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Abstract

Motivation: The incidence of ageing-related diseases has been constantly increasing in the last decades,
raising the need for creating effective methods to analyse ageing-related protein data. These methods
should have high predictive accuracy and be easily interpretable by ageing experts. To enable this, one
needs interpretable classification models (supervised machine learning) and features with rich biological
meaning. In this paper we propose two interpretable feature types based on KEGG pathways and compare
them with traditional feature types in hierarchical classification (a more challenging classification task
regarding predictive performance) and binary classification (a classification task producing easier to
interpret classification models). As far as we know, this work is the first to: (1) explore the potential of
the KEGG pathway data in the hierarchical classification setting, (2) use the graph structure of KEGG
pathways to create a feature type that quantifies the influence of a current protein on another specific
protein within a KEGG pathway graph, and (3) propose a method for interpreting the classification models
induced using KEGG features.
Results: We performed tests measuring predictive accuracy considering hierarchical and binary class
labels extracted from the Mouse Phenotype Ontology (MPO). One of the KEGG feature types leads to
the highest predictive accuracy among five individual feature types across three hierarchical classification
algorithms. Additionally, the combination of the two KEGG feature types proposed in this work results in
one of the best predictive accuracies when using the binary class version of our datasets, at the same time
enabling the extraction of knowledge from ageing-related data using quantitative influence information.
Availability: The datasets created in this paper will be freely available after publication.
Contact: ff79@kent.ac.uk
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Ageing-related diseases are affecting an increasing number of people. At
the same time, delaying ageing in humans seems to be more and more
plausible in the not so distant future. Biologists can already extend the
lifespan of several animal species such as the fruit fly and the mouse. The
potential economical benefit of investing on this type of research is clear:
it is projected that the economical value of adding 2.2 extra healthy years
to the human population is $7.1 trillion dollars over 50 years in the United
States alone (Goldman et al., 2013).

One of the aims of ageing-research is to treat ageing as a whole,
reducing the incidence of many different ageing-related diseases at the

same time, instead of focusing on individual diseases. This approach
promises to be much more effective than the current approach of treating
individual diseases and has the potential of stopping the trend of increasing
costs of treating ageing-related diseases (Goldman et al., 2013). One way
to study the ageing process holistically is to use data mining algorithms to
find connections between genes or proteins that are known to be ageing-
related and other genes or proteins that have unknown function using the
ever increasing freely accessible biological data.

Two databases of interest for ageing experts are the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al., 2016) and
the Mouse Phenotype Informatics (MPI) (Eppig et al., 2015) databases.
The MPI database contains, among other data, the definition of an ontology
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of ageing-related terms that describe the phenotype of several allele-
mutations. The KEGG database also contains several types of information
about genes and proteins, including pathway information presented in
a graphical way that allows biologists understanding the interactions of
proteins in complex biological processes.

We address two types of classification (supervised machine learning)
problems: binary classification, where instances (proteins) are annotated
with the presence or absence of a class (indicating if the protein is ageing
related); and hierarchical classification; where the classes to be predicted
(protein functions) are organized into a hierarchy, where more generic
functions are ancestors of more specific functions (Silla Jr. and Freitas,
2011a). Note that this is a more complex but more rewarding problem
than conventional classification, since the latter ignores hierarchical
relationships among classes. We address the hierarchical classification task
because the terms in the MPI ontology are hierarchical, and address the
binary classification task because it produces classification models easier
to interpret, from an ageing-biology perspective. In both tasks, it is crucial
to describe each instance (protein) by a set of features (protein properties)
that has both good predictive power and rich biological meaning.

The contributions of this work are three-fold: (1) the integration of
data from the MPI and KEGG databases to create a new numerical KEGG
feature type with rich biological meaning. This new feature type quantifies
how an instance (protein) influences other proteins, the idea being that
proteins that influence other proteins in a similar way have similar function;
(2) the new investigation of the use of the binary KEGG feature type in
the context of hierarchical classification; and (3) proposing a method for
interpreting classification models generated using KEGG features.

The construction of specially tailored, meaningful features for specific
problems is part of the feature engineering process (Forman, 2002; Yepes
et al., 2015). The objective is to introduce carefully crafted features for
the type of problem being addressed. In the bioinformatics field, it has
been common to use features that are easily extractable from the protein
sequence or from some database containing several protein properties.
These features, although valuable, often lack the preciseness an expert
needs to reach a meaningful biological conclusion. This works differs
from current practice by creating a new KEGG pathway-based feature
type that encodes precise and meaningful relations between proteins.

This paper is organised as follows: Section 2 describes how we built our
ageing-related datasets, including the proposed KEGG features. Section 3
reports the predictive power of our features across hierarchical and binary
classification algorithms and the interpretation of a binary classification
model using some of the proposed features. Finally, in Section 4 we discuss
the results of our work and draw conclusions.

2 Methods

2.1 Creation of the ageing datasets using the Mouse
Genome Informatics dataset

To study the biological aspects of ageing/longevity using hierarchical
classification algorithms, we have built 7 datasets containing features
extracted from the proteins encoded by the genes in the Phenotypes and
Mutant Alleles section of the Mouse Genome Informatics (MGI) database.
The MGI provides the two primary sources of data of our datasets: (1) the
definition of the Mammalian Phenotype Ontology (MPO), the source of
class labels to be predicted, and (2) a list of genotypes annotated with the
phenotypes present in the MPO, the source of the features (predictors).

The MPO is organized as a DAG (Directed Acyclic Graph), where each
node represents a phenotype (an ontology term) and each edge a “IS-A”
relation between phenotypes. Because of the structured organization of the
class labels, this is a hierarchical classification problem, where the class

labels of the instances are organized in a graph, usually a DAG or tree. The
nodes of the graph represent class labels and edges are ’IS-A’ relationships
among class labels. This structural organization means that if an instance
is annotated with a given (specific) class label, it is implicitly annotated
with all ancestor (more generic) class labels.

The MPO contains 10,907 terms in total, and 113 terms under the
term MP:0010768 (ageing/mortality) part of the hierarchy, our research
focus. We consider only the 113 ageing-related terms as class labels for
our study, and discard the others. Considering all 10,907 terms would
generate classification models more focused on predicting non-ageing-
related terms, generating models with less interest for the biology of
ageing. After further discarding MPO terms with less than 10 instances,
we end up with 81 MPO terms, the hierarchical class labels to be predicted.

With the class hierarchy defined, we must create our instances. In
the MGI database, 11,532 genotypes are annotated with at least one
of the 113 mortality/ageing-related ontology terms. Each genotype is
formed by a list of allele-mutations. Each allele-mutation contains (among
other information) one or more protein-encoding genes, which in turn are
associated with particular mutations. Therefore, using the MPO hierarchy
we can associate a protein (instance) with one or more phenotypes
(hierarchical classes). Figure 1 shows these relations graphically.

Phenotype
(Our Classes)

Genotype Allele-
Mutation

Gene
Gene

Mutation
Protein (our
instances)

annotates formed by

contains

associated with
encodes

indirects annotates

Fig. 1. Relationships among MPI elements and the instances in our datasets. Filled edges
represent relationships present in the MGI database. The dashed edge represents the indirect
relation that we use for our datasets. Note that we ignore mutation information.

Note that our instances are proteins encoded by standard genes, not
gene mutations, because, as discussed later, information about proteins is
much richer and precise than information about gene mutations.

However, choosing to use proteins as instances (instead of gene
mutations) has the disadvantage of risking annotating the same protein
with contradictory MPO terms. This may happen because two different
mutations on the same gene may have contradictory effects. E.g., one
mutation may over-express the protein encoded by a gene, while some
other mutation on the same gene may under-express that protein, possibly
leading to opposite MPO terms being associated with the same gene
with different mutations. Since this mutation information is not available
for the classifier, these apparent contradictions (opposite MPO terms
annotating the same instance) may reduce classification performance and
interpretability. However, we consider this compromise acceptable since
the lack of information about particular gene mutations makes the use of
classification algorithms considering gene mutations as instances inviable.

Following this approach, we merged the annotations associated with
the same gene, keeping all MPO terms that were associated with the
different mutations of that gene. After this step, the 11,532 gene-mutations
were reduced to 5,045 genes (without mutation information) keeping all
annotations associated with different gene mutations.

The next step is to retrieve the Entrez Id (unique gene identifier) for each
one of the 5,045 genes associated with the mortality/ageing phenotypes.
Genes without an Entrez Id were discarded, further reducing the number of
instances to 4,575. Finally, we retrieved the UniProt Id associated with each
Entrez Id., using the UniProt ID Mapping Tool. This gives us information
about the protein product associated with each gene. Genes having the
same UniProt Id were discarded, leaving us with the final number of 3,886
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proteins (instances), each instance linked with one protein and a list of
mortality/ageing phenotypes (MPO terms used as class labels).

For the list of 3,886 proteins, we derive five datasets, each with a
different feature type: numeric features, protein motifs features, Protein-
Protein Interaction (PPI) features, and two types of KEGG pathway
features, explained later. We briefly describe next these features.

Numeric dataset - We extracted the following numeric features from the
amino acid sequence of the proteins, described by Salama and Freitas
(2013); Silla Jr. and Freitas (2011b): “Amino Acid Composition” (21
features, 20 from standard amino acids and one for Selenocysteine),
“Composition” (3 features), “Transition” (3 features), “Distribution”
(15 features), and “Z-Values” (15 features), “Sequence Length”, and
“Molecular Weight”, totalling 59 features.

Protein motif dataset - The binary motif features represent the presence
or absence of a motif in the amino acid sequence of the protein. A motif
is a template describing sequences of amino acids that occur recurrently
in proteins. Motifs serve as a high-level representation of a protein and
it is expected that proteins sharing some specific motifs share similar
functions. We have used the same motif features studied in Silla Jr. and
Freitas (2011b): Interpro, Pfam, Prosite, and PRINTS. We have considered
the motifs occurring in at least 1% of proteins (instances) in the dataset,
to avoid classifier overfiting, resulting in a total of 95 motif features.

Protein-Protein Interaction (PPI) dataset - This type of binary feature
indicates whether or not an ageing-related protein interacts with each
of a set of other proteins (which may or may not be ageing-related
proteins). Interacting partners of one protein often give away hints of
its function (Sharan et al., 2007). We have used the BioGrid1 database
to extract PPIs and have only considered features representing interacting
partners occurring in 1% or more instances in the dataset, to avoid classifier
over-fitting. This resulted in a total of 13 PPI features.

KEGG Pertinence (KEGGP) pathway dataset - KEGG pathways are
directed-graph representations of interactions between several types of
biological products (e.g., genes or proteins). To build our KEGG pathway
features we have parsed the KGML representations of the mouse KEGG
pathways under the condition that at least 1% of our instances must be
present in the pathway in other for the pathway to be considered. This
generated a total of 221 KEGGP features.

We have created two pathway feature datasets. The first, similarly to the
PPI and motif datasets, contains binary features informing the pertinence
of each instance (protein) into several KEGG pathways. We call this dataset
KEGGP (KEGG Pertinence) from now on. Pertinence features based on
KEGG pathways have already been explored in other works involving
data-mining, e.g., (Jungjit et al., 2014; Keerthikumar et al., 2009).

KEGG Influence (KEGGI) pathway dataset - In this dataset, the
KEGG pathway features represent the relative influence of an instance (the
reference protein) on the other proteins that are downstream in relation to
the instance in some KEGG pathway. This feature quantifies an influence
that an instance (reference protein) has on the downstream proteins of a
KEGG pathway, the idea being that proteins that have a common influence
on a set of downstream protein share similar function. Consider that one
ageing-related protein affects a set of downstream proteins in a given way.
If another protein affects the downstream proteins in a similar way, then it
is likely that that protein is also ageing-related.

The use of complex KEGG-based pathway features for data-mining
has been proposed in other works: Zhang and Wiemann (2009) proposed
a software tool to construct a graph-based model of KEGG pathways. Xia
and Wishart (2010) used graph-based KEGG features for metabolomics

1 http://thebiogrid.org

analysis. Chen et al. (2010) used characteristics extracted from the KEGG
pathway graph to classify the pathways into “biologically meaningful” or
not. Breitkreutz et al. (2012) correlated the complexity of cancer-related
KEGG pathways to patient survivability. Despite being previously used
for different goals, as far as we know, this paper is the first work proposing
complex KEGG-based features for the classification of protein functions.

The influence score for a given protein p has the minimum value of
0.0 when the reference protein (Pref ) does not influence p at all, because
p is not “downstream” of (i.e., cannot be reached from) Pref .

Figure 2 shows an example of the calculation of the proposed
“influence” score for a hypothetical instance (reference protein) and a set
of downstream proteins. Proteins P1, P2 and P6 in have a score of 0.0,
since they are not downstream of Pref .

The score of a given protein p that is downstream of Pref has the
maximum value of 1.0 if, when Pref is removed from the pathway, the
downstream protein p becomes unreachable from the proteins that are not
downstream proteins of Pref . The biological meaning that we want to
capture is that a knockout on Pref would nullify the standard behaviour
of the downstream protein p. ProteinsP3 andP7, in Figure 2, have a score
of 1.0 since if Pref is removed from the pathway, proteins P3 and P7

will be disconnected from the KEGG pathway graph defined by the set of
proteins that are not downstream proteins.

If the score of a given protein p that is downstream of Pref has a
value of 0.5, it means that Pref accounts for half of the influence that
the downstream protein p receives. Removal of Pref would not nullify
completely the standard behaviour of the downstream protein p, because
there would be one more protein (which is not downstream in relation to
Pref ) that also affects p, therefore the influence of Pref on p is 50%.
Protein P5, in Figure 2, has a score of 0.5 because if one removes protein
Pref from the graph, proteinP5 would still be reachable from proteinP2,
which is not a downstream protein.

In practice, to calculate the value of the features for each instance,
we need to build two sets of proteins: the first, the downstream proteins,
comprises the proteins that are downstream of the current instance, Pref .
The second set, the non-downstream parent proteins, contains the proteins
that are not downstream of Pref but are the parents of a protein that is
downstream of Pref - e.g., proteins P2 and P6 in Figure 2. Finally, for
each downstream protein, the influence score is equal to 1/(1+peffect),
where peffect is the number of non-downstream parent proteins that have
an effect (direct or indirect) on the downstream protein. We consider that
a non-downstream protein has an effect on the downstream protein if the
non-downstream proteins can reach the downstream protein.

To illustrate these concepts in detail lets us consider protein P8 (see
Figure 2), which is in the set of downstream proteins of Pref . Because
both non-downstream parent proteins affectP8 (bothP2 andP6 can reach
P8) the value of the influence score for P8 is 1/(1 + 2) = 0.3.

This gives us a set of downstream protein scores for the instance. We
repeat this procedure for every available KEGG pathway. If the same
downstream protein occurs more once in the same pathway, we keep the
highest score. We discard the features (downstream proteins) with value >
0.0 in less than 1% of the instances, totalling 1331 features. We call this
KEGG pathway dataset KEGGI (KEGG Influence) from now on.

Combined Datasets - We have created two datasets by combining some
feature types. The first dataset was created by joining all 5 feature types
into a single dataset. We call it the ‘ALL’ dataset. The goal of creating
this dataset is to investigate if joining feature types from different domains
increases the overall predictive performance of the classifiers.

We have also joined the KEGGI and KEGGP datasets to create a new
dataset called “KEGGPI”. The KEGGPI dataset combines two similar
feature types with complementary characteristics: while the KEGGP
feature type provides the coarse-grained information about the pertinence
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P1 Pref P2

P3 P4 P5 P6

P8P7

s = 1.0 s = 0.5 s = 0.5

s = 0.3s = 1.0

Fig. 2. Example of score values (s) for five downstream proteins (P3, P4, P5, P7, P8)
in relation to a reference protein Pref . Diamond-shaped nodes represent proteins that are
parent of some downstream protein but are not downstream protein themselves.

of a protein in a KEGG pathway, the KEGGPI feature type encodes the fine-
grained information of the influence of a protein in a KEGG pathway. We
expect that by combining these two feature types, with different strengths,
will result in models with superior predictive performance.

2.2 Hierarchical classification algorithms

Interpretability is a desirable characteristic when designing features for
classification (Freitas, 2013) as long as predictive power is not sacrificed.
In order to check if our newly proposed KEGG features have at least
comparable predictive power in relation to the other three types of features
(numeric, PPI and motifs) used in (Fabris and Freitas, 2014), we use the
following hierarchical classification algorithms.

2.2.1 The Predictive Clustering Tree (PCT) algorithm
The PCT algorithm (Struyf et al., 2005) creates a decision tree finding
binary splits that recursively divide the training data in two disjoint clusters
until a given threshold that measures the quality of the split is not met.
In the testing phase, the algorithm finds which cluster (leaf node of the
tree) the instance belongs to using the tree induced in the training phase
and then returns a class probability vector that represents the probability
of the instance belonging to each one of the hierarchical classes. This
class probability vector is calculated by first creating a binary vector for
each instance in the cluster. The i-th position of this binary vector has
the value ‘1’ if the instance is annotated with the i-th class label and
‘0’ otherwise. The PCT’s final class probability vector is the average
of the binary vectors of the instances in the cluster. Note that the class
probability vectors are guaranteed to be consistent with the class hierarchy
(the computed probability of each child class is always smaller than or
equal to the probability of its parent classes).

2.2.2 The Hierarchical Dependence Network Using Non-Structural
Relationships (HDN-NSR) algorithm

A dependence network is a Probabilistic Graphical Model (PGM) where
nodes represent random variables (features or classes) and directed edges
represent dependencies among variables (Heckerman et al., 2001).

The Hierarchical Dependence Network (HDN) algorithm (Fabris and
Freitas, 2014) is a type of PGM that uses the Gibbs Sampling algorithm to
predict the probability of a protein belonging to each one of the hierarchical
classes. The HDN algorithm uses the relationship given by the class
hierarchy to create the edges of the Dependency Network. The main
advantage of the HDN algorithm is that, contrary to most PGMs (e.g.
Bayesian Networks), it allows for loops in the graph-representation of the
dependencies among the random variables.

This work uses the HDN-NSR variation of the HDN algorithm (Fabris
and Freitas, 2015), which uses a more sophisticated procedure to find
the relationships between the classes of the hierarchy. It has been shown
that HDN-NSR has overall better predictive performance than HDN and
greater potential for finding relations that were not initially present in the
class hierarchy, possibly useful for biologists studying the ageing process.

The HDN-NSR algorithm uses a standard classification algorithm with
probabilistic outputs to estimate the probability of each hierarchical class.
We have chosen to use the SVM (Support Vector Machine) classifier due
to its high predictive power, and we applied the F-test feature selection
method (Hall, 1999) to reduce the feature space. To train the classifier for
each class ci we consider as positive examples the instances annotated
with class ci or any of its descendants, and as negative examples the
complementary set of instances.

After we run the HDN-NSR classifier we limit the value of the
probability of each class to the minimum probability of its parents, to
maintain the classification consistence across the class hierarchy.

2.2.3 The Local Hierarchical Classifier (LHC) algorithm
The LHC algorithm is a collection of flat binary classification algorithms
trained to predict independently each one of the classes in the hierarchy.
We have again used the SVM algorithm as a base classifier applying the
F-test feature selection algorithm prior to training the algorithms. We have
also used the same strategy to define the positive and negative examples
that we used for the HDN-NSR algorithm.

Usually, when using the LHC approach in the testing phase, the top-
down strategy is applied: first, the highest-level classes (excluding the
root node) are predicted. Then, the algorithm recurses to the children of
each positively predicted class, until no positive predictions are made or a
leaf node is reached. As we are dealing with probabilistic classifications
instead of crisp classifications, we apply the same procedure to guarantee
prediction consistence used in the HDN-NSR algorithm, limiting the
probability of each class to the probability of its parents.

2.3 Measures estimating the predictive performance of
hierarchical classification algorithms

We have used three measures of predictive accuracy (AU(PRC),
AUPRCw , and AUPRC (Vens et al., 2008)) based on the Area
Under the Precision Recall Curve (AUPRC). In the flat classification
context this measure works by constructing a PR curve (a plot of the
classifier’s precision as a function of its recall) thresholding the output
(class probability) of the classifier. Each threshold is associated with a
value of precision and recall, corresponding to a point in the PR space. To
obtain a single performance measure from the curve, we calculate the area
under the curve using a trapezoidal approximation (Boyd et al., 2013). A
perfect classifier would have an AUPRC of 1.0. For more detail on how
this measure is calculated, see (Vens et al., 2008).

2.4 Interpreting the classification model induced using
the KEGG pathway features

Initially we generated a classification model using the KEGG features and
all the 81 hierarchical classes in the MPO dataset. However, this led to
results that were difficult to interpret, because the ageing-related proteins
are much less common (85 out of 3886) than the mortality-related proteins.
For this reason, the classification models focused on discriminating the
mortality-related classes much more than the ageing-related classes.

The high class imbalance of the original binary class dataset (only
2% of instances belong to the ‘ageing’ class) is detrimental for classifiers
predicting the ‘ageing’ class, and consequently for interpreting the models.
To tackle this problem, in another experiment, we have introduced two
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simplifications for generating interpretable models: (1) we have joined all
ageing-related classes into a single ageing-related class and all mortality-
related classes into a single non-ageing-related class, transforming the
hierarchical classification problem into a binary classification problem and
(2) we have under-sampled the mortality-related proteins to a 1/1 ratio of
instances between the two classes in the training set.

Also, instead of using the PCT algorithm for generating the
classification models, we used conventional algorithms for binary
classification that generate interpretable models. Namely, we have used
the J48 algorithm, which generates a decision tree, the Decision Table
(DT) algorithm, which generates a table with a set of conditions that
must be satisfied for an instance to be classified as ageing-related, the
PART algorithm, that builds several C4.5 decision trees, extracting rules
from the “best” leafs, and the JRip algorithm, which builds a rule list
by incrementally growing and pruning the model until a given stopping
criterion is met. All four binary classification algorithms are available in
the Weka data-mining tool (Hall et al., 2009).

3 Results

3.1 Predictive accuracy results for hierarchical
classification (with 81 classes)

Table 1. Predictive accuracies of the three hierarchical classification algorithms
over the 7 used datasets. Numbers in boldface represent the top result in the row.
Boldfaced ranks represent the best (smaller) ranks. Daggers (†) denote t-tests
results rejecting the null hypothesis of equivalence between the best feature type
(in boldface) and the current feature type, concluding that the models generated
using best feature type are statistically superior (α = 0.025). Due to lack of
space, the HDN-NSR algorithm is referred to simply as ‘HDN’.

Dataset (Feature Type)

Mea. Alg. KEGGP KEGGI KEGGPI PPI Motifs Num. ALL

A
U
(P

R
C
) PCT 0.715 0.706† 0.714 0.709† 0.710† 0.711 0.714

LHC 0.716† 0.709† 0.714† 0.709† 0.710† 0.718† 0.722
HDN 0.718† 0.710† 0.715† 0.710† 0.711† 0.718† 0.721

Avg. Rank 2.3 6.7 3.3 6.3 5.0 2.7 1.7

A
U
P
R
C

w PCT 0.556 0.547 0.556 0.544† 0.545† 0.537† 0.545†

LHC 0.551† 0.536† 0.541† 0.541† 0.539† 0.551† 0.566
HDN 0.546† 0.526† 0.544† 0.529† 0.536† 0.552† 0.563

Avg. Rank 2.7 5.7 3.0 5.7 5.3 3.7 2.0

A
U
P
R
C PCT 0.146 0.141† 0.144† 0.136† 0.136† 0.128† 0.135†

LHC 0.141† 0.141† 0.143† 0.130† 0.134† 0.134† 0.147
HDN 0.138† 0.129† 0.139† 0.124† 0.131† 0.134† 0.147

Avg. Rank 2.3 4.3 2.0 6.3 4.7 5.7 2.7

Table 1 shows the predictive accuracy results of the 3 algorithms we
have tested in the 7 hierarchical datasets (5 different feature types and 2
combined feature types). Note that in this work we are interested mainly in
comparing datasets (feature types), not algorithms. So, Table 1 shows, for
each accuracy measure, the average rank of each dataset. The average rank
is calculated by first assigning a rank varying from 1 (highest predictive
accuracy) to 7 (lowest accuracy) to each dataset for each combination of
classification algorithm and measure. Next, for each measure, the values
displayed in the “Avg. Rank” rows of Table 1 are calculated by averaging
the ranks of each dataset across algorithms. The best (smaller) average
rank for each accuracy measure is highlighted in boldface.

For each combination of hierarchical algorithm and accuracy measure
in Table 1, we have applied the paired t-test with the Hochberg
correction (Demsar, 2006) for multiple comparisons (using the individual

results on the 10 folds of the cross-validation process) to check if the
predictive accuracy of the model induced using the best dataset in the row is
statistically significantly different from the accuracy of the model induced
by the same classification algorithm using the other dataset. Statistically
significant results are marked with a dagger (†).

Note that the ‘ALL’ dataset is statistically significantly better than all
other 6 datasets when using LHC and HDN-NSR. When using the PCT
algorithm the best dataset is KEGGP. Overall, considering all 3 algorithms,
the best (smallest) average rank was obtained by the ‘ALL’ dataset for
theAU(PRC) andAUPRCw measures, while the combined KEGGPI
dataset had the best rank for the AUPRC measure.

We can also observe that the rank of the KEGGPI feature type was
better than the rank of the KEGGP feature type only when using the
AUPRC measure. We can explain this behavior by analysing the bias
of the AUPRC measure. This measure weighs all hierarchical classes
equally, including those with relatively few proteins. So, classification
models that use a wider range of features types (that can better predict more
classes) are favored in relation to models which are better at predicting
hierarchical classes with more instances using more general feature types.

To find out which individual feature representation is the best, we
removed the combined datasets and performed a second statistical analysis.
In this second study, the KEGGP feature type is always either statistically
significantly better than all other feature types or is in the group of
statistically equivalent feature types that include the best feature type.

It is also import to note that although the KEGGI feature type carries
more complex information than the KEGGP feature type overall, the latter
produces more accurate models. In fact, we have observed that PCT models
generated using the KEGGP feature type have substantially more splits
than the ones generated using KEGGI features. This is due to the smaller
number of non-zero feature values present in the KEGGI dataset, which
culminates in hierarchical classes with too few instances with non-zero
feature values for a good classifier to be induced.

3.2 Results for binary classification

3.2.1 Predictive Accuracy Analysis
We tested 4 well-known algorithms that generate interpretable
classification models from binary class datasets: J48, Decision Table
(DT), JRip and PART; all available in the Weka data mining tool (Hall
et al., 2009). Table 2 shows the Area Under the ROC (Receiver
Operating Characteristic) curve (AUROC) measure results obtained by
the 4 classification algorithms for the 7 used datasets. The rankings of the
feature types are calculated in the same way as described in Section 3.1.

The AUROC measure informs us the quality of the probabilities’
ranking given by the classification model. That is, the AUROC measure
has the maximum value of 1.0 if, for all ageing-related class instances,
this class’ probability estimated by the model is higher than the estimated
probabilities assigned to the non-ageing-related instances. A random
classifier is expected to have a AUROC measure of 0.5.

By analysing Table 2 we can conclude that few feature types have
AUROC values statistically significantly worse (α = 0.05) than the best
performing feature type. This happened in three cases (shown by a dagger
(†)), all when using the PART algorithm: when comparing the ‘ALL’
dataset against the Motif, PPI and KEGGI datasets.

The combined KEGGPI and KEGGP feature types had the best
(smallest) joint predictive accuracy rank across the 4 classification
algorithms in Table 2. If one is interested only in predictive accuracy,
one could use just the KEGGP feature type instead of the combined
KEGGPI feature type. However, when model interpretation is important
(as it is the case here) using the KEGGPI feature type has the advantage
of providing additional, more precise information, while maintaining



i
i

“main” — 2016/5/11 — 18:01 — page 6 — #6 i
i

i
i

i
i

6 F. Fabris and Alex A. Freitas.

Table 2. AUROC measure results for the classification algorithms on the binary
class dataset described in Section 2.4. Boldface numbers highlight the best
result. Daggers (†) next to a result indicate statistically worse results than the
best result for the algorithm in the row, according to a paired t-test using the
Hochberg step-up correction (Demsar, 2006) (α = 0.05). The rank in boldface
indicates the best (smallest) rank.

Alg. Dataset (Feature Type)

KEGGP KEGGI KEGGPI PPI Motifs Numeric ALL

J48 0.584 0.505 0.584 0.508 0.507 0.495 0.566
DT 0.605 0.533 0.593 0.518 0.518 0.484 0.541

JRip 0.556 0.523 0.563 0.520 0.505 0.514 0.461
PART 0.581 0.499 † 0.583 0.504 † 0.485 † 0.543 0.585

Avg. Rank 1.8 4.8 1.8 4.5 6.0 5.8 3.5

predictive accuracy. Therefore, the KEGGPI feature type is useful for
the binary classification problem we are studying.

3.2.2 Interpreting results for binary classification
We have interpreted the model generated for the KEGGPI feature type
induced by the DT (Decision Table) algorithm from the binary class dataset
described in Section 2.4. This choice of classification algorithm/dataset
was made for 3 reasons: the KEGGPI and KEGGP datasets were tied as
the best dataset in Table 2; the KEGGPI dataset comprises the KEGGP
and KEGGI feature types, so we can interpret both at the same time, and;
the DT algorithm had the best predictive performance across the 7 feature
types (winning in 4 out of 7 feature types).

In Table 3 we show the classification rules created by the DT algorithm
for predicting ageing-related protein functions. A rule is a set of feature
values that a protein must have to be classified as either ageing related
or non-ageing related. The first rule of Table 3 means: if a protein is
not present in the KEGG pathways in columns 2-7; and the protein
influences protein P11440 (Cyclin-dependent kinase 1), present in pathway
mmu04110 (Cell cycle); then the protein is likely to be ageing related.
The last two columns of this table show the coverage (number of instances
classified by the rule) and the accuracy (percentage of correctly classified
instances) of each row (rule). Note that the rule containing the ‘yes’
condition for the KEGGI feature type (first row) had the best accuracy
(28%) with good coverage (21 instances). At first glance, an accuracy of
28% seems small, but recall that only 2% of instances are ageing-related,
so an accuracy of 28% is actually a 14-fold increase in relation to the prior
probability of the ‘ageing-related’ class.

In Figure 3 we show how we can use the information given in column
1 (from the KEGGI feature type) to interpret the rules created by the DT.
This figure shows part of the KEGG pathway mmu04110 and highlights
the influence of several proteins on the protein P11440 (CDK1). Our results
suggest that if a reference proteinPref has any influence in CDK1 (feature
value > 0), then Pref is more likely to be ageing-related.

Note that the highlighted proteins are, at the same time, instances and
features for other proteins. For example, the instance representing protein
“Chk1,2” (reference protein) influences protein CDK1 (feature) according
to our score. Therefore, this instance (“Chk1,2”) has a non-zero value in
the feature associated with influence on protein CDK1. At the same time,
CDK1 is also an instance, having features with a non-zero value in the set
of proteins it influences. Note that not all proteins in the KEGG pathway
are instances in our ageing-dataset, i.e., not every protein associated with
a feature is an instance.

In contrast, the KEGGP feature type provides a different type of
information; the conditions involving this feature merely inform the user
if a protein (an instance) is present in a KEGG pathway or not. E.g.,
the seventh row of Table 3 (second most accurate rule) informs us that if a

Table 3. Classification rules that predict the ‘ageing’ class, generated by
the DT algorithm using the KEGGPI dataset. The first column presents
a KEGGI feature; its name shows the Uniprot Id of the protein that is
being potentially influenced by an instance and (after the ‘_’) the Id of the
KEGG pathway where the influence can occur. The next 7 columns show
binary KEGGP features, indicating whether or not an instance belongs to the
corresponding KEGG pathway. The last two columns show the coverage and
the % accuracy of each rule. Due to lack of space, we have suppressed the
“mmu0” prefix in the KEGG pathways ids. Each row shows the conditions
that must be satisfied for a protein to be predicted as ’ageing-related’. The
selected KEGG pathways are: mmu04110 (Cell cycle), mmu04151 (PI3K-
Akt signaling pathway), mmu05168 (Herpes simplex infection), mmu04660
(T cell receptor signaling pathway), mmu04380 (Osteoclast differentiation),
mmu04350 (TGF-beta signaling pathway), mmu04917 (Prolactin signaling
pathway) and mmu03420 (Nucleotide excision repair).

P11440_04110 4151 5168 4660 4380 4350 4917 3420 Cov. %Ac.

> 0 No No No No No No No 21 28
= 0 Yes No No No No No No 139 6
= 0 No Yes No No No No No 59 12
= 0 No No Yes No No No No 27 15
= 0 No No No Yes No No No 21 10
= 0 No No No No Yes No No 49 10
= 0 No No No No No Yes No 13 23
= 0 No No No No No No Yes 20 20

Fig. 3. Graphical representation of the KEGG pathway mmu04110 (Cell cycle) with
highlighted interesting proteins and interactions. The protein complex highlighted with a
solid black line contains the protein “Cyclin-dependent kinase 1” (CDK1), which occurs in
the feature selected by the DT algorithm (see Table 3) The highlighted dashed grey proteins
represent ageing-related proteins that influence CDK1. The highlighted solid grey proteins
represent non-ageing-related proteins that influence CDK1. Solid grey edges represent all
possible influence paths from a solid grey protein to CDK1. Dashed grey edges represent
all possible influence paths from the dashed grey protein to CDK1.

protein is in the KEGG pathway mmu04917 (Prolactin signaling pathway),
is not present in the other selected pathways and has no influence on protein
P11440 in pathway mmu04110, it is likely ageing-related. This suggests
that proteins in the ‘Prolactin signaling pathway’ may have some influence
on the ageing process, so some other proteins present in the same pathway
could be candidates for further investigation.
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4 Discussion
We have presented the construction of two KEGG feature types for the
classification of ageing-related protein functions engineered specifically
with the goal of predicting protein function using interpretable features.

The advantages of using the KEGG-derived features types are two-
fold: (1) the good predictive performance of the models induced using
these two features together, and (2) the improved interpretation potential
of using richer features to represent the instances. In fact, the KEGG
pathway seems to be a very appropriate database to use when interpretation
is required, since it is focused on integrating not only biological data from
several sources, but also concepts about the data (Kanehisa et al., 2011).

The down-side of relying on such rich source of data is that, in order
to compute values of the KEGGP and KEGGI features for an instance,
the corresponding gene or protein must first be characterised into some
KEGG pathway, which involves laborious wet-lab experimentation. So,
an uncharacterised protein represented only by its amino acid sequence
cannot be classified using KEGGP and KEGGI features (nor using PPI
and Motif features). In fact, in this scenario, out of the 5 feature types
used in this work, only the ‘Numeric’ feature type could be used, which is
arguably the most difficult to interpret due to its low level of abstraction.

The KEGG Pertinence (KEGGP) feature type, used for the first time for
hierarchical classification in this work, had the best performance according
to our statistical analysis compared to three other feature types and the
KEEGI feature type, a new KEGG feature type proposed here.

The combined KEGGPI dataset (using both KEGGP and KEGGI
features) had the best mean rank on the binary class dataset, tied with
the KEGGP feature type. Although the KEGGP feature type has a simpler
interpretation, if a richer, more precise model interpretation is desired (as it
is the case here), the combined KEGGPI feature type is more suitable, as it
contains both the easier to interpret KEGGP feature type (at a higher level
of abstraction) and the KEGGI feature type (with finer-grain information).
To illustrate this point, we have shown how the KEGGPI feature type
can be used for generating biological knowledge using the Decision Table
algorithm, which generates interpretable classification models.

We have also contrasted the interpretation of the KEGGI feature type
with the interpretation of the simpler KEGGP feature type and concluded
that the complementary nature of these two feature types provides a good
range of biological information: the KEGGI feature type presents more
precise information to the user, enabling a richer interpretation of the
classification model: it quantifies the influence of a current (reference)
protein on another specific protein in a given KEGG pathway. On the other
hand, the KEGGP feature type tells the user the higher-level information of
which KEGG pathways are important for discriminating between ageing
and non-ageing related proteins.
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