
CMFILVWY AGTSP NQDEHRK 3 Li et al.  
CMFWY ILV AGTS NQDEHRKP 4 Li et al. 
FWYH MILV CATSP G NQDERK 5 Li et al.  
FWYH MILV CATS P G NQDERK 6 Li et al.  
 CFYWMLIV GPATSNHQEDRK 2 Li et al. 
CFYWMLIV GPATS NHQEDRK 3 Li et al. 
CFYW MLIV GPATS NHQEDRK 4 Li et al. 
CFYW MLIV G PATS NHQEDRK 5 Li et al.  
CFYW MLIV G P ATS NHQEDRK 6 Li et al. 

ARNDCQEGHKPST ILMFWVY 2 Cannata et al. 
ARNDQEGHKPST C ILMFWVY 3 Cannata et al. 
ARNDQEGHKPST C ILMFVY W 4 Cannata et al. 
AGPST RNDQEHK C ILMFVY 4 Cannata et al. 

AGPST RNDQEK H C ILMFVY W 6 Cannata et al. 
A RK N D C Q E G H IV LM F P 

ST W Y 16 Cannata et al. 
AS RK N D C Q E G H IV LM F P 

T W Y 16 Cannata et al. 
A R K N D C Q E G H IV LM FY P 

ST W 16 Cannata et al. 
AST R K N D C Q E G H IV LM F 

P W Y 16 Cannata et al. 
A R K N D C QE G H IV LM F P 

ST W Y 16 Cannata et al. 
 
 
Table 2: The set of optimised amino acid groupings from Li et al 2003 

and Cannata et al 2002 that were used to initiate the Seeded grouping 
simulations. 

Two sets of tests were run. The first used previously determined 
groupings from Li et al. (2003) and Cannata et al. (2002), which 
reduced the amino acid alphabet from 20 to a range of 2-16 al-
lowing a wide range of initial pre-defined groupings to be repre-
sented. This population began as biologically-grounded group-
ing schemes rather than random groupings; however, the algo-
rithm was free to change these groupings in a data-driven man-
ner. These are the “seeded” groupings. The second used a ran-
domly initialised population as is usual in AIS; these are the 
“random” groupings. For the seeded population, the initial 
groupings are displayed in Table 2: each row represents the 
seeded grouping of one of the 20 artificial cells in the popula-
tion. The original opt-aiNet algorithm injected randomly config-
ured cells at each step to maintain population diversity. This was 
removed here, as they were incompatible with the notion of 
seeding. This has the added advantage that the final population 
will contain cells descended from an initial cell. As such, it is 
possible to interrogate the final population to determine how the 
initial groupings changed during optimisation. The experimental 
protocol and algorithm parameters were kept constant between 
the two sets of tests.  
 

3 RESULTS 
 

The overall accuracies of the simulation are shown in Figure 2 
and tended to vary between 87-90% accuracy at the GPCR Class 
level. The accuracy from the “seeded” experiment is show to be 
slightly superior to that of the random grouping and this is main-
tained throughtout subsequent iterations. Previous work using 
amino acid composition at the basis of local descriptors had 
shown an accuracy of 56% at the class level, proving the local 
descriptors provide a significantly stronger basis for the repre-
sentation of protein sequences. 
 

Graphs of classification accuracy at the Class level for Random and Seeded Groupings
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Figure 2. Graphs of classification accuracy at the Class level of the 

course of grouping optimization for the Seeded and Random popula-
tions 

 
 
For the seeded experiment, the 20 suggested groupings were 
assessed before mutation occurred so that the initial favoured 
grouping was always the same grouping of 16, which pairs 
glutamine and glutamtic acid (QE), isoleucine and valine (IV), 
leucine and methionine (LM) and serine and threonine (ST). 
These groupings represent a relatively minor reduction of the 
alphabet. Subsequent iterations generated final groupings con-
taining 6 to 11 individual groups. This represents a more sub-
stantial alphabet reduction (see Table 3). The initial population 
contained between 2 and 16 but individuals representing fewer 
than 5 or more than 14 groups are quickly lost, suggesting that 7 
to 11 groups is optimal. Variation in the mean group size during 
optimisation is shown in Figure 2a-b. On average, the number of 
groups per cell is slightly higher for the random simulation, but 
this may result from the initial random groupings vary from 8 to 
14, so that weak groupings are eliminated quickly. The number 
of groups and the quality of the cells has a tendency to stabilise 
during the final stages of optimisation. However, the random set 
has a significant tendency to produce higher numbers of groups 
throughout the simulation (see Figure 3). 
 
Although optimisation was driven by the accuracy of Naïve 
Bayes, it is noteworthy that the 1-Nearest Neighbour algorithm 
obtained a higher accuracy. One explanation for this is that Na-
ïve Bayes assumes that predictor attributes are independent from 
each other and conditioned on the class to be predicted; in the 
present case this assumption is violated. Indeed there is consid-
erable redundancy in the attributes derived from the local de-
scriptors. For example, there is considerable overlap between the 
10 different regions used to produce the local descriptors; see 
Figure 1.  
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Figure 3a-b. Graphs of mean grouping population against time step of 

simulation for Seeded (top figure) and Random (bottom figure) 
Grouping  

 
Final Groupings by 
Seeded Initialization 

Cross-
validation Fold 

Groups 
No. 

SQLGE DRP KT W HN 

C VIMAFY 1 7 
SDKQGAE RN WF H C 

PLVT IM Y 2 8 
SDPGATE RWHYN KQ 

C LVMF I 3 6 
SQMAE DRKN WHG C 

PT LVF I Y 4 8 
DKP SRGFNE WH C Q 

LVMAY I T 5 8 
SG DRK WH C PQAE 

LVIMTN F Y 6 8 
SGA DP RWHYN KE C 

Q LT IV MF 7 9 
SPGAT DRKQFYE WHN 

C LVM I 8 6 

SWGA DRHQYNE 

KLVIF C PM T 9 6 
SGE DP RWN KQ 

HLVIMFY C AT 10 7 

   

 
 
 

Final Groupings by 
Random Initialization 

Cross-
validation Fold 

Groups 
No. 

S DP RKQ WHN C 

LGAE VM I F Y T 1 11 
SG DRP KN WH C Q 

LYE VAT I M F 2 11 
SWQGN DRKE HY C P 

LVMAF I T 3 8 
SAE DL R KP WV HQ 

C GM IF YN T 4 11 
SG DKA RN WHQE C 

PM LVT IF Y 5 9 
S DRQ KPLYE WN H 

C V GI MAT F 6 10 
SD RW KVA HGN CT 

P QFE L IM Y 7 10 
SKA DRPQGE WN HF 

C L VY IM T 8 9 
SQ DLV RPE KIA 

WGM H C F T YN 9 9 
SG DVIA RQN KP 

WHY C LE MF T 10 9 
   

 
 
Table 3: Final amino acid groupings for the Seeded and Random Group-

ings 
 
Table 4: Matrix of the incidence of paired amino acids within the same 

group 
 
The average numbers of groups over all iterations and over all 
cells for the seeded and random groupings were 7.3 and 8.8 
respectively. Despite the higher average group size for the ran-
dom set, there is a clear tendency towards similar distributions. 
This is a hugely significant result: it suggests that the same fac-
tors drive the optimisation of groupings irrespective of the initial 
starting point. Most importantly, cysteine is put in its own group 
in all but one of the final groupings; see Figure 4. This may be 
because cysteine can form disulphide bonds, a unique property 
amongst residues and one which may be crucial for GPCR clas-
sification. Disulphide bonds stabilise GPCR structure and the 
formation of intermolecular bonds is believed to be crucial to 
receptor dimerisation and oligomerisation (Lee 2000). Moreover 
the GPCR Class B Secretin family has an N terminus of ~60–80 
amino acids containing conserved disulphide bonds which bind 
to the receptor’s large peptide hormone ligand (Fredriksson et 
al., 2003). Cysteine constitutes only 1.51% of amino acids in an 
average protein, suggesting that it has a disproportionate influ-
ence on protein structure and stability. No other residue is placed 
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within a single group for more than 40% of final groupings. 
However, isoleucine and threonine do form a single group in 7 
and 8 instances (out of 20). Although serine and threonine are 
small residues containing a hydroxyl group, there are only two 
incidences (out of 20) of them being paired. Isoleucine and leu-
cine are isomeric and hence have very similar physiochemical 
properties, yet both show a greater propensity to pair with 
valine, another medium sized hydrophobic residue, than with 
each other. 
 

Mean Number of Groups across 10 fold cross validation for 
Seeded and Random Initialisations

8

9

10

11

12

13

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration Number

N
um

be
r o

f G
ro

up
s

SEEDED
RANDOM

 
 
Figure 4: Mean number of groups (with error bars) across 10 fold cross 

validation for seeded and random initialisations. 
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Figure 5: Incidence of amino acid single groupings. Cysteine is consis-

tently grouped alone, suggesting its properties are more unique than 
the other side chains 

 
The most frequent pairings of residues are Ser/Gly, His/Trp and 
Leu/Val. Serine and glycine are likely to be grouped as both 
have small side chains with molecular weights less than 110. 
The only other similarly sized amino acid, alanine (molecular 
weight of 85), is often grouped with both residues. Leucine and 
valine are medium-sized hydrophobic amino acids, although 
valine has a slightly shorter side chain. Tryptophan and histidine 
are a less obvious pairing; tryptophan is a large hydrophobic 
residue while histidine can move between the protonated and 
unprotonated forms due to its pKa value of ~6.0. Although this 
is a unique property amongst amino acids, histidine is not as 

grouped singly as often as cysteine. What tryptophan and his-
tidine do share is the presence of a nitrogen-containing aromatic 
ring. Tryptophan contains an indole ring, while histidine con-
tains an imidazole ring. The other aromatics residues, phenyla-
lanine and tyrosine, do not contain a nitrogen-bearing ring. It is 
possible that this ring is a property shared only by the paired 
residues. In all cases, it seems likely that the pairing of these 
particular residues causes no significant loss of information to 
the representation of the protein sequence and may therefore be 
useful reductions of the amino acid alphabet in the context of 
protein classification and analysis. 

4 CONCLUSION 
 
Any rational grouping to form a reduced amino acid alphabet 
depends upon the relative importance given to each of their nu-
merous physiochemical properties. It seems unlikely that a sin-
gle universal grouping will be appropriate for all bioinformatics 
problems. Chothia and Finkelstein’s three-way grouping is a 
somewhat simplistic basis for local descriptor generation and 
there is no evidence that it is the best representation. The optimi-
sation algorithm proposed here suggests a larger number of 
groups would be necessary to fully represent amino acid diver-
sity and that the optimal number of groups will lie in the 7-11 
amino acid region.  
 
Conversely, larger numbers of groups are also not favoured by 
the optimiser. This suggests that, within the context of auto-
mated sequence classification, twenty residues will not necessar-
ily lead to optimal predictive accuracy. However, the prevalence 
of cysteine as a single grouping does suggest that certain resi-
dues display unique properties while others may be more readily 
paired. This is congruent with data suggesting that the 20 amino 
acid alphabet is redundant in a structural, if not in a functional, 
sense (Riddle et al., 1997; Schafmeister et al., 1997; Luthra et 
al., 2007). 
 
A key question is to what extent this result will hold for other 
protein data sets, involving very different protein proteins. It is 
clear that in trying to solve computationally expensive problems 
such as GPCR Classification there is considerable advantage in 
generating effective groupings of amino acids. In principle, our 
proposed optimisation methodology can optimise amino acid 
groupings for any protein grouping, allowing the customisation 
of groups so as to maximize predictive accuracy on the specific 
data being mined, rather than imposing a “one-size-fits-all” 
grouping of amino acids. It is important to stress that the process 
is essentially degenerate and that there are several equally effec-
tive groupings that could be applied to a specific problem. 
Equally, the optimised groupings are context dependent and a 
methodology derived for protein family will not provide the 
most appropriate groupings for another. We envisage that the 
nature of optimal groupings will vary from family to family, but 
to what extent higher order classification - membrane proteins 
versus globular versus disordered proteins, for example - will 
exhibit similar or different groupings remains to be seen. 
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A A                    
C 0 C                   
D 4 0 D                  
E 6 0 6 E                 
F 2 0 1 3 F                
G 6 0 3 7 1 G               
H 0 0 1 1 2 1 H              
I 3 0 2 0 5 1 1 I             
K 5 0 7 5 2 1 0 2 K            
L 3 0 2 5 5 2 1 3 2 L           
M 4 0 0 1 6 2 1 6 0 5 M          
N 0 0 2 2 1 3 7 1 2 1 1 N         
P 3 0 8 5 0 3 0 0 4 2 2 0 P        
Q 3 0 5 9 2 4 3 0 5 1 1 3 2 Q       
R 0 0 9 6 2 2 2 0 5 0 0 9 4 6 R      
S 8 0 3 6 1 12 0 0 2 1 1 2 2 5 1 S     
T 5 1 1 1 0 1 0 1 1 3 2 1 4 0 0 2 T    
V 6 0 2 0 6 0 1 6 2 10 8 1 1 0 0 0 3 V   
W 1 0 0 1 1 4 10 0 0 0 1 8 0 2 4 2 0 1 W   
Y 2 0 2 4 3 0 6 2 2 3 3 5 0 2 4 0 0 4 3 Y 

 
Table 4: Matrix of the incidence of paired amino acids within the same group 


