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ABSTRACT

Motivation: Cellular processes often hinge upon specific interactions
among proteins, and knowledge of these processes at a system level
constitutes a major goal of proteomics. In particular, a greater under-
standing of protein-protein interactions can be gained via a more
detailed investigation of the protein domain interactions that mediate
the interactions of proteins. Existing high throughput experimental
techniques assay protein-protein interactions, yet they do not provide
any direct information on the interactions among domains. Inferences
concerning the latter can be made by analysis of the domain com-
position of a set of proteins and their interaction map. This inference
problem is non-trivial, however, due to the high level of noise generally
present in experimental data concerning protein-protein interactions.
This noise leads to contradictions, i.e. the impossibility of having
a pattern of domain interactions compatible with the protein-protein
interaction map.

Results:

We formulate the problem prediction protein domain interactions
in a form that lends itself to the application of belief propagation, a
powerful algorithm for such inference problems, which is based on
message-passing. The input to our algorithm is an interaction map
among a set of proteins, and a set of domain assignments to the
relevant proteins. The output is a list of probabilities of interaction bet-
ween each pair of domains. Our method is able to effectively cope
with errors in the protein-protein interaction dataset and systema-
tically resolve contradictions. We applied the method to a dataset
concerning the budding yeast Saccharomyces cerevisiae and tested
the quality of our predictions by cross-validation on this dataset,
by comparison with existing computational predictions, and finally
with experimentally available domain interactions. Results compare
favourably to those by existing algorithms.

Availability: A C language implementation of the algorithm is availa-
ble upon request.
Contact: mi26@kent.ac.uk

1 INTRODUCTION

2001; Rualet al., 2005) and mass spectroscopy methods (Gavin
etal., 2002; Hoet al., 2002; Gaviret al., 2006; Krogaret al., 2003),
assay those interactions and the structure of complexes. Informa-
tion provided by these different techniques currently appears to be
largely complementary, as witnessed by the scanty overlap bet-
ween respective interaction maps (von Merigigal., 2005). The
weak overlap and the relatively high level of noise generally present
in the data call for extensive post-processing of the experimental
interaction data using computational methods, which constitute an
important and active area of research.

A major goal of computational approaches is to predict yet
unknown protein-protein interactions on the basis of currently
available information (Shoemaket al., 2007a,b; Valenci&t al.,
2002). A first approach to the problem employs one or more geno-
mic features related to the protein pairs as predictor attributes. For
example, Boclet al. (2001; 2003) developed a machine learning
system (Support Vector Machine) trained to recognise potential
interactions based on the primary structure and the associated
physico-chemical properties of the proteins. Another well-known
method is the so-called Rosetta Stone Method (Marcetttal.,
1999), which exploits the observation that some pairs of interac-
ting proteins have homologs in other organisms fused into a single
protein chain. Many methods use a single type of proxy to pre-
dict protein interactions, e.g, methods based on the similarity in
phylogenetic profiles (Galperin and Koonin, 2000), gene fusion
methods (Marcottet al., 1999; Enrightet al., 1999), co-evolution
of interacting partners (God al., 2000, 2002). Other methods inte-
grate different genomic features using a variety of machine learning
methods, see e.g. Yamanisdi al. (2004); Jansert al. (2003);
Rhodest al. (2005).

Information highly relevant to the prediction of protein-protein
interactions comes from their domain structures. This is quite sen-
sible, both evolutionarily and structurally, as domains are often
evolutionarily conserved sequence units and they constitute the
building blocks of protein structures, largely accounting for the
reciprocal interactions among the proteins to which they belong.
Namely, a pair of proteins is thought to physically interact if at least

Protein complexes and interactions are major players in cellular [if®"€ @mong their constituent domain pairs interacts. A vast majority
(Alberts, 1998; Eisenberg al., 2000). High-throughput experimen- of proteins in well-studied organisms liké cerevisiae are assi-

tal methods, such as yeast two-hybrid (Uettal., 2000; Itoet al.,

*to whom correspondence should be addressed

gned one or more domains and these data can be combined with
experimentally determined protein interaction datasets.
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A few methods have already been developed to use these comkiZ-

nations of data in order to predict domain interactionsgyrét al.,
2005; Denget al., 2002; Leeet al., 2006; Liet al., 2006; Sprinzak

METHODS

2.1 Belief Propagation Algorithm for Prediction of
Protein Domain I nteractions

et al., 2001). The strategy common to all these methods is to find

potential domain interactions from existing protein-pintinterac-
tion datasets and then exploit that information to predidtnown
protein-protein interactions. In other words, the ideaasirtfer
domain-domain interactions from protein-protein intéi@ts and
then use these inferred domain interactions to predict mésvac-
tions between proteins, given their domain structure. kample,

We consider a set aP proteins containing a number of domains (generally
different for eaclprotein) from a list of D possible typesI protein pairs are
known to interact and constitute the positive dataset butave no informa-
tion (worst possible case) as to which domains are driviegrteractions.

N protein pairs are known not to interact. Our goal is to inferinteraction
profiles among the domains, i.e. tell for a pair of domains tivaeor not

it interacts. The inference is based on the fact that twoepmet”; and P»

Sprinzaket al. (2001) developed an association method which findsineract if at least one of their domain pairs (one domairibging to P,

correlated sequence signatures (domains) occurringhtegatore
often than by chance. They used a log-odds measure to qutrsif
frequencies of occurrence of domains in interacting pnsteAno-
ther method developed by Demjal. (2002) uses the Maximum
Likelihood method to estimate domain-domain interactioobpbi-
lities consistent with protein interaction data in whickeyhoccur,
and also takes into account potential errors in the measmeof
protein-protein interactions. Leal. (2006) estimate domain inter-
action probabilities in a very similar way as Depgal. (2002),
but they consider more protein interaction data from défferorga-
nisms and also integrate other genomic features relatednihs

using a Bayesian approach. The Domain Pair Exclusion Aiglys

(DPEA) method (Rileyet al., 2005) extends the Maximum Like-
lihood formulation used by Dengt al. (2002) and also includes
protein interaction data from multiple organisms.

Our aim here is to show that the problem of predicting domain-

domain interactions from protein-protein interactionadaan be

the other taP) interact and are non-interacting otherwise.

Let us defines;;, a binary variable equal to unity if the two domains
andj interact and zero otherwise. The indiéemd; run over all possiblé>
domains and links are undirected, i.e. we ha4gD) +1) /2 independent’s.
Any a priori information on domain interactions can be exploited as arpri
on the value of the; ;. In its absence (worst possible case), we shall suppose
that all Boolean variables's have the samepriori probability 3 to be equal
to unity. The complementary probability for thes to vanish isl — 8 and a
compact expression for the two probabilities redds 8 + (25 — 1).

The likelihood (partition function;Z) for our system is defined to be
the sum over all states of the unknown variables) compatible with the
interaction map that we are handed as input:

z=73, Jla-B+0;52@8-1)x

{oij} (i3)
N
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recast in a form that lends to the application of Belief Propa Here, the indicep andq run over all pairs of proteins in the positive and
gation (BP), a very powerful and widely used inference metho negative dataset, respectively, while the indiegsandcq run over all the
(see MacKay (2000); Pearl (1998)). BP belongs to the class opairs of domains for each one of those protein pairs. In otfwds, if we

so-called message-passing algorithms as they share thexaom
feature of sending messages among neighbouring nodes gnahe
phical model of the system, until convergence is reachedzétk
2007). Convergence and exact inferences are rigoroushagtesed
when the underlying graphical model is loop-free. In thespree
of loops, convergence is not guaranteed; nonetheless itfivgas
observed (in the context of decoding) that convergencetdahaid
(Gallager, 1963), and similar observations have beenitadgie in a
number of other applications. A rationalization of thessebations
was recently obtained in Yedidéal. (2005), showing that BP solu-
tions, even in the presence of loops, extremize the soecBléghe
free energy. Furthermore, Chertkov and Chernyak (2006)stio
that the solutions obtained by Belief Propagation in thespnee
of loops contain enough information as to allevpriori the calcu-
lation of the exact result. Belief Propagation and mesgagsing
algorithms have proved their relevance in a wide range efrarfce
problems (Mezardt al, 2002; Yedidiaet al., 2005). A recent bio-
logical application is the clustering method developed tgyFand
Dueck (2007).

have two proteing®; and P, among the sel which interact, the index,
will run over all possible domain pairs composed of one dontelonging
to P; and the other td%. The Heavisid&-functions (defined as vanishing
if the argument of the function is zero and unity if the arguirie positive)
ensure the constraints stemming from the protein-protaieraction map.
Indeed, if two proteins interact, at least one of their domagdirs should
interact and the argument of the correspondirfignction should be positive.
Conversely, if two proteins belong to the non-interactia¢pdet, all domain
pairs should be non-interacting and the argument of th&inctions should
vanish.

Since experiments generally contain some noise, we shaldel into
account the possibility that information about proteiotpin interactions
that we are handed is not correct. As an extreme case, soors aefight
even lead to contradictions and to the impossibility of hgvany solution
for the observed interaction data, as shown in Fig. 1. A coievg way to
deal with this problem is to "soften” th&functions in the function nodes as

05(0) = {j oo @

if o > 0.

The parametee (which runs from zero to unity) represents the degree of
reliability of the interaction datasets available for tinéerence. Full trust

The paper is organized as to present first the Methods, whiclorresponds te = 0, while the most noisy case corresponds te- 1/2,

contain the specific formulation of the problem togetherwvitie
algorithm and its derivation. We shall then discuss appbos
to protein-protein interactions for the budding yeSsterevisiae,
followed by comparisons with existing methods and conolusi

when the interaction datum is irrelevafiig( = 1/2 irrespective of its argu-
ment). Values larger thah/2 correspond to the (rather unlikely) situation
when input data tend to contradict reality. In particutas= 1 corresponds
to the case when the data are systematically reversed.

To simplify notation and conform to those commonly employied
graphical models, we recast (1) in the general and compatt fo
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Fig. 1. A graphical illustration of a simple instance of protein af@nain
pair interactions. (a) shows the list of proteins togethigh ¥heir correspon-
ding domains. (b) gives the list of the interactions betwpestein pairs
and their graphical representation. In (c) we display tlofagraph corre-
sponding to the interactions in (b) where circles repref@tiomain pairs
(variable nodes) while squares and diamonds represenhté@cting and
non-interacting protein pairs (function nodes) respetyivThe’s on the
left represent the priors on the variables, chosen here tddugical for all
of the variables and controlled by the parameierinally, (d) presents a
simple example of pattern of interactions leading to a aafittion.

where the indeX runs over all possible domain pairs, the inderuns over
all proteins pairs present in the interaction datasets(positive and nega-
tive), 4. is the local evidence (polarization) for the variable nodgsand
fa denotes the so-called function nodes. The ensemble ofblesifo }
denote the set of all the variables; for the pair of proteinsy. A factor
graph representation (with protein and domain pairs agifumend variable
nodes respectively) of the model is illustrated in Fig. lolm case, the local
evidence is uniform, i.e. does not depend on the variable:nod

Yr(o) =(o) =1-B+0(28-1). 4)
Function nodes take two different forms depending on whetthe protein
pair belongs to the dataset of interacting or non-intemggpairs:
0 (Zﬁe{”}a o‘) interacting
1—-0 (Zoe{c}w O’)

Having recast the problem in the general form of graphicalets Belief
Propagation equations associated to (3) follow from tenitbderivations
(see, e.g. MacKay (2000) page 336):

fal{o}a) = { ®)

non interacting

Mai(on) xS fallote) I Myalow)®
{o}ta#oy k'e€{k}a#k
Mya(or) o Yi(or)  [[  Mar—ilon). 0
a’e{altp#a

might be run on graphs with loops and the quality of the resmitght

be assayed empirically (Fregt al., 1997). In this spirit, Belief Propaga-
tion (BP) has been successfully applied to many practicablpms with
loops (Gallager, 1963; Frest al., 1997; Yedidiaet al., 2002). A reason

for these successful applications on graphs with loops &as put forward

in (Yedidiaet al., 2002, 2005) showing that BP solutions are extrema of an
approximation to the original partition functidh of the model. The approxi-
mation toF' = —logZ is known as Bethe free energy and the one associated
to (3) takes the form:

F({ba},{bx}) = _Z Z ba In fo _ZZbkln’wk

a {o}ta k
30> balnba— > > (qk — 1) biInby, (8)
a {o}a k ok

Here,q;. denotes the number of function nodes which havekttie variable
as input. Thé'’s are beliefs for the probability distributions of indiwidl and
node variables, computed from the messages as follows :

ba({o}a) < fal{o}a) [] Mi—alow); ©)
ke{ota

bi(on) < b(on) [ Ma—r(on). (10)
ac{a}y

The proportionality signs indicate that beliefs should lmenmalized (in
agreement with the fact that they represent estimates ajinzrprobabi-
lity distributions). BP estimates are consistent underginatization, i.e.
Z{U}a;ﬁak ba ({o}a) = bi (o). This follows from (6) and (7).

To demonstrate that solutions of our BP equations indee@mite the
free energy (8) one can proceed as in (Yedigtial., 2005), introducing
Lagrange multipliers to enforce normalization of belief&deconsistency
under marginalization. The condition that derivativeswéspect td, and
b vanish is thus shown to coincide with equations (6) and (@}ails of the
derivation can be found in (Yedidgt al., 2005).

The Bethe free energy is extremely useful for our purposeseabave
two unknown parameters in our model (the prior paramgtand the noise
parameter). We shall then run BP equations to convergence and choose
the values of the parameteBsande that correspond to the minimum of the
Bethe free energy (maximum of the partition function).

Numerical implementation

Starting with initial values of unity for all of the messagege iterate the
BP equations (6 and 7) for given values @fand ¢ in equation (2). BP
iterations are stopped after the changes in all the messagebelow a
threshold, set equal td0—2. Results do not change if the threshold is
set smaller. In order to reach convergence, a standard erigddoyed to
reduce oscillations is to use a damping factoso that each message is
updated as\ times its value from previous iteration plds— X times its

current value. For example, the messad ’f,p(ak) is updated a§l —

N X (o3 usoy o (10re) Tlire gy en M., () + AMEY, (o)
(compare to (6)). After some numerical experiments, we etegamping
factor A = 0.5 in all the runs of the algorithm.

When iterations are run at very smallerrors in experimental data makes

Messages\,,_,, are sent from function to variable nodes, while messagesthat for some domain pairs no solution is found, i.e., bslafe all zero

My, ., are sentin the opposite direct@iThe proportionality sign is meant

to stress that, in the presence of loops, it is more appreptiawork with

normalized equations to increase stability and facilitatevergence. Messa-

ges are exchanged among nodes until convergence is reddteegartition
function Z is estimated as described in the next Section.

2.2 BetheFree Energy and Belief Propagation

As stated earlier, beliefs calculated by (6) and (7) aretewhen the under-
lying graph has no loops. Since message-update rules darectiyldepend
on the topology of the underlying graph, the iterative scb€6) and (7)

(or extremely small). On the other hand, these configuratame not very
interesting as they have a huge Bethe free energy. We therdézided to
circumvent this numerical problem by working with a smakt ponzerg

predefined precision dfo—19.

Prediction of protein-protein interactions

Predictions of domain-domain interactions can be exploite predict
protein-protein interactions. As an example of this apphoave performed a
cross-validation analysis on avalaible protein-protateractions. Knowing
the composition in domains of a protein pairthe probabilityPr., of their
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interaction is estimated from beliebgo; ;) of interaction between domains
1 andj as

o;ij€{c}ta

Pro=1- (1 =b(oij)) , (11)

where the ensemble of variabl¢s }. denotes the set of all domain pair
variabless;; for the pair of proteingy.

3 MATERIALS
Domain assignments

We obtained domain assignments $cerevisiaegenome from the SUPER-
FAMILY database (Gouglet al., 2001; Maderaet al., 2004) (web site
www.supfam.orly} This database is a library of HMMs modelling all pro-
teins of known structure. These models are used to annbegetjuence of
over50 genomes. FoB. cerevisiae, there exisB346 sequences with at least
one domain assignment, which is ab&% of total sequences. In total,
4681 domains are assigned and there @6 superfamily domains with at
least one assignment.

Positive | nter action Dataset

We obtained theS cerevisiae interaction dataset from DIP (Database of
Interacting Proteins) (Salwinslgt al., 2004; Xenariost al., 2002). We
obtained nearly5000 high confidence positive interactions from CORE,
which is a subset of the total number of reported proteinrattons in
DIP. Furthermore, since there are some proteins which dchae¢ any
significant domain assignment, we only kept those proteinghvhave at
least one domain assignment in the superfamily databagepiidtess redu-
ces our interactions t8070 pairs, which constitute our dataset of positive
interactions.

Negative I nteraction Datasets

Information on negative protein-protein interactions, ipairs of proteins
which are not interacting in the experimental conditionassfay, was hard to
find. Reasons for this, and remarks upon the importance aftiveglatasets,
are presented in the Conclusiofis this section we describe the motivation
for and construction of two negative datasdsth of them are built upon
dataconcerninghe localization of proteins in cellular compartments.

e A first dataset is built by sampling from all pairs of protethat are
localized in different compartments of the cell. We will eefto this
dataset asNonColLoc_Neg, i.e., Non-ColLocalized Negative dataset.
This type of dataset has been used by many researchersfielthi.g.
Janseret al. (2003) and Rhodest al. (2005)). There are many hundreds
of thousand of protein pairs which are not co-localized, gehamount
compared with the number of positives. The standard praegdthich
we followed as well, is to randomly sample from this pool o&pible
negatives. We also imposed the constraint that proteinktdochave
at least one domain assignment in the superfamily databésehus
ended up sampling a total 8070 negative interactions between pairs
of proteins, as many as the positive ones.

e The biological motivation for the previous choice of the aitdee data-
set, even though employed in the literature, is not quitarclkeadeed,
potentially harmful interactions between two proteinsalecl in dif-
ferent compartments of the cell are already largely prextby their
different localization. The two proteins can thereforeoedfto have
domains that would be interacting if they were brought intaoh
This motivated us to compare results obtained using theqursion-
CoLoc_Neg with those usingCoLoc_Neg, i.e., Co-Localized Negative
dataset. To generate the latter, we collected localizal@da from MIPS

those pairs which have at least one domain assignment in RBRE
MILY database and ended up with a subse8o40 pairs, constituting
the ensemble of negative interactions for the dat@skbc_Neg.

4 RESULTS AND DISCUSSION

Figs. 2 and 3 show the Bethe free energy for the experimental
datasets of non-co-localizeNgnColLoc_Neg) and co-localizedGo-
Loc_Neg) proteins, constructed as described in the Methods section
Bethe free energies, as defined in the Methods section, avensh
as a function of the noise parametefor different values of the
prior parameters. In both cases the minimum of the Bethe free
energy is reached g = 0.2 and at comparable small values of
e. However, the value of the minimum of the Bethe free energy
for non-colocalized proteindonColLoc_Neg, i.e., the dataset where
negative interactions are obtained from proteins appganimuliffe-
rent localization classes, is sizeably higher than for therodataset
CoLoc_Neg. The difference is quantitatively substantial since one
should remember that the partition functighand the free energy

F are related asZ = e~ ¥. Furthermore,CoLoc_Neg contains
more negative data, i.e. corresponding value&Zashould a priori

be smaller and the Bethe free energy should be higher (fored fix
quality of the dataset). The fact th@bLoc_Neg has a lower mini-
mal free energy thaNonColLoc_Neg is therefore highly significant
and signals that the former is a better sample of negatiezdoti-
ons as compared to the latter. Biological consequences$safeult

are postponed to the ConclusioiNotethat these results stress the
importance of having a good gold standard of negative intenas

in order to have a robust inference of domain interactions.

Note that contradictions in the experimental data, whicliewe
mentioned in the Methods, are indeed present and relevant. A
e = 0, i.e. when interaction data are taken at face value withoyt a
possible modification, the number of contradictory intéoacs in
the positive and negative (Colocalized) datasets are 1023620,
respectively (over a total of 3070 and 3740). At the minimdrthe
Bethe free energyd = 0.2 ande = 0.04), contradictions are sizea-
bly reduced as the number of positive and negative intenasthat
remain unchanged is 2667/3070 and 3420/3740, respectively

4.1 Cross-validation: Predicting Protein Interactions

We performed a 10-fold cross-validation analysis, préalict
domain interactions from training data and using them talipte
protein-protein interactions on test data. We performedéicross
validation analyses fo€olLoc_Neg since this data was shown to be
more effective in minimizing the Bethe free energy. For eaaim-
putational experiment, we divided the data (for both pesiand
negative classes separately) randomly into ten equal .fddsh
time we used nine out of ten folds as training and the remginin
one fold as a test. This process was repeated ten times, ieazh t
using a different fold as the test set. Protein pairs in ta& @hich
do not contain any domain pair from the training data wereorem
ved. For each of the0 iterations of the cross-validation procedure,
we inferred the normalized beliefs of domain pairs from tiaéning
set using the belief propagation procedure, as describectalVe
then did the experiments corresponding to a range of valties o
and and predicted protein-protein interactions for the tekt &s

(Meweset al., 2002), built a sample of pairs of proteins having the same described in the Methods section.

cellular localization and classified them as negatives éfytare not
reported in DIP-CORE set of positive interactions. We fartkept only

We calculated the prediction accuracies for each value ad
(8 comparing the prediction to the experimental assignmente N
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Fig. 2. Bethe free energy as a function of the paramet@uantifying the
amount of noise and incorrect data in the experimental égiafor diffe-
rent values of the parametgr controlling the prior on the expected number
of positive interactions among protein domains. Curvesrraf the dataset
(NonCoLoc_Neg) where negative protein-protein interactions are coosal
from pairs of proteins having different cellular localizats.
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Fig. 3. The same curves as in Figure 2, for the the dataSetdc_Neg)
where negative protein-protein interactions are conggidrom protein
pairs not appearing in the list of interacting proteamsl having the same
cellular localizations.

that the presence of noise in the experimental data makesvéha
should not expect the accuracy to be optimal at the sames/akie
the minimum of the Bethe free energy. Some of the data arethde
likely to be incorrect and, since our method is built so aste@rse
them, we expect that the valuescofill be comparable yet not quite
identical. Indeed, Fig. 4 shows the ratio of true positite ver the
false positive rate for the test set predictions, for défervalues of
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Fig. 4. Average values of true positive rate over false positive rfar
different values ot andg3.

The average prediction accuracy values over ten folds spore
ding to the parametek @ndg3) values which minimized the Bethe
free energy is82% and the corresponding values of sensitivity and
specificity arer9% and85%.

4.2 Comparison With Other Domain Interaction
Prediction M ethods

To compare the results obtained here with those by methaas pr
viously appeared in the literature, we found it very usehs t
database DOMINE constructed by Raghavaclearial. (2007),
compiling a set 0f20513 predicted domain-domain interactions
from experimental sources as well as frexistingcomputational
methods. Among the experimental sources, they usedRfaen
database, which contains domain interactions observeDBhént-
ries (Bermaret al., 2000), and thedid database, which contains
domain interactions among the proteins with known highlre&m
structure (Steiret al., 2005). Other domain interactions included
in the DOMINE database are froscomputational methods using
different approaches to uncover underlying domain intesas in
the experimental data of protein-protein interactionan8mf the
methods also use other genomic features along with theramssiat
of domains to proteins. For example, Leteal. (2006) use domain-
domain interactions predicted using Maximum Likelihoodthoel
from protein-protein interaction data multiple organisms and use
a Bayesian data integration scheme to combine these d&taene
ontology and domain fusion information.

Since all computational methods reported in DOMINE use Pfam
A (Finn et al., 2006) domain definitionsjn order to make a
comparisonwe created a dataset of positive and negative inter-

e and 3. True Positive Rate (TPR) or Sensitivity is defined as theactions as described in the Materials section while usingaio

number of true positives over total number of positives aatbé
Positive Rate (FPR) is defined as the number of false positiver
total number of negatives in the data. We can see that thsisat
overall maximum for predictions correspondingic= 0.2, i.e. the
same value which gives the minimum free energy in all foldsels

as the full data as shown in fig. 3. On the other hand, the pusvio
ratio peaks at a value efwhich is comparable, yet larger than the
one giving the minimum of the Bethe free energy.

assignments according to Pfam-A definitions. We uz@t2 posi-
tive and3123 negative protein interactions in this experiment and
run our Belief Propagation algorithm to extract the resoflidomain
interactions corresponding to the minimum value of the Bdthe
energy, as described in the Methods.

We compared these results to those by other computational
methods in DOMINE and also to the experimental gold standard
set of domain interactions, which is the union of interatsiérom
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Table 1. Comparison of Percentage overlap of BP with experimenthl go
standard interactions with respect to other computatiomathods in the
DOMINE database

ME
52.9

RDCP
12.9

RDFF
4.8

PP
11

BP
14.6

Fusion
11.9

P-value
9.6

NetOpt
10.9

was employed to estimate the probability of interactioneen
domains. The Bethe free energy of the corresponding BPisolut
ons provides a systematic way to quantify the amount of nioise
the experimental dataset and pinpoint those data whicthanmbst
problematic, e.g. because they lead to contradictionsdrpéitern

of domain-domain interactions. This specific feature of method

iPfamand3did databases. It is important to mention here that com-has a double interest: first, it allows extracting reliabledsctions

parisons in DOMINE are made only for positive domain intéimats
while in our method we also predict non-interactions as welk
also worth noting that the various methods are not predjdtire
same set of interactions. For each of the gi26h13 domain pairs
in the DOMINE databaseur nethod has three kind of predictions,
i.e, the pair is predicted either positive or negative or wadt have
any predictions because that particular pair was not in ataset (as
it is the case with all other methods). For those domain pelirsre
we have a prediction and there is a prediction in the golddstah
(ipfamt+ 3did) as well, we findl 33 matching predictions out af98
total cases.

As for othe computationalmethods, we can just compare the
overlap of positive predictions with thavailablereference gold

from noisy datasets and, second, it can be used as a guiderfor f
ther experimental verifications to correct false data anceimse the
quality of interaction datasets.

A major reason of interest in domain-domain interactiortha
they can be exploited to improve the quality of predictions f
protein-protein interactions. As an example, we succégsiised
the domain interactions predicted by our BP method on a test
dataset using a standard cross-validation procedurehdtarbre,
the domain interaction predictions of our method were compa
red against the set of experimentally available gold stahdat
of domain interactions and also with other known compuretio
methods. Comparative results indicate that Belief Proji@gas
a very effective method to attack the domain-interactiderence

standard domain interactioriable 1 shows the percentage overlap Problem.

of positive domain interactions predicted by different gutational
methods (including BP) against the gold standard data oérexp
mental domain interactionBelief Propagation (BP) results have

An interesting biological remark that emerged from our gsial
is related to the importance and the nature of negative iprote
protein interactions. What we have shown here is that prqiairs

over14.5% overlap with the gold standard data of positive domain localized in the same cellular compartmeantd not appearing in the

interactions which is second to only one method ou ¢h fact 7
in total since in DOMINE database, two methods are combingxd i
one due to their similarity)n fact, the method (Leet al., 2006) that
has maximum overlap is using protein interaction maps fram m
tiple species and then integrate the information gainech floem
about domain interactions with other genomic features dkase
ipfamin the training of the method itseBP inference about predic-
ting domain interactions from protein interaction datatliggrefore
highly competitive in this comparative setting

We extended the comparison proceedings as img(Rvachari

interaction datasets seem to provide for a better samplegxtive
interactions than protein pairs in different compartmerfte cell.
The latter type of dataset was previously used in the liteeatPre-
venting noxious, e.g. for their potential toxicity, intetins is quite
a sensible issue from a biological point of view and examples
potentially toxic products are quite common in metabolithpays.
As a matter of fact, the necessity to run chemical reactiorspe-
cific conditions and keep some of the products physicallyasepd
to avoid their cross-reactions constitute a major driveatals the
compartmentalization of the cell. Our results point at tm@art-

et al., 2007), i.e.calculating the percentage overlap between pre_ance of similar prevention effects for protein-proteirenaictions as

dictions of our method (BP) with different computationaltimes

well. Finally, data on negative interactions, i.e. pairspobteins

reported in DOMINE, as shown in Table 2. This overlap is quite Not interacting in physiological conditions, are unfortely hardly

variable with respect to individual methods, but98% of positive
interactions predicted by BP are also predicted by at laasother
method

Table 2. Percettage overlap of BP predictions with other computatib
methods

ME | RDCP | P-value| Fusion| NetOpt| RDFF | PP
16.3| 17.7 10.0 6.3 29.0 727 |11

Finally, the DOMINE database features a list 85 high-
confidence domain interactions which are predicted by att lba
different computational methods. We checked them againgpie-
dictions, and found abow3% correctly predicted by our method,
which again compares favourably with other methods (Raghav
chariet al., 2007).

5 CONCLUSION

We have addressed the problem of inferring domain interasti
from large-scale protein-protein interaction data. Thebfgm was

found in the literature. One of the reasons has probably twitlo
the negative character of the datum. The other reason hasvidid
experiments themselves, as it is particularly difficult keck whe-
ther an observed absence of interaction is real or due tadgundn
the experimental procedure. The effort is quite worthwtihleugh,
as our results show that the quality of domain interactiderences
can be strongly improved by a proper dataset of negativeacte
tions. We hope that the results shown here will stimulaterut
experiments in these directions.
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