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ABSTRACT
Motivation: Cellular processes often hinge upon specific interactions
among proteins, and knowledge of these processes at a system level
constitutes a major goal of proteomics. In particular, a greater under-
standing of protein-protein interactions can be gained via a more
detailed investigation of the protein domain interactions that mediate
the interactions of proteins. Existing high throughput experimental
techniques assay protein-protein interactions, yet they do not provide
any direct information on the interactions among domains. Inferences
concerning the latter can be made by analysis of the domain com-
position of a set of proteins and their interaction map. This inference
problem is non-trivial, however, due to the high level of noise generally
present in experimental data concerning protein-protein interactions.
This noise leads to contradictions, i.e. the impossibility of having
a pattern of domain interactions compatible with the protein-protein
interaction map.
Results:

We formulate the problem prediction protein domain interactions
in a form that lends itself to the application of belief propagation, a
powerful algorithm for such inference problems, which is based on
message-passing. The input to our algorithm is an interaction map
among a set of proteins, and a set of domain assignments to the
relevant proteins. The output is a list of probabilities of interaction bet-
ween each pair of domains. Our method is able to effectively cope
with errors in the protein-protein interaction dataset and systema-
tically resolve contradictions. We applied the method to a dataset
concerning the budding yeast Saccharomyces cerevisiae and tested
the quality of our predictions by cross-validation on this dataset,
by comparison with existing computational predictions, and finally
with experimentally available domain interactions. Results compare
favourably to those by existing algorithms.
Availability: A C language implementation of the algorithm is availa-
ble upon request.
Contact: mi26@kent.ac.uk

1 INTRODUCTION
Protein complexes and interactions are major players in cellular life
(Alberts, 1998; Eisenberget al., 2000). High-throughput experimen-
tal methods, such as yeast two-hybrid (Uetzet al., 2000; Itoet al.,
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2001; Rualet al., 2005) and mass spectroscopy methods (Gavin
et al., 2002; Hoet al., 2002; Gavinet al., 2006; Kroganet al., 2003),
assay those interactions and the structure of complexes. Informa-
tion provided by these different techniques currently appears to be
largely complementary, as witnessed by the scanty overlap bet-
ween respective interaction maps (von Meringet al., 2005). The
weak overlap and the relatively high level of noise generally present
in the data call for extensive post-processing of the experimental
interaction data using computational methods, which constitute an
important and active area of research.

A major goal of computational approaches is to predict yet
unknown protein-protein interactions on the basis of currently
available information (Shoemakeret al., 2007a,b; Valenciaet al.,
2002). A first approach to the problem employs one or more geno-
mic features related to the protein pairs as predictor attributes. For
example, Bocket al. (2001; 2003) developed a machine learning
system (Support Vector Machine) trained to recognise potential
interactions based on the primary structure and the associated
physico-chemical properties of the proteins. Another well-known
method is the so-called Rosetta Stone Method (Marcotteet al.,
1999), which exploits the observation that some pairs of interac-
ting proteins have homologs in other organisms fused into a single
protein chain. Many methods use a single type of proxy to pre-
dict protein interactions, e.g, methods based on the similarity in
phylogenetic profiles (Galperin and Koonin, 2000), gene fusion
methods (Marcotteet al., 1999; Enrightet al., 1999), co-evolution
of interacting partners (Gohet al., 2000, 2002). Other methods inte-
grate different genomic features using a variety of machine learning
methods, see e.g. Yamanishiet al. (2004); Jansenet al. (2003);
Rhodeset al. (2005).

Information highly relevant to the prediction of protein-protein
interactions comes from their domain structures. This is quite sen-
sible, both evolutionarily and structurally, as domains are often
evolutionarily conserved sequence units and they constitute the
building blocks of protein structures, largely accounting for the
reciprocal interactions among the proteins to which they belong.
Namely, a pair of proteins is thought to physically interact if at least
one among their constituent domain pairs interacts. A vast majority
of proteins in well-studied organisms likeS. cerevisiae are assi-
gned one or more domains and these data can be combined with
experimentally determined protein interaction datasets.
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A few methods have already been developed to use these combi-
nations of data in order to predict domain interactions (Riley et al.,
2005; Denget al., 2002; Leeet al., 2006; Liet al., 2006; Sprinzak
et al., 2001). The strategy common to all these methods is to find
potential domain interactions from existing protein-protein interac-
tion datasets and then exploit that information to predict unknown
protein-protein interactions. In other words, the idea is to infer
domain-domain interactions from protein-protein interactions and
then use these inferred domain interactions to predict new interac-
tions between proteins, given their domain structure. For example,
Sprinzaket al. (2001) developed an association method which finds
correlated sequence signatures (domains) occurring together more
often than by chance. They used a log-odds measure to quantify the
frequencies of occurrence of domains in interacting proteins. Ano-
ther method developed by Denget al. (2002) uses the Maximum
Likelihood method to estimate domain-domain interaction probabi-
lities consistent with protein interaction data in which they occur,
and also takes into account potential errors in the measurement of
protein-protein interactions. Leeet al. (2006) estimate domain inter-
action probabilities in a very similar way as Denget al. (2002),
but they consider more protein interaction data from different orga-
nisms and also integrate other genomic features related to domains
using a Bayesian approach. The Domain Pair Exclusion Analysis
(DPEA) method (Rileyet al., 2005) extends the Maximum Like-
lihood formulation used by Denget al. (2002) and also includes
protein interaction data from multiple organisms.

Our aim here is to show that the problem of predicting domain-
domain interactions from protein-protein interaction data can be
recast in a form that lends to the application of Belief Propa-
gation (BP), a very powerful and widely used inference method
(see MacKay (2000); Pearl (1998)). BP belongs to the class of
so-called message-passing algorithms as they share the common
feature of sending messages among neighbouring nodes in thegra-
phical model of the system, until convergence is reached (Mezard,
2007). Convergence and exact inferences are rigorously guaranteed
when the underlying graphical model is loop-free. In the presence
of loops, convergence is not guaranteed; nonetheless it wasfirst
observed (in the context of decoding) that convergence can still hold
(Gallager, 1963), and similar observations have been latermade in a
number of other applications. A rationalization of these observations
was recently obtained in Yedidiaet al. (2005), showing that BP solu-
tions, even in the presence of loops, extremize the so-called Bethe
free energy. Furthermore, Chertkov and Chernyak (2006) showed
that the solutions obtained by Belief Propagation in the presence
of loops contain enough information as to allowa priori the calcu-
lation of the exact result. Belief Propagation and message-passing
algorithms have proved their relevance in a wide range of inference
problems (Mezardet al, 2002; Yedidiaet al., 2005). A recent bio-
logical application is the clustering method developed by Frey and
Dueck (2007).

The paper is organized as to present first the Methods, which
contain the specific formulation of the problem together with the
algorithm and its derivation. We shall then discuss applications
to protein-protein interactions for the budding yeastS. cerevisiae,
followed by comparisons with existing methods and conclusions.

2 METHODS

2.1 Belief Propagation Algorithm for Prediction of
Protein Domain Interactions

We consider a set ofP proteins containing a number of domains (generally
different for eachprotein) from a list ofD possible types.I protein pairs are
known to interact and constitute the positive dataset but wehave no informa-
tion (worst possible case) as to which domains are driving the interactions.
N protein pairs are known not to interact. Our goal is to infer the interaction
profiles among the domains, i.e. tell for a pair of domains whether or not
it interacts. The inference is based on the fact that two proteinsP1 andP2

interact if at least one of their domain pairs (one domain belonging toP1,
the other toP2) interact and are non-interacting otherwise.

Let us defineσij , a binary variable equal to unity if the two domainsi
andj interact and zero otherwise. The indicesi andj run over all possibleD
domains and links are undirected, i.e. we haveD(D+1)/2 independentσ’s.
Any a priori information on domain interactions can be exploited as a prior
on the value of theσij . In its absence (worst possible case), we shall suppose
that all Boolean variablesσ’s have the samea priori probabilityβ to be equal
to unity. The complementary probability for theσ’s to vanish is1 − β and a
compact expression for the two probabilities reads1 − β + σ(2β − 1).

The likelihood (partition function;Z) for our system is defined to be
the sum over all states of the unknown variables (σ’s) compatible with the
interaction map that we are handed as input:

Z =
X
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Here, the indicesp andq run over all pairs of proteins in the positive and
negative dataset, respectively, while the indicescp andcq run over all the
pairs of domains for each one of those protein pairs. In otherwords, if we
have two proteinsP1 andP2 among the setI which interact, the indexcp
will run over all possible domain pairs composed of one domain belonging
to P1 and the other toP2. The Heavisideθ-functions (defined as vanishing
if the argument of the function is zero and unity if the argument is positive)
ensure the constraints stemming from the protein-protein interaction map.
Indeed, if two proteins interact, at least one of their domain pairs should
interact and the argument of the correspondingθ function should be positive.
Conversely, if two proteins belong to the non-interacting dataset, all domain
pairs should be non-interacting and the argument of theirθ functions should
vanish.

Since experiments generally contain some noise, we should take into
account the possibility that information about protein-protein interactions
that we are handed is not correct. As an extreme case, some errors might
even lead to contradictions and to the impossibility of having any solution
for the observed interaction data, as shown in Fig. 1. A convenient way to
deal with this problem is to ”soften” theθ functions in the function nodes as

θS(σ) =

(

ǫ if σ = 0,

1 − ǫ if σ > 0.
(2)

The parameterǫ (which runs from zero to unity) represents the degree of
reliability of the interaction datasets available for the inference. Full trust
corresponds toǫ = 0, while the most noisy case corresponds toǫ = 1/2,
when the interaction datum is irrelevant (θS ≡ 1/2 irrespective of its argu-
ment). Values larger than1/2 correspond to the (rather unlikely) situation
when input data tend to contradict reality. In particular,ǫ = 1 corresponds
to the case when the data are systematically reversed.

To simplify notation and conform to those commonly employedin
graphical models, we recast (1) in the general and compact form:

Z =
X

{σ}

"

Y

k

ψk(σk)
Y
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#

, (3)
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Fig. 1. A graphical illustration of a simple instance of protein anddomain
pair interactions. (a) shows the list of proteins together with their correspon-
ding domains. (b) gives the list of the interactions betweenprotein pairs
and their graphical representation. In (c) we display the factor graph corre-
sponding to the interactions in (b) where circles representthe domain pairs
(variable nodes) while squares and diamonds represent the interacting and
non-interacting protein pairs (function nodes) respectively. Theψ’s on the
left represent the priors on the variables, chosen here to beidentical for all
of the variables and controlled by the parameterβ. Finally, (d) presents a
simple example of pattern of interactions leading to a contradiction.

where the indexk runs over all possible domain pairs, the indexα runs over
all proteins pairs present in the interaction datasets (both positive and nega-
tive), ψk is the local evidence (polarization) for the variable nodesσk and
fα denotes the so-called function nodes. The ensemble of variables{σ}α

denote the set of all the variablesσij for the pair of proteinsα. A factor
graph representation (with protein and domain pairs as function and variable
nodes respectively) of the model is illustrated in Fig. 1. Inour case, the local
evidence is uniform, i.e. does not depend on the variable node:

ψk(σ) = ψ(σ) = 1 − β + σ (2β − 1) . (4)

Function nodes take two different forms depending on whether the protein
pair belongs to the dataset of interacting or non-interacting pairs:

fα({σ}α) =

8
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Having recast the problem in the general form of graphical models, Belief
Propagation equations associated to (3) follow from textbook derivations
(see, e.g. MacKay (2000) page 336):

Mα→k(σk) ∝
X

{σ}α 6=σk

fα ({σ}α)
Y

k′∈{k}α 6=k

Mk′→α (σk′)(6)

Mk→α(σk) ∝ ψk(σk)
Y

α′∈{α}k 6=α

Mα′→k(σk) . (7)

MessagesMα→k are sent from function to variable nodes, while messages
Mk→α are sent in the opposite directions.The proportionality sign is meant
to stress that, in the presence of loops, it is more appropriate to work with
normalized equations to increase stability and facilitateconvergence. Messa-
ges are exchanged among nodes until convergence is reached.The partition
functionZ is estimated as described in the next Section.

2.2 Bethe Free Energy and Belief Propagation
As stated earlier, beliefs calculated by (6) and (7) are exact when the under-
lying graph has no loops. Since message-update rules do not directly depend
on the topology of the underlying graph, the iterative scheme (6) and (7)

might be run on graphs with loops and the quality of the results might
be assayed empirically (Freyet al., 1997). In this spirit, Belief Propaga-
tion (BP) has been successfully applied to many practical problems with
loops (Gallager, 1963; Freyet al., 1997; Yedidiaet al., 2002). A reason
for these successful applications on graphs with loops has been put forward
in (Yedidiaet al., 2002, 2005) showing that BP solutions are extrema of an
approximation to the original partition functionZ of the model. The approxi-
mation toF ≡ −logZ is known as Bethe free energy and the one associated
to (3) takes the form :

F ({bα}, {bk}) = −
X

α

X

{σ}α

bα ln fα −
X

k

X

σk

bk lnψk

+
X

α

X

{σ}α

bα ln bα −
X

k

X

σk

(qk − 1) bk ln bk (8)

Here,qk denotes the number of function nodes which have thek-th variable
as input. Theb’s are beliefs for the probability distributions of individual and
node variables, computed from the messages as follows :

bα({σ}α) ∝ fα({σ}α)
Y

k∈{σ}α

Mk→α(σk) ; (9)

bk(σk) ∝ ψk(σk)
Y

α∈{α}k

Mα→k(σk) . (10)

The proportionality signs indicate that beliefs should be normalized (in
agreement with the fact that they represent estimates of marginal probabi-
lity distributions). BP estimates are consistent under marginalization, i.e.
P

{σ}α 6=σk
bα({σ}α) = bk(σk). This follows from (6) and (7).

To demonstrate that solutions of our BP equations indeed extremize the
free energy (8) one can proceed as in (Yedidiaet al., 2005), introducing
Lagrange multipliers to enforce normalization of beliefs and consistency
under marginalization. The condition that derivatives with respect tobα and
bk vanish is thus shown to coincide with equations (6) and (7). Details of the
derivation can be found in (Yedidiaet al., 2005).

The Bethe free energy is extremely useful for our purposes aswe have
two unknown parameters in our model (the prior parameterβ and the noise
parameterǫ). We shall then run BP equations to convergence and choose
the values of the parametersβ andǫ that correspond to the minimum of the
Bethe free energy (maximum of the partition function).

Numerical implementation
Starting with initial values of unity for all of the messages, we iterate the
BP equations (6 and 7) for given values ofβ and ǫ in equation (2). BP
iterations are stopped after the changes in all the messagesare below a
threshold, set equal to10−2. Results do not change if the threshold is
set smaller. In order to reach convergence, a standard trickemployed to
reduce oscillations is to use a damping factorλ so that each message is
updated asλ times its value from previous iteration plus1 − λ times its

current value. For example, the messageM
(n+1)
α→k

(σk) is updated as(1 −

λ)
P

{σ}α 6=σk
fα ({σ}α)

Q

k′∈{k}α 6=k M
(n)
k′→α

(σk′) + λM
(n)
α→k

(σk)
(compare to (6)). After some numerical experiments, we chose a damping
factorλ = 0.5 in all the runs of the algorithm.

When iterations are run at very smallǫ, errors in experimental data makes
that for some domain pairs no solution is found, i.e., beliefs are all zero
(or extremely small). On the other hand, these configurations are not very
interesting as they have a huge Bethe free energy. We therefore decided to
circumvent this numerical problem by working with a small, yet nonzero,
predefined precision of10−10.

Prediction of protein-protein interactions
Predictions of domain-domain interactions can be exploited to predict
protein-protein interactions. As an example of this approach, we performed a
cross-validation analysis on avalaible protein-protein interactions. Knowing
the composition in domains of a protein pairα, the probabilityPrα of their
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interaction is estimated from beliefsb(σij) of interaction between domains
i andj as

Prα = 1 −
Y

σij∈{σ}α

(1 − b(σij)) , (11)

where the ensemble of variables{σ}α denotes the set of all domain pair
variablesσij for the pair of proteinsα.

3 MATERIALS

Domain assignments
We obtained domain assignments forS. cerevisiae genome from the SUPER-
FAMILY database (Goughet al., 2001; Maderaet al., 2004) (web site
www.supfam.org). This database is a library of HMMs modelling all pro-
teins of known structure. These models are used to annotate the sequence of
over50 genomes. ForS. cerevisiae, there exist3346 sequences with at least
one domain assignment, which is about50% of total sequences. In total,
4681 domains are assigned and there are685 superfamily domains with at
least one assignment.

Positive Interaction Dataset
We obtained theS. cerevisiae interaction dataset from DIP (Database of
Interacting Proteins) (Salwinskiet al., 2004; Xenarioset al., 2002). We
obtained nearly5000 high confidence positive interactions from CORE,
which is a subset of the total number of reported protein interactions in
DIP. Furthermore, since there are some proteins which do nothave any
significant domain assignment, we only kept those proteins which have at
least one domain assignment in the superfamily database. This process redu-
ces our interactions to3070 pairs, which constitute our dataset of positive
interactions.

Negative Interaction Datasets
Information on negative protein-protein interactions, i.e. pairs of proteins
which are not interacting in the experimental conditions ofassay, was hard to
find. Reasons for this, and remarks upon the importance of negative datasets,
are presented in the Conclusions. In this section we describe the motivation
for and construction of two negative datasets. Both of them are built upon
dataconcerningthe localization of proteins in cellular compartments.

• A first dataset is built by sampling from all pairs of proteinsthat are
localized in different compartments of the cell. We will refer to this
dataset asNonCoLoc Neg, i.e., Non-CoLocalized Negative dataset.
This type of dataset has been used by many researchers in thisfield (e.g.
Jansenet al. (2003) and Rhodeset al. (2005)). There are many hundreds
of thousand of protein pairs which are not co-localized, a huge amount
compared with the number of positives. The standard procedure, which
we followed as well, is to randomly sample from this pool of possible
negatives. We also imposed the constraint that proteins ought to have
at least one domain assignment in the superfamily database.We thus
ended up sampling a total of3070 negative interactions between pairs
of proteins, as many as the positive ones.

• The biological motivation for the previous choice of the negative data-
set, even though employed in the literature, is not quite clear. Indeed,
potentially harmful interactions between two proteins located in dif-
ferent compartments of the cell are already largely prevented by their
different localization. The two proteins can therefore afford to have
domains that would be interacting if they were brought in contact.
This motivated us to compare results obtained using the previousNon-
CoLoc Neg with those usingCoLoc Neg, i.e., Co-Localized Negative
dataset. To generate the latter, we collected localizationdata from MIPS
(Meweset al., 2002), built a sample of pairs of proteins having the same
cellular localization and classified them as negatives if they are not
reported in DIP-CORE set of positive interactions. We further kept only

those pairs which have at least one domain assignment in SUPERFA-
MILY database and ended up with a subset of3740 pairs, constituting
the ensemble of negative interactions for the datasetCoLoc Neg.

4 RESULTS AND DISCUSSION
Figs. 2 and 3 show the Bethe free energy for the experimental
datasets of non-co-localized (NonCoLoc Neg) and co-localized (Co-
Loc Neg) proteins, constructed as described in the Methods section.
Bethe free energies, as defined in the Methods section, are shown
as a function of the noise parameterǫ for different values of the
prior parameterβ. In both cases the minimum of the Bethe free
energy is reached atβ = 0.2 and at comparable small values of
ǫ. However, the value of the minimum of the Bethe free energy
for non-colocalized proteinsNonCoLoc Neg, i.e., the dataset where
negative interactions are obtained from proteins appearing in diffe-
rent localization classes, is sizeably higher than for the other dataset
CoLoc Neg. The difference is quantitatively substantial since one
should remember that the partition functionZ and the free energy
F are related asZ = e−F . Furthermore,CoLoc Neg contains
more negative data, i.e. corresponding value ofZ should a priori
be smaller and the Bethe free energy should be higher (for a fixed
quality of the dataset). The fact thatCoLoc Neg has a lower mini-
mal free energy thanNonCoLoc Neg is therefore highly significant
and signals that the former is a better sample of negative interacti-
ons as compared to the latter. Biological consequences of this result
are postponed to the Conclusions.Note that these results stress the
importance of having a good gold standard of negative interactions
in order to have a robust inference of domain interactions.

Note that contradictions in the experimental data, which were
mentioned in the Methods, are indeed present and relevant. At
ǫ = 0, i.e. when interaction data are taken at face value without any
possible modification, the number of contradictory interactions in
the positive and negative (Colocalized) datasets are 1025 and 1020,
respectively (over a total of 3070 and 3740). At the minimum of the
Bethe free energy (β = 0.2 andǫ = 0.04), contradictions are sizea-
bly reduced as the number of positive and negative interactions that
remain unchanged is 2667/3070 and 3420/3740, respectively.

4.1 Cross-validation: Predicting Protein Interactions
We performed a 10-fold cross-validation analysis, predicting
domain interactions from training data and using them to predict
protein-protein interactions on test data. We performed these cross
validation analyses forCoLoc Neg since this data was shown to be
more effective in minimizing the Bethe free energy. For eachcom-
putational experiment, we divided the data (for both positive and
negative classes separately) randomly into ten equal folds. Each
time we used nine out of ten folds as training and the remaining
one fold as a test. This process was repeated ten times, each time
using a different fold as the test set. Protein pairs in test data which
do not contain any domain pair from the training data were remo-
ved. For each of the10 iterations of the cross-validation procedure,
we inferred the normalized beliefs of domain pairs from the training
set using the belief propagation procedure, as described above. We
then did the experiments corresponding to a range of values of ǫ

andβ and predicted protein-protein interactions for the test fold as
described in the Methods section.

We calculated the prediction accuracies for each value ofǫ and
β comparing the prediction to the experimental assignment. Note
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Fig. 2. Bethe free energy as a function of the parameterǫ (quantifying the
amount of noise and incorrect data in the experimental dataset), for diffe-
rent values of the parameterβ, controlling the prior on the expected number
of positive interactions among protein domains. Curves refer to the dataset
(NonCoLoc Neg) where negative protein-protein interactions are constructed
from pairs of proteins having different cellular localizations.
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Fig. 3. The same curves as in Figure 2, for the the dataset (CoLoc Neg)
where negative protein-protein interactions are constructed from protein
pairs not appearing in the list of interacting proteinsand having the same
cellular localizations.

that the presence of noise in the experimental data makes that we
should not expect the accuracy to be optimal at the same values as
the minimum of the Bethe free energy. Some of the data are indeed
likely to be incorrect and, since our method is built so as to reverse
them, we expect that the values ofǫ will be comparable yet not quite
identical. Indeed, Fig. 4 shows the ratio of true positive rate over the
false positive rate for the test set predictions, for different values of
ǫ andβ. True Positive Rate (TPR) or Sensitivity is defined as the
number of true positives over total number of positives and False
Positive Rate (FPR) is defined as the number of false positives over
total number of negatives in the data. We can see that this ratio is
overall maximum for predictions corresponding toβ = 0.2, i.e. the
same value which gives the minimum free energy in all folds aswell
as the full data as shown in fig. 3. On the other hand, the previous
ratio peaks at a value ofǫ which is comparable, yet larger than the
one giving the minimum of the Bethe free energy.
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Fig. 4. Average values of true positive rate over false positive rate for
different values ofǫ andβ.

The average prediction accuracy values over ten folds correspon-
ding to the parameter (ǫ andβ) values which minimized the Bethe
free energy is82% and the corresponding values of sensitivity and
specificity are79% and85%.

4.2 Comparison With Other Domain Interaction
Prediction Methods

To compare the results obtained here with those by methods pre-
viously appeared in the literature, we found it very useful the
database DOMINE constructed by Raghavachariet al. (2007),
compiling a set of20513 predicted domain-domain interactions
from experimental sources as well as fromexistingcomputational
methods. Among the experimental sources, they used theiPfam
database, which contains domain interactions observed in PDB ent-
ries (Bermanet al., 2000), and the3did database, which contains
domain interactions among the proteins with known high resolution
structure (Steinet al., 2005). Other domain interactions included
in the DOMINE database are from8 computational methods using
different approaches to uncover underlying domain interactions in
the experimental data of protein-protein interactions. Some of the
methods also use other genomic features along with the assignment
of domains to proteins. For example, Leeet al. (2006) use domain-
domain interactions predicted using Maximum Likelihood method
from protein-protein interaction datain multiple organisms and use
a Bayesian data integration scheme to combine these data with gene
ontology and domain fusion information.

Since all computational methods reported in DOMINE use Pfam-
A (Finn et al., 2006) domain definitions,in order to make a
comparisonwe created a dataset of positive and negative inter-
actions as described in the Materials section while using domain
assignments according to Pfam-A definitions. We used2642 posi-
tive and3123 negative protein interactions in this experiment and
run our Belief Propagation algorithm to extract the resultsof domain
interactions corresponding to the minimum value of the Bethe free
energy, as described in the Methods.

We compared these results to those by other computational
methods in DOMINE and also to the experimental gold standard
set of domain interactions, which is the union of interactions from

5



Mudassar Iqbal 1, 3 , Alex A. Freitas 1, Colin G. Johnson 1 and Massimo Vergassola 2

Table 1. Comparison of Percentage overlap of BP with experimental gold
standard interactions with respect to other computationalmethods in the
DOMINE database

ME RDCP P-value Fusion NetOpt RDFF PP BP
52.9 12.9 9.6 11.9 10.9 4.8 1.1 14.6

iPfam and3did databases. It is important to mention here that com-
parisons in DOMINE are made only for positive domain interactions
while in our method we also predict non-interactions as well. It is
also worth noting that the various methods are not predicting the
same set of interactions. For each of the given20513 domain pairs
in the DOMINE database, our method has three kind of predictions,
i.e, the pair is predicted either positive or negative or we do not have
any predictions because that particular pair was not in our dataset (as
it is the case with all other methods). For those domain pairswhere
we have a prediction and there is a prediction in the gold standard
(ipfam+ 3did) as well, we find133 matching predictions out of198

total cases.
As for other computationalmethods, we can just compare the

overlap of positive predictions with theavailablereference gold
standard domain interactions.Table 1 shows the percentage overlap
of positive domain interactions predicted by different computational
methods (including BP) against the gold standard data of experi-
mental domain interactions. Belief Propagation (BP) results have
over14.5% overlap with the gold standard data of positive domain
interactions which is second to only one method out of8 (in fact 7
in total since in DOMINE database, two methods are combined into
one due to their similarity).In fact, the method (Leeet al., 2006) that
has maximum overlap is using protein interaction maps from mul-
tiple species and then integrate the information gained from them
about domain interactions with other genomic features as well as
ipfam in the training of the method itself.BP inference about predic-
ting domain interactions from protein interaction data is,therefore
highly competitive in this comparative setting.

We extended the comparison proceedings as in (Raghavachari
et al., 2007), i.e.calculating the percentage overlap between pre-
dictions of our method (BP) with different computational methods
reported in DOMINE, as shown in Table 2. This overlap is quite
variable with respect to individual methods, but∼ 98% of positive
interactions predicted by BP are also predicted by at least one other
method.
Table 2. Percentage overlap of BP predictions with other computational
methods

ME RDCP P-value Fusion NetOpt RDFF PP
16.3 17.7 10.0 6.3 29.0 72.7 1.1

Finally, the DOMINE database features a list of55 high-
confidence domain interactions which are predicted by at least 4

different computational methods. We checked them against our pre-
dictions, and found about83% correctly predicted by our method,
which again compares favourably with other methods (Raghava-
chariet al., 2007).

5 CONCLUSION
We have addressed the problem of inferring domain interactions
from large-scale protein-protein interaction data. The problem was
recast as a factor graph model lending to the use of Belief Pro-
pagation (BP). This powerful message-passing inference method

was employed to estimate the probability of interaction between
domains. The Bethe free energy of the corresponding BP soluti-
ons provides a systematic way to quantify the amount of noisein
the experimental dataset and pinpoint those data which are the most
problematic, e.g. because they lead to contradictions in the pattern
of domain-domain interactions. This specific feature of ourmethod
has a double interest: first, it allows extracting reliable predictions
from noisy datasets and, second, it can be used as a guide for fur-
ther experimental verifications to correct false data and increase the
quality of interaction datasets.

A major reason of interest in domain-domain interactions isthat
they can be exploited to improve the quality of predictions for
protein-protein interactions. As an example, we successfully used
the domain interactions predicted by our BP method on a test
dataset using a standard cross-validation procedure. Furthermore,
the domain interaction predictions of our method were compa-
red against the set of experimentally available gold standard set
of domain interactions and also with other known computational
methods. Comparative results indicate that Belief Propagation is
a very effective method to attack the domain-interaction inference
problem.

An interesting biological remark that emerged from our analysis
is related to the importance and the nature of negative protein-
protein interactions. What we have shown here is that protein pairs
localized in the same cellular compartmentsand not appearing in the
interaction datasets seem to provide for a better sample of negative
interactions than protein pairs in different compartmentsof the cell.
The latter type of dataset was previously used in the literature. Pre-
venting noxious, e.g. for their potential toxicity, interactions is quite
a sensible issue from a biological point of view and examplesof
potentially toxic products are quite common in metabolic pathways.
As a matter of fact, the necessity to run chemical reactions in spe-
cific conditions and keep some of the products physically separated
to avoid their cross-reactions constitute a major drive towards the
compartmentalization of the cell. Our results point at the import-
ance of similar prevention effects for protein-protein interactions as
well. Finally, data on negative interactions, i.e. pairs ofproteins
not interacting in physiological conditions, are unfortunately hardly
found in the literature. One of the reasons has probably to dowith
the negative character of the datum. The other reason has to do with
experiments themselves, as it is particularly difficult to check whe-
ther an observed absence of interaction is real or due to a problem in
the experimental procedure. The effort is quite worthwhile, though,
as our results show that the quality of domain interaction inferences
can be strongly improved by a proper dataset of negative interac-
tions. We hope that the results shown here will stimulate future
experiments in these directions.

ACKNOWLEDGEMENTS
Mudassar Iqbal, Alex Freitas and Colin Johnson acknowledgethe
financial support from EPSRC under grant GR/T11265/01. Mudas-
sar Iqbal also acknowledges further financial support from the
Computing Laboratory, University of Kent.

REFERENCES
Alberts B. (1998) The Cell as a Collection of Protein Machines:

Preparing the Next Generation of Molecular Biologists,Cell 92,
291-294.

6



short Title

Berman H. M.et al. (2000) The protein data bank,Nucleic Acids
Res. 28,235242.

Bock J.R., Gough D.A. (2001) Predicting protein-protein interacti-
ons from primary structure,Bioinformatics17(5),455-460.

Bock J.R., Gough D.A. (2003) Whole proteome interaction mining,
Bioinformatics 19(1),125-135.

Chertkov M., Chernyak V.Y., (2006) Loop series for discretestati-
stical models on graphsJournal of Statistical Mechanics-Theory
and Experiment, P06009.

Deng M.et al. (2002) Inferring Domain-Domain Interactions From
Protein-Protein Interactions,Genome Res., 12, 1540-1548.

Eisenberg D.et al. (2000) Protein function in the post-genomic era,
Nature, 405, 823-826.

Enright AJ et al. (1999) Protein interaction maps for complete
genomes based on gene fusion events.Nature 402, 86 90.

Finn R. D.et al. (2006) Pfam: clans, web tools and services,Nucleic
Acids Res. 34, D247D251.

Frey B. J. and Dueck D. (2007) Clustering by Passing Messages
Between Data Points,Science, 315, 972.

Frey B. J. and Mackay D. J. C. (1997) A revolution: Belief propa-
gation in graphs with cycles, In M. Jordanet al (Eds.),Adv. in
Neural Information Processing Systems, 10, MIT Press.

Gallager R. G. (1963) Low Density Parity Check Codes, (MIT press,
Cambridge, MA).

Galperin M.Y. Koonin E.V. (2000), Whos your neighbor? New com-
putational approaches for functional genomics.Nat Biotechnol
18, 609 613.

Gavin A.C.et al. (2002) Functional organization of the yeast pro-
teome by systematic analysis of protein complexes.Nature, 415,
141147.

Gavin A.C.et al. (2006) Proteome survey reveals modularity of the
yeast cell machinery.Nature, 440, 631636.

Goh C.et al. (2000) Co-evolution of Proteins with their Interaction
Partners.J. Mol. Biol., 299, 283-293.

Goh C. Cohen F.E.et al. (2002) Co-evolutionary Analysis Reveals
Insights into ProteinProtein InteractionsJ. Mol. Biol., 324, 177-
192.

Gough J. et al. (2001) Assignment of homology to genome
sequences using a library of hidden Markov models that represent
all proteins of known structure,J. Mol. Biol., 313(4), 903-19.

Ho Y. et al. (2002) Systematic identification of protein complexes
in Saccharomyces cerevisiae by mass spectrometry.Nature, 415,
180183.

Ito T. et al. (2001) A comprehensive two-hybrid analysis to explore
the yeast protein interactome.Proc. Natl Acad. Sci. USA, 98,
45694574.

Jansen R.et al. (2003) A Bayesian Networks Approach for
Predicting Protein-Protein Interactions from Genomic Data,
Science,302, 449-453.

Krogan N.J.et al. (2006) Global landscape of protein complexes in
the yeast Saccharomyces cerevisiae.Nature,440, 637-643.

Lee H. et al. (2006) An Integrated Approach to the Prediction of
Domain-Domain Interactions,BMC Bioinformatics.,7:269.

Li X. et al. (2006) Improving domain-based protein interaction pre-
diction using biologically-significant negative dataset,Internatio-
nal Journal of Data Mining and Bioinformatics, 1(2),138-149.

Li S. et al. (2004) A Map of the Interactome Network of the
Metazoan C. elegans,Science, 303, 540-543.

MacKay D. J. C. (2003)Information Theory, Inference, and Lear-
ning Algorithms, Cambridge University Press.

Madera M.et al. (2004) The SUPERFAMILY database in 2004:
additions and improvements,Nucleic Acids Res., 32(1), D235-9.

Marcotte E.M.et al. (1999) Detecting protein function and protein-
protein interactions from genome sequences,Science 285,751-
753.

Mewes H. W.et al. (2002) MIPS: a database for genomes and
protein sequences,Nucleic Acids Res. 30(1), 31-4.

Mezard M. (2007) Computer Science – Where are the exemplars?,
Science, 315, 949-951.

Mezard M. et al (2002) Analytic and Algorithmic Solution of
Random Satisfiability Problems,Science, 297, 812.

Pearl J., (1988)Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufmann Publishers.

Raghavachari B.et al. (2007) DOMINE: a database of protein
domain interactions,Nucleic Acids Research, 1 6.

Rhodes D. R.et al. (2005) Probabilistic model of the human
protein-protein interaction network,Nature Biotechnology 23(8),
951-959.

Riley R. et al. (2005) Inferring Protein Domain Interactions From
Databases of Interacting Proteins,Genome Biology,6:R89.

Rual JF.et al. (2005) Towards a proteome-scale map of the human
protein-protein interaction networkNature 437, 1173-1178.

Salwinski L. et al. (2004) The Database of Interacting Proteins:
2004 update,Nucleic Acids Res. 32, Database Issue: D449-51.

Shoemaker B. A., Panchenko A. R.(2007)Deciphering ProteinPro-
tein Interactions. Part-I: Experimental Techniques and Databases,
PLoS Computational Biology 3(3):e42.

Shoemaker. B. A., Panchenko A. R.(2007) Deciphering Protein-
Protein Interactions. Part-II: Computational Methods to Predict
Protein and Domain Interaction Partners,PLoS Computational
Biology 3(4):e43.

Sprinzak E., Margalit H. (2001), Correlated sequence-signatures as
markers of proteinprotein interaction.J. Mol. Biol., 311, 681 692.

Stein A. et al. (2005) 3did: interacting protein domains of known
three-dimensional structure,Nucleic Acids Res. 33, D413D417.

Uetz P.et al. (2000) A comprehensive analysis of protein-protein
interactions inSaccharomyces cerevisiae, Nature, 403(1), 623-
627.

Valencia A., Pazos F. (2002) Computational methods for the pre-
diction of protein interactions,Current Opinions in Structural
Biology 12,368-373.

von Mering C.et al. (2002), Comparative assessment of large-
scale data sets of protein-protein interactions.Nature, 417(6887),
399403.

Xenarios I.et al. (2002) DIP: The Database of Interacting Pro-
teins. A research tool for studying cellular networks of protein
interactions,NAR 30, 303-305.

Yamanishi Y.et al. (2004) Protein network inference from mul-
tiple genomic data: a supervised approach,Bioinformatics 20
Suppl.1,i363-i370.

Yedidia J.S.et al. (2005) Constructing Free-Energy Approxima-
tions and Generalized Belief Propagation Algorithms,IEEE
Transactions on Information Theory, ISSN; 0018-9448,51(7),
2282-2312.

Yedidia J.S.et al. (2002) Understanding Belief Propagation and
its Generalizations,Technical Report, TR-2001-22. Mitsubishi
Electric Research Labratories, Cambridge, Massachusetts.

7


