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Abstract

Motivation: This work uses the Random Forest (RF) classification algorithm to predict if a gene is

over-expressed, under-expressed or has no change in expression with age in the brain. RFs have

high predictive power, and RF models can be interpreted using a feature (variable) importance

measure. However, current feature importance measures evaluate a feature as a whole (all feature

values). We show that, for a popular type of biological data (Gene Ontology-based), usually only

one value of a feature is particularly important for classification and the interpretation of the RF

model. Hence, we propose a new algorithm for identifying the most important and most inform-

ative feature values in an RF model.

Results: The new feature importance measure identified highly relevant Gene Ontology terms for

the aforementioned gene classification task, producing a feature ranking that is much more inform-

ative to biologists than an alternative, state-of-the-art feature importance measure.

Availability and implementation: The dataset and source codes used in this paper are available as

‘Supplementary Material’ and the description of the data can be found at: https://fabiofabris.github.

io/bioinfo2018/web/.

Contact: ff201@kent.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In this work, we focus on predicting genes with altered expression with

age in the brain. It has been commonly observed that there is an overall

decline in neural function with age (Gustavsson et al., 2011), and there

is growing evidence that ageing plays a significant role in the develop-

ment of degenerative diseases (Mattson and Magnus, 2006). The likeli-

hood of developing neurodegenerative diseases such as Parkinson’s and

Alzheimer’s dramatically increases with age (Mattson and Magnus,

2006). This is clearly important, as neurodegenerative diseases have a

high social-economic impact, costing 146 billion Euros in 2004 in 28

surveyed European countries (Gustavsson et al., 2011).

To study ageing processes in the brain holistically, we use a

Random Forest (RF) classification algorithm (Breiman, 2001) to in-

duce from data a model to predict if a given gene is over-expressed,

under-expressed or have no change in expression with age in the

brain. The RF algorithm is very popular in machine learning and

bioinformatics (Touw et al., 2013) due to its high predictive accur-

acy and the use of variable importance measures (VIMs). These

measures allow us to identify the most important variables for classi-

fication in the model (a set of partly random decision trees) built by

the RF algorithm.
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However, current VIMs have an important limitation: they

measure the importance of a variable as a whole, using all values

taken by the variable. Sometimes, however, it is only one value of

the variable (feature) that is important for classification, which re-

quires a fine-grained measure of feature importance. This is the case

in the dataset analysed in this work, which has 7490 features taking

either a positive or negative value, representing the presence or ab-

sence (respectively) of a Gene Ontology (GO) term annotation for a

gene (instance to be classified). As discussed in detail later, in gen-

eral, the positive value of a GO term feature is much more inform-

ative and reliable than the negative value of that feature, since

negative values represent lack of evidence and do not suggest any

particular property for a gene. Hence, we propose a new method

for measuring the importance of positive feature values, rather

than the importance of a feature as a whole (both positive and nega-

tive values).

As related work, Hsing et al. (2008) use GO terms as features

and a tree-based classification ensemble algorithm (boosting trees)

to predict whether or not a protein is a hub in a network. In add-

ition, Barardo et al. (2017) use GO terms as features and an RF al-

gorithm to predict whether or not a chemical compound will

increase Caenorhabditis elegan’s lifespan. These works rank features

based on a measure of feature importance, but they ignore the differ-

ence between positive and negative feature values, which is precisely

the limitation that we are addressing here.

It should be noted that GO terms are a very popular type of fea-

ture for classification in bioinformatics; and there are also several

other types of binary features whose positive values tend to be much

more important than negative values, like pathway annotations (e.g.

KEGG pathway features), protein–protein interaction features, etc.

(Fabris et al., 2017). Hence, the proposed method for positive fea-

ture value evaluation has wider applicability in many other classifi-

cation datasets in bioinformatics.

This paper’s main contribution is a new measure of feature value

importance for RFs. This measure focuses only on positive feature

values (ignoring negative values), and it is computed by a new algo-

rithm that measures the predictive accuracy of a positive feature

value by its overall predictive accuracy across all rules (root-to-leaf

paths) in the RF where that feature value occurs. As a second contri-

bution, we created a new dataset for studying gene expression with

age in the brain and interpreted an RF model built from this dataset,

based on the biology of ageing literature.

The remainder of this paper is organized as follows: Section 2

presents background on RFs and feature importance measures.

Section 3 describes the creation of the dataset used in our ex-

periments. Section 4 introduces the new measure of feature value

importance. Section 5 reports the computational results and a biolo-

gical interpretation of the most important GO terms based on the

proposed measure of feature value importance. Finally, Section 6

presents the conclusions and some future work.

2 Background

2.1 Random Forest
The RF algorithm, which is widely used for classification in bio-

informatics, builds nTree (a parameter) Random Trees (RT) during

its training phase. This involves randomizing the training set in two

ways for each RT: first, the training set is re-sampled with replace-

ment, maintaining the original size of the dataset. The new

re-sampled training set contains, on average, about 66% of unique

instances (genes) from the original dataset. The set of training

instances for a given RT is the ‘In-Bag’ instance set for that RT. The

other 33% of the original dataset, which is not used for training, is

the Out-Of-Bag (OOB) instance set for that RT.

As a second source of randomness for building an RT, the search

for the best feature to split the set of instances at each RT node con-

siders a randomly chosen feature subset of size mtry (a parameter),

typically much smaller than the original feature set’s size. The in-

stances at the current node are then split into two subsets according

to a condition based on the values of the selected feature, creating

two child nodes. This split aims to increase the similarity of classes

within each instance subset and to decrease class similarity across

the subsets. Next, the algorithm recurses in each instance subset

until a stopping criterion is met.

In the prediction phase, a testing instance t is presented to each

RT. For every RT, the feature values of t are matched against the

feature-value conditions in the branches of the RT from the root

node downwards, until t is assigned to a leaf node which predicts,

for t, the most frequent class in that leaf node. The predictions of all

RTs are combined (by voting) to output the RF’s final prediction.

RFs are difficult to interpret: they comprise many RTs making,

to some extent, conflicting predictions; due to their randomized

nature. However, feature importance measures can be used to find

the most important features for classification in RF models, as dis-

cussed next.

2.2 Measures of feature importance in RFs
Several measures of feature (or variable) importance for RFs

have been proposed, such as the Gini Variable Importance Measure

(GVIM) (https://www.stat.berkeley.edu/%7Ebreiman/Using_ran

dom_forests_v4.0.pdf, accessed in 24/10/2017), Permutation VIM

(PVIM) (Breiman, 2001), Conditional Permutation VIM (CPVIM)

(Strobl et al., 2008), Variable Selection using Random Forests

(varSelRF) (Dı́az-Uriarte and Alvarez de Andrés, 2006) and Variable

Selection based on Minimal Distance (varSelMD) (Ishwaran et al.,

2010).

In essence, GVIM calculates each feature’s importance by aver-

aging the OOB Gini impurity decrease when using the feature in a

split of an RT node. PVIM calculates the average predictive ac-

curacy difference, across all RTs, of the RF before and after permu-

tating a given feature with a randomly selected one. CPVIM works

similarly to PVIM, but considers conditional relationships among

variables. VarSelRF iteratively removes features from the RF until

its predictive accuracy is significantly reduced. Next, it returns the

smallest set of features with predictive accuracy statistically equiva-

lent to the best RF. Finally, varSelMD calculates the average depth

of the features in the RF, assigning greater importance to features

that are closer to the root node of an RT.

In a very recent work (Epifanio, 2017), the Intervention in

Prediction Measure (IPM) was proposed and compared against the

five above feature importance measures. That work concluded that

IPM was superior to identify the most important features. Thus, we

use the state-of-the-art IPM measure as a strong baseline measure in

our experiments.

The IPM first computes, for each RT and each Out-Of-Bag

(OOB) instance, a vector of size J (the number of features) contain-

ing in each j-th position the number of times the j-th feature was

used to classify the instance. Next, this vector is normalized by

dividing the frequency of use in each position by the summation of

the frequencies over all J positions. This normalized vector (Vn) con-

tains the relative importance of each feature, i.e. its relative fre-

quency of use to classify the instance. The vector Vn is averaged
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across all OOB instances of interest and across all RTs to return the

final IPM value for each feature.

Under the assumption that instances with different classes are

classified using different features, these differences are reflected in

the features’ IPM scores. Features that are important to classify in-

stances of some class but are not so important to classify instances

of other classes are of particular interest, since they are good pre-

dictors of a given class.

Note also that all the above importance measures evaluate a

feature as a whole (i.e. all values of the feature), which is an import-

ant limitation in datasets where just one value of a feature has a

good predictive power. Actually, in our dataset, one of the two val-

ues of each binary feature is much more interesting, as discussed in

Section 4.2.

3 Dataset preparation

3.1 Collection of data about genes and classes
Age-related brain gene expression was collected from GEO and

AgeMap. First, in AgeMap, all brain gene expression data was ob-

tained by combining cerebellum, cerebrum, hippocampus and stri-

atum expression datasets into one dataset (Zahn et al., 2007). This

gene expression data is already normalized with background sub-

tracted. In total from this resource, gene expression data for 118

brain samples and 6712 mouse genes were extracted. Second, gene

expression datasets and series datasets reporting expression levels in

different ages or development stages in mammals’ brains were iden-

tified by searching GEO (Barrett et al., 2006). Unsuitable datasets

were removed. For example, custom datasets that examined a single

pathway, specific diseases, mutants and treatments were excluded.

Within the remaining 28 datasets, only age-related data from

healthy, adult and non-treated samples were analysed. For example,

in disease studies, we only took the controls at different age groups,

and not the diseased state. Since ageing gene expression profiles can

be detected early in adult life, all datasets with more than two adult

time points were included, even if the oldest animals were middle-

aged. In summary, 28 ageing-related GEO datasets and series com-

prising 1212 samples and a differing number of genes per dataset

were obtained.

For both the GEO and AgeMap datasets, genes with more than

30% missing gene expression data across all samples were removed.

Otherwise, null values were replaced by the probe’s average and

probes targeting the same gene were averaged. Although we cannot

perform a comprehensive evaluation of the quality of each experi-

ment, our aggregation procedure is, in itself, a technique to cope

with poor quality data. To identify genes that were consistently

over- and under-expressed with age across all 31 datasets (3 from

AgeMap and 28 from GEO), we found the genes with the largest

number of putatively age-related signals in our multiple datasets,

following the method described in (De Magalh~aes et al., 2009).

Human homologs for all mouse and rat protein-coding genes were

downloaded from NCBI BioMart v87. High confidence one-to-one

orthologs were extracted, and for each gene outputted from regres-

sion analysis, orthologs were identified. Finally, the proportion of

human protein-coding genes within each class is 2.4%, 0.8% and

96.8% for the classes ‘over-expressed’, ‘under-expressed’ and ‘no

change of expression’ with age in the brain, respectively.

3.2 GO term-based features
The instances (genes) are described by features representing the pres-

ence or absence of a GO term. We use GO term features because

they are very well-known and easy to interpret––they use a con-

trolled vocabulary, curated by experts, so the terms have well-

defined biological meanings.

To retrieve the list of GO terms associated with our instances

(genes), we have used the GO annotations from the XML file ex-

ported by the NCBI web page http://www.ncbi.nlm.nih.gov/gene

(downloaded on the 18th of April 2017). This XML file was gener-

ated by the query:

‘Homo sapiens’[Organism] AND

(‘source_genomic’ [properties] AND

‘genetype protein coding’[Properties] AND

alive[prop])

The Gene Ontology definition (retrieved on the 14th of March

2017) was downloaded using the link http://geneontology.org/page/

download-ontology#go-basic.obo.

Since a GO term implies all its ancestors (defining an ‘is-a’ hier-

archy), we have expanded the set of GO terms annotating each in-

stance (gene) to contain all ancestors of those GO terms. Also, we

have eliminated GO terms annotating less than 10 instances, to

avoid terms with little statistical support. This resulted in a dataset

with 17 716 genes (instances) and 7490 GO terms (features). We

also added to the dataset a numerical feature whose value is the total

number of GO terms annotated for a gene.

4 Materials and methods

4.1 Experimental methodology
To measure predictive accuracy we use the popular Area Under the

Receiver Operating Characteristic curve (AUROC), which is a plot

of a classifier’s (here an RF model’s) True Positive Rate (TPR) as a

function of its False Positive Rate (FPR). These rates are computed

for each class by thresholding the class probabilities output by the

RF using thresholds in the range [0, 1]. Each threshold produces a

TPR and an FPR value, i.e. a point in the ROC curve. To obtain a

single accuracy measure from the curve, we calculate the area under

the ROC curve (AUROC) (Boyd et al., 2013). The AUROC is calcu-

lated considering each class in turn as the ‘positive class’, and the

final AUROC is the weighted average over the three classes,

weighted by the number of instances in each class. AUROC values

of 1.0, 0.5 and 0 indicate, respectively, a perfect classifier (all in-

stances correctly predicted), a classifier with random guessing per-

formance and the worst possible classifier (all instances wrongly

predicted).

The AUROC is computed using the well-known 10-fold cross-

validation procedure (Japkowicz and Shah, 2011). This method

first divides the dataset into 10-folds of similar sizes. Next, each

fold is temporarily removed from the dataset, one at a time, then

the other 9-folds are used for training and the held-out fold used as

a testing set for measuring predictive accuracy. The AUROC is the

mean accuracy over the 10 testing sets. The AUROC value

reported later is the mean over 30 runs of 10-fold cross-validation,

to get more stable results, considering the randomized nature

of RFs.

In each fold of the (external) cross-validation procedure we have

used an internal 5-fold cross-validation procedure (on the training

set only) to optimize the two most important parameters of the RF

algorithm: mtry (the number of randomly sampled candidate fea-

tures for selecting a split feature in an RT node) and nTree (the num-

ber of RTs in the RF). We have tested all pairwise combinations of the

mtry values in the set f
ffiffi
J

p
� 0:5;

ffiffi
J

p
;
ffiffi
J

p
� 2g where J is the number of
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features in the dataset, and nTree values in the set {100, 200, 300};

and used the pair with highest predictive accuracy on the internal

cross-validation as the parameter-value pair for that external cross-

validation fold.

Our dataset is highly unbalanced towards the class ‘no change in

expression (N)’ with age, which has many more instances than the

classes ‘over-expressed (O)’ and ‘under-expressed (U)’ with age.

This leads to RFs models that are overly-conservative when predict-

ing the minority classes ‘O’ and ‘U’. To attenuate this, we have per-

formed an under-sampling of instances with classes ‘N’ and ‘O’ in

the in-bag set (used to train the RF). That is, instances of classes ‘N’

and ‘O’ were randomly deleted until the three classes have the same

number of instances––i.e. the number of instances in class ‘U’. We

have performed experiments with and without this under-sampling,

as reported later.

In order to measure the importance of features in the RF model,

we have used the whole dataset to induce a final RF model using the

pair of mtry and ntree values most frequently selected across the 10

external cross-validation folds; which was the pair: nTree¼300,

mtry¼43 (
ffiffiffiffiffiffiffiffiffiffiffi
7490
p

� 0:5). This final model was induced using the

above-described under-sampling, since these produced overall better

results.

4.2 Measuring the importance of positive feature values
To measure the importance of each positive feature value in a RF

model, we propose the ‘Computing the Predictive Accuracy of

Random Tree Rules with Positive (6) Feature Values’

(COMPACTþFV) Algorithm, described below. The main motiv-

ation for this algorithm is, when calculating the importance of a fea-

ture f, to consider only the IF-THEN rules in the RF that contain

‘positive values’ of the feature f, as defined below. Note that every

root-to-leaf path in an RF forms an IF-THEN rule, where the set of

conditions along the path is the IF part and the class predicted by

the leaf is the THEN part of the rule.

For the binary features used in this work we define a positive fea-

ture value as the value representing the presence (rather than ab-

sence) of the biological property linked with the feature. We use

Gene Ontology (GO) terms as binary features, so a positive (nega-

tive) feature value indicates that an instance (gene) is (is not) anno-

tated with a given GO term.

Considering only positive feature values has two major motiva-

tions: (1) Positive feature values tend to have a much higher

level of confidence than negative ones. This is because a positive

feature value indicates that ‘there is evidence’ for a given GO term;

whilst a negative feature value indicates a ‘lack of evidence’ for

that GO term––note that lack of evidence is different from

evidence of absence. (2) Positive feature values are much more

informative than negative ones. This is because a positive value

tells us an instance (gene) has a certain biological property

(GO term); whilst a negative value does not tell us any property

possessed by a gene.

Recall that, for each RT in an RF model, each non-leaf node

represents a test based on the value of a feature, leading to two

child nodes––each of them associated with a condition that an

instance must satisfy to reach that node. These two children

correspond to the ‘positive’ and ‘negative’ values of the feature in

the parent node.

COMPACTþFV, presented in Algorithm 1, iterates over every

RT in the RF and for every feature, it extracts every IF-THEN rule

(if any) containing the positive value of that feature and uses that

rule’s statistics to measure the feature’s importance. The accuracy

statistics of a rule in an RT are calculated using its Out-Of-Bag

(OOB) instances, i.e. the instances that were not used to train that

RT. Algorithm 1 extracts from the RF two statistics for each feature

f and class c: (a) Covfþc, the OOB coverage, i.e. the total number of

OOB instances covered by rules containing the positive value of fea-

ture f that predict class c; and (b) Hitsfþc, the OOB hits, i.e. the total

number of OOB instances correctly classified by rules containing the

positive value of feature f that predict class c. Note that our import-

ance measure (and also the IPM importance measure) cannot be cal-

culated by analysing only the structure of RF: they also depend on

the OOB instances of each RT.

After Algorithm 1 finishes executing, all importance scores for

every feature f and class c (Precfþc) in an RF are computed. Recall

that Precfþc is the precision of all rules containing the positive value

of feature f that predict class c.

4.3 An example of the use of the COMPACT 1 FV

algorithm
Next, we show the calculation of PrecGO:0006887þN, i.e. the import-

ance of a positive feature value representing the presence of the

GO term ‘GO:0006887’ (exocytosis) to predict class ‘no change of

expression’ with age in the brain (N). Let us assume that there are

three rules in the RF that predict class ‘N’ using the positive value

for feature ‘GO:0006887’. Next we present these rules using the

following format: each rule contains conditions (RT nodes) involv-

ing a feature (where ‘1’ and ‘0’ denote the presence and absence of

a GO term annotation, respectively) and in parenthesis the distri-

bution of class frequencies of the OOB (Out Of Bag) instances that

satisfied all conditions of the rule. After the OOB class distribu-

tion, we present the class predicted by the rule (the most frequent

class in the in-bag instances used to build the RT). For pedagogical

purposes, Figure 1 shows a fictitious RT that contains the same

rules.

Algorithm 1 The COMPACTþFV algorithm

1: procedure COMPACTþFV(Forest, Features)

2: Initialize the counters Hitsfþc and Covfþc with the value

zero for every feature f and class c.

3: for each feature f in ‘Features’ do

4: for each tree t in the Forest do

5: Get all root-to-leaf rules in t with the positive value

of f.

6: for every such rule, r do

7: Get the class that r predicts (class c), the number

of OOB instances that r covers (cov) and the

number of correctly classified OOB instances

(hits).

8: Update the values of the Cov and Hits counters:

9: Hitsfþc  Hitsfþc þ hits

10: Covfþc  Covfþc þ cov

11: end for

12: end for

13: for every class c do

14: Compute the precision of the positive value of f:

15: Precfþc  Hitsfþc=Covfþc

16: end for

17: end for

18: end procedure
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Rule 1: GO:0043230 ¼ 1 AND GO:0006887 ¼ 1 AND

GO:0043005 ¼ 1 (N: 35, U: 1): N

Rule 2: GO:0043230 ¼ 1 AND GO:0006887 ¼ 1 AND

GO:0043005 ¼ 0 AND GO:0042221 ¼ 0

(N: 145, O: 2, U: 3): N

Rule 3: GO:0043230 ¼ 0 AND GO:0006887 ¼ 1

(N: 7, U: 3): N

Finally, to calculate the importance measure for feature

‘GO:0006887’ for class ‘N’ we must retrieve the rule-based cover-

ages and hits: the first rule covers 36 OOB instances (genes), 35 of

which were correctly classified (thus 35 hits). The second rule covers

150 OOB instances, 145 of which were correctly classified. The

third rules cover 10 instances, 7 of which were correctly classified.

So, the positive value of feature GO:0006887 has a rule-based preci-

sion of 0.9541 [the total rule-based hits divided by the total rule-

based coverage: ð35þ 145þ 7Þ=ð36þ 150þ 10Þ].

5 Results and discussion

5.1 Predictive accuracy results
Table 1 shows the mean AUROC of the RF models per class and for all

classes as a whole, with and without the in-bag under-sampling, across

30 runs of the 10-fold cross-validation procedure, as described earlier.

As shown in Table 1, the RF using under-sampling has better

predictive accuracy than the RF without under-sampling. In addition,

inducing the RF model with under-sampling takes on average 3.8h for

each cross-validation run, which is much faster than the average

70.4 h to induce the RF model without under-sampling. This is due to

the reduced in-bag set size when using under-sampling.

5.2 Feature importance results
Table 2 shows the most important GO terms based on the ranking

by the proposed rule-based Precision measure. Table 3 shows the

most important GO terms based on the ranking by the Intervention

in Prediction measure (Section 2.2), a state-of-the-art measure of

feature importance.

Contrasting the two tables, it is clear that the rule-based

Precision and the Intervention score lead to very different sets of

top-ranked GO terms. Unfortunately, the intervention-based rank-

ing is not useful for identifying GO terms that are strong predictors

of a single class, since the top-ranked GO terms based on that score

are very similar for all three classes.

This is despite the fact that this score was computed for instances

of each class separately. This result is due to the fact that the

Intervention score reflects the use of both positive and negative fea-

ture values. Actually, for most features in our dataset, the large ma-

jority of instances have a negative feature value. Hence, the negative

value of a feature tends to contribute more to its Intervention score

than its positive value. Since negative feature values are much less in-

formative than positive ones (as discussed earlier), this has the un-

desirable effect of preventing the identification of positive feature

values which are relatively rare but provide much more informative

predictions for a given class.

In contrast, the rule-based Precision focuses on rules containing

only positive feature values, without being distracted by negative

values. As a result, this measure successfully identifies different sets

of top-ranked GO terms for predicting different classes. In addition,

in general, the GO terms in Table 2 (Precision-based ranking) de-

scribe more specific and more informative gene properties than the

more generic (often very broad) GO terms in Table 3 (intervention-

based ranking).

These results reflect the different biases of the two measures. The

Intervention measure rewards mainly the high frequency of use of a

feature in an RF, without explicitly rewarding predictive accuracy.

This measure implicitly rewards accuracy, since highly accurate fea-

tures tend to be used to classify more instances. However, since the

negative value of a feature is used to classify many more instances

than its positive value, the measure is biased towards rewarding fea-

tures with accurate negative values, rather than accurate positive

values. In contrast, the rule-based Precision measure rewards mainly

the predictive accuracy of a positive feature value in an RF’s rules.

The trade-off is that positive feature values have a relatively small

frequency of use (see the Rule Hits column in Table 2); but this is

overall a good trade-off, since the negative feature values are not

very informative, as discussed earlier.

Hence, in the remainder of this section, we focus on the top-

ranked GO terms identified by the rule-based Precision measure

(Table 2). This table contains 18 top-ranked GO terms predicting

the ‘over-expressed’ (O) and ‘no change with age’ (N) classes. There

are 26 GO terms whose positive value has the maximum rule-based

Precision of 1.0 when predicting the class ‘N’, we only show the top-

18 in the table (sorted by the second criterion, the rule-based cover-

age). Most of these GO term annotations also have large numbers of

rule-based Hits in the Out-of-Bag instances, as shown in the table,

since this class has a prior probability (relative frequency) of 96.8%.

The top-18 GO terms predicting class ‘O’ in the table have overall

much lower rule-based Precision and Hits in the Out-of-Bag in-

stances since this class has much fewer instances. However,

these GO terms still have a rule-based Precision substantially higher

than the prior probability of the class ‘O’, which is just 2.4%.

Table 1. Random Forest predictive accuracy results (AUROC) with

and without under-sampling for the classes ‘Over-expressed (O)’,
‘Under-expressed (U)’ and with ‘No change in expression (N)’ with
age in the brain, and the mean AUROC across classes (All)
weighted by their number of instances

Training type Classes

O U N All

With under-sampling 0.758 0.676 0.707 0.708

Without under-sampling 0.733 0.653 0.698 0.699

Fig. 1. Example of a Random Tree used to calculate the statistics

PrecGO:0006887þN . In this tree, leaf nodes (where a prediction is made) are rep-

resented by squares with the predicted class in it, edges in bold form the

relevant rules (a rule is a path from the root to a leaf node). We also show

the OOB Hits and Coverages that are relevant to calculate the statistics

PrecGO:0006887þN
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The top-ranked GO terms predicting the ‘under-expressed’ class are

not shown in this table because they have low rule-based Precision

and Hits (this class’ prior probability is just 0.8%), so they are not

reliable enough for further analysis.

As shown in Table 2, positive feature values of GO terms used to

predict over-expression included immune response pathways, responses

to heavy metal toxicity and endoplasmic reticulum membrane genes.

Over-expression of the immune response (including GO:

2001198, rank 1; GO:0042605, rank 2 and GO:0042611, rank 3) is

a commonly seen signature of the ageing transcriptome. Meta-

analysis of ageing expression studies shows over-expression of im-

mune response genes to be a consistent signature of ageing (De

Magalh~aes et al., 2009). This includes the over-expression of inflam-

mation genes, representative of an ‘inflamm-ageing’ phenotype asso-

ciated with numerous ageing related diseases such as Alzheimer’s

disease and cancer (Xia et al., 2016). S100 proteins (GO:0044548,

rank 13) are also linked to inflammation response, with constitutive

expression in neutrophils and interleukin-induced expression in

other cells. These proteins have been associated with inflammation-

related diseases and cancer, and possibly have a function in extracel-

lular oxidant scavenging (Goyette and Geczy, 2011). Oxidative

damage in the brain increases with age, including lipid peroxidation

and protein carbonylation (Head et al., 2002).

GO terms related to cadmium (GO:0071276, rank 7) and zinc

ion (GO:0071294, rank 5) response predicting over-expression may

be linked, since the toxicity of both metals is oxidative stress based,

the former by depletion of thiol-based antioxidants (Cuypers et al.,

2010), while the latter causes copper deficiency, reducing the cells’

ability to produce copper based antioxidants such as superoxide dis-

mutase (Paynter et al., 1979).

Oxidised proteins may act as an intermediate to protein aggregate

clusters, causing a breakdown of normal cellular function (Squier,

2001). The unfolded protein response (UPR), mediated by the endo-

plasmic reticulum (ER), produces chaperones and upregulates the

Table 2. Top-ranked GO terms (ranked by rule-based Precision) used to classify genes as ‘over-expressed’ and with ‘no change in expres-

sion’ with age in the brain

Rank Feature i.d. Feature name Rule prec. Rule hits

Top-ranked GO terms predicting class over-expressed with age

1 GO:2001198 Regulation of dendritic cell differentiation 0.70 2.90

2 GO:0042605 Peptide antigen binding 0.49 5.80

3 GO:0042611 MHC protein complex 0.40 6.73

4 GO:0050431 Transforming growth factor beta binding 0.39 2.83

5 GO:0071294 Cellular response to zinc ion 0.36 7.97

6 GO:0071556 Integral component of lumenal side of endoplasmic reticulum membrane 0.36 6.45

7 GO:0071276 Cellular response to cadmium ion 0.33 5.07

8 GO:0002479 Antigen proc. and pres. of exogenous peptide antigen via MHC class I, TAP-dependent 0.32 14.57

9 GO:0042590 Antigen processing and presentation of exogenous peptide antigen via MHC class I 0.30 23.97

10 GO:0055038 Recycling endosome membrane 0.29 3.93

11 GO:0046686 Response to cadmium ion 0.28 4.73

12 GO:0060333 Interferon-gamma-mediated signaling pathway 0.27 35.73

13 GO:0044548 S100 protein binding 0.27 0.95

14 GO:0071402 Cellular response to lipoprotein particle stimulus 0.27 0.93

15 GO:0030670 Phagocytic vesicle membrane 0.26 5.07

16 GO:0019865 Immunoglobulin binding 0.26 1.13

17 GO:0012507 ER to Golgi transport vesicle membrane 0.23 10.27

18 GO:0030176 Integral component of endoplasmic reticulum membrane 0.23 5.20

Top-ranked GO terms predicting class no change in expression with age

1 GO:0004930 G-protein coupled receptor activity 1.00 4480.70

2 GO:0006396 RNA processing 1.00 2688.77

3 GO:0050906 Detection of stimulus involved in sensory perception 1.00 2388.67

4 GO:0051606 Detection of stimulus 1.00 2287.60

5 GO:0050907 Detection of chemical stimulus involved in sensory perception 1.00 2237.87

6 GO:0009593 Detection of chemical stimulus 1.00 2079.60

7 GO:0004984 Olfactory receptor activity 1.00 1768.10

8 GO:0050911 Detection of chemical stimulus involved in sensory perception of smell 1.00 1624.60

9 GO:0005882 Intermediate filament 1.00 334.77

10 GO:0034470 ncRNA processing 1.00 302.03

11 GO:0006397 mRNA processing 1.00 301.43

12 GO:0031424 Keratinization 1.00 286.03

13 GO:0000151 Ubiquitin ligase complex 1.00 130.80

14 GO:0007608 Sensory perception of smell 1.00 112.77

15 GO:0032259 Methylation 1.00 110.87

16 GO:0016072 rRNA metabolic process 1.00 108.83

17 GO:0045095 Keratin filament 1.00 107.07

18 GO:0000375 RNA splicing, via transesterification reactions 1.00 99.90

Note: The columns contain: (1) the feature rank, (2) the feature identifier, (3) the feature name, (4) the mean rule-based Precision and (5) the mean rule-based

Hits. Rule-based scores are based on the RF’s predictions on the Out-of-Bag datasets––not used for building the models. See the main text for definitions of

Precision and Hits.
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inflammation response to deal with protein aggregation and misfold-

ing (Cao and Kaufman, 2012). This response is driven by transmem-

brane proteins in the ER and Golgi apparatus, facilitating

communication between these organelles and the nucleus, potentially

explaining the use of related terms (GO:0071556, rank 6;

GO:0012507, rank 17 and GO:0030176, rank 18) to predict over-

expression.

Positive feature values of GO terms used to predict unchanged

expression included receptor activity (including olfaction), RNA

processing and structural genes, however, this is also the largest class

and so there were many other categories with high precision. These

categories are all very large, including genes involved in a wide var-

iety of functions.

G-protein coupled receptor activity (GO:0004930, rank 1) is

closely related to olfaction. Olfactory receptors are a subset of

G-protein coupled receptor and several olfaction-related terms

co-occur with GO:0004930, for instance ‘sensory perception of

smell’ (GO:0007608, rank 14) ‘olfactory receptor activity’

(GO:0004984, rank 7) and ‘detection of chemical stimulus involved

in the sensory perception of smell’ (GO:0050911, rank 8) (Binns

et al., 2009). Olfactory neurogenesis is reduced in aged mice, as is

the ability to distinguish different odours, however, olfactory inter-

neurons are increased (Enwere et al., 2004). Further, ageing-related

diseases such as AD are frequently associated with declined olfac-

tory function (Attems et al., 2005). In humans, the olfactory bulb

appears to be the main benefactor of neuronal progenitor cells

migrating from the lateral ventricle, suggesting it is more capable of

neuroregeneration than other areas of the brain (Armstrong and

Barker, 2001). Olfactory genes do not just relate to the sense of

smell, but also to numerous other chemoreceptor mediated func-

tions. For instance, OR51E2 mediates cytoskeletal remodelling and

proliferation in airway smooth muscle cells, in response to short-

chain fatty acids (Aisenberg et al., 2016), while OR10J5 mediates

angiogenesis and stimulates cellular migration (Kim et al., 2015).

RNA processing and its child terms (including GO:0006396,

rank 2; GO:0034470, rank 10 and GO:0006397, rank 11) is a huge

category containing over 4000 annotations in humans. While there

is no evidence that the category changes in expression with age,

there is a sex difference in humans with the ageing male brain under-

expressing RNA processing GO groups relative to females

(Berchtold et al., 2008). Likewise, the various structural GO groups

highlighted are large and integral to basic cellular function.

Intermediate filaments (GO:0005882, rank 9) play an important

structural role in the brain, supporting axons and allowing an in-

crease in axonal diameter (Fuchs and Cleveland, 1998). In addition,

intermediate filaments including keratin filaments (GO:0045095,

rank 17) have been implicated in numerous diseases, including can-

cer, and have possible roles in stress resistance and ageing (Hyder

et al., 2011).

6 Conclusion and future work

Existing measures of feature importance for RFs do not differentiate

between positive (the presence of a property) and negative feature

values (the lack of evidence for a property). This is an important

limitation, as for many feature types used in bioinformatics, like the

very popular Gene Ontology (GO) terms-based features used in this

work, positive feature values are much more informative than nega-

tive values. This is because the presence of a property (like a GO

term annotation) gives much more useful information about a gene

than the absence of a property. In addition, negative feature values

are less reliable because they encode absence of evidence, rather

than evidence for the property’s absence.

For this reason, we have proposed a new feature importance

measure that evaluates the precision (predictive accuracy) of only

Table 3. Top-ranked GO terms [ranked by the Intervention in

Prediction score (Epifanio, 2017)] used to classify genes as ‘over-

expressed’, ‘under-expressed’ and with ‘no change in expression’

with age in the brain

Rank Feature i.d. Feature name Interv. score

Top-Ranked GO terms predicting class over-expressed with age

1 total Number of GO annotations 1.22e–02

2 GO:0043005 Neuron projection 5.61e–03

3 GO:0097458 Neuron part 5.55e–03

4 GO:1903561 Extracellular vesicle 5.36e–03

5 GO:0070062 Extracellular exosome 5.33e–03

6 GO:0043230 Extracellular organelle 5.01e–03

7 GO:0044456 Synapse part 4.70e–03

8 GO:0002376 Immune system process 4.43e–03

9 GO:0042995 Cell projection 4.25e–03

10 GO:0044421 Extracellular region part 4.21e–03

11 GO:0031982 Vesicle 3.77e–03

12 GO:0044444 Cytoplasmic part 3.58e–03

13 GO:0002252 Immune effector process 3.45e–03

14 GO:0050896 Response to stimulus 3.07e–03

15 GO:0002682 Regulation of immune system process 2.72e–03

16 GO:0048731 System development 2.56e–03

Top-ranked GO terms predicting class under-expressed with age

1 total Number of GO annotations 1.30e–02

2 GO:0043005 Neuron projection 6.81e–03

3 GO:0097458 Neuron part 6.51e–03

4 GO:0044456 Synapse part 5.73e–03

5 GO:1903561 Extracellular vesicle 5.15e–03

6 GO:0070062 Extracellular exosome 5.11e–03

7 GO:0042995 Cell projection 4.82e–03

8 GO:0043230 Extracellular organelle 4.80e–03

9 GO:0044421 Extracellular region part 4.27e–03

10 GO:0002376 Immune system process 4.10e–03

11 GO:0031982 Vesicle 3.79e–03

12 GO:0044444 Cytoplasmic part 3.77e–03

13 GO:0050896 Response to stimulus 3.04e–03

14 GO:0048731 System development 2.92e–03

15 GO:0002252 Immune effector process 2.88e–03

16 GO:0007399 Nervous system development 2.84e–03

Top-ranked GO terms predicting class no change in expression with age

1 total Number of GO annotations 1.43e–02

2 GO:0097458 Neuron part 5.36e–03

3 GO:0043005 Neuron projection 5.31e–03

4 GO:1903561 Extracellular vesicle 4.85e–03

5 GO:0070062 Extracellular exosome 4.77e–03

6 GO:0043230 Extracellular organelle 4.55e–03

7 GO:0044456 Synapse part 4.43e–03

8 GO:0044421 Extracellular region part 4.05e–03

9 GO:0042995 Cell projection 4.03e–03

10 GO:0044444 Cytoplasmic part 3.97e–03

11 GO:0002376 Immune system process 3.91e–03

12 GO:0031982 Vesicle 3.66e–03

13 GO:0050896 Response to stimulus 3.21e–03

14 GO:0005515 Protein binding 2.98e–03

15 GO:0048731 System development 2.79e–03

16 GO:0008150 Biological_process 2.75e–03

Note: The columns are: (1) the feature’s rank, (2) the feature’s identifier,

(3) the feature’s name and (4) the Intervention score. The ‘Total’ feature is the

number of GO terms annotated for each gene.
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the positive feature values in an RF, without being unduly influenced

by the negative feature values. This measure works by finding rules

(root-to-leaf paths) in the RF that use the positive feature value to

predict a class of interest and then measuring the combined precision

of these rules.

We have compared the results of using our feature importance

measure against a state-of-the-art feature importance measure (the

Intervention in Prediction measure), on a dataset created to predict

whether or not a gene is ‘over-expressed’, ‘under-expressed’ or has

‘no change in expression’ with age in the human brain, using Gene

Ontology (GO) terms as features. We have contrasted the top-

ranked GO terms based on the rankings produced by our rule-based

Precision measure and the Intervention in Prediction measure, and

have concluded that the most important GO terms based on the

Precision measure are more useful (more informative) to study our

ageing-related problem. As evidence for this, we presented an inter-

pretation of the biological meaning of the top-ranked GO terms, ac-

cording to the proposed rule-based Precision measure.

As future work, we plan to apply our feature importance measure

to other human tissues, and use other feature types besides GO terms.
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