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Abstract

Biologists very often use enrichment methods based on statistical hypothesis tests to identify gene
properties that are significantly overrepresented in a given set of genes of interest, by comparison with a
‘background’ set of genes. These enrichment methods, although based on rigorous statistical foundations,
are not always the best single option to identify patterns in biological data. In many cases, one can also
use classification algorithms from the machine learning field. Unlike enrichment methods, classification
algorithms are designed to maximize measures of predictive performance and are capable of analysing
combinations of gene properties, instead of one property at a time. In practice, however, the majority of
studies use either enrichment or classification methods (rather than both), and there is a lack of literature
discussing the pros and cons of both types of method. The goal of this paper is to compare and contrast
enrichment and classification methods, offering two contributions. First, we discuss the (to some extent
complementary) advantages and disadvantages of both types of methods for identifying gene properties
that discriminate between gene classes. Second, we provide a set of high-level recommendations for using
enrichment and classification methods. Overall, by highlighting the strengths and the weaknesses of both
types of methods we argue that both should be used in bioinformatics analyses.
Keywords: machine learning, enrichment analysis, classification, statistical hypothesis testing.

1 Introduction
Given a pre-defined set of genes (or gene products) associated with some
known process or disease (the seed set), a common bioinformatics task
is to find biological properties shared by the genes, or gene products like

proteins, in the set. This gene set could be, for instance, the set of over-
expressed genes from an RNA-Seq differential expression analysis, or a
compilation of genes associated with some disease of interest. Common
characteristics can help biologists understand the underlying biological
process being studied and also to help identify other genes, not present in
the original set, that may be also associated with the phenotype of interest.
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The most common approach to achieve this goal is to use enrichment
analysis techniques to identify significantly over-represented gene
properties in the seed set. Most enrichment methods work by using a set of
seed genes which are associated with a phenotype (e.g.: are differentially
expressed, genetically associated with a disease, or linked to a target
phenotype). Next, some type of statistical analysis is performed to find
gene properties that are overrepresented in the set of ‘seed’ genes with
respect to some ‘background’ set of genes at a statistically significant
level. Sometimes, another set of genes, called ‘candidate genes’ is also
defined; these are genes that might be candidates for the phenotype of
interest. The candidate genes can be filtered using the enriched properties
(or some other descriptor derived from these properties, e.g.: biological
pathways associated with the enriched properties) as an inclusion criterion
and used as possible targets for further research.

Enrichment analysis techniques have several layers of complexity:
they are usually based on tests of statistical significance which are, by
themselves, nuanced and difficult to interpret [1]. Also, commonly used
gene/protein descriptors have their own set of caveats and complexities [2].
The Gene Ontology (GO), for instance, can be easily misused by
inexperienced users [3] that fail to take its hierarchical structure into
account. In addition, selecting the appropriate statistical test to find
common patterns in the set of enriched genes is a problem in itself, as each
technique has its own biases and limitations [4], as discussed in the next
section. Some authors even recommend trying several types of statistical
tests and selecting the results of the ones that make more biological
sense [2], which is a highly controversial approach due to unintentional
‘p-hacking’ risk [5, 6]. In this approach, all statistical tests that were not
discarded due to issues with their underlying assumptions should always be
reported to the readers, and this approach should be limited to exploratory
studies.

The objective of this paper is to contrast commonly used enrichment
method types with the increasingly popular (but still relatively less popular)
approach of using classification algorithms from the area of machine
learning to find candidate genes for further analysis and extract useful
knowledge from the available data [7, 8], such as a list of predictive
gene properties or rules that predict a phenotype of interest defined
by the user. Classification algorithms work by using a ‘training set’ to
learn a classification model that predicts the value of a class variable.
The training set comprises instances (genes) usually represented as a
numerical feature vector and a class variable with two (or more) possible
class labels (the gene phenotype). In the binary case, usually one class
label is considered the ‘positive’ label (the gene is associated with the
phenotype) whereas the other label is the ‘negative’ one (the gene is not
associated with the phenotype). The classification algorithm treats the
class variable as the ‘ground truth’, meaning that it assumes that each
instance is deterministically associated with a class label, which is not
always the case due to the complex nature of biological processes. In any
case, the classification model can then be used to classify instances in a
‘test set’ which have an unknown class label (e.g.: to classify a new gene
as ‘associated with disease‘ or not). The reader should be aware that the
machine learning nomenclature is not completely standardised, what we
call ‘test set’ here is sometimes called ‘validation set’.

We stress that in this work we assume that the genes under study are
pre-labelled with discrete class labels. Ranked gene lists (e.g. expression
ranks), genes with continuous target variables (e.g. absolute expression
values), and unlabelled gene lists are out of the scope of this paper.

Note that the training set used by classification algorithms is
conceptually similar to the union of the ‘seed’ and ‘background’ genes in
the enrichment setting, since both sets are used as input knowledge by the
methods. In the case of enrichment methods, the ‘positive’ instances (the
instances annotated with a positive class label) come from the ‘seed’ set and
the ‘negative’ instances come from the ‘background’ set. Note, however,

that classification algorithms assume that instances annotated with the
negative class label are necessarily not associated with the phenotype,
while the background set is often the whole genome. Also, the ‘test set’
can be thought of as being similar to the ‘candidate genes’ set, which,
like the ‘test set’, is a set of genes with unknown class labels that may or
may not be associated with the phenotype of interest (the positive class
label), with two differences, as follows. First, the intersection between
the test set and the training set in the classification setting is necessarily
empty, while in the enrichment setting there may be some candidate genes
in the background set [2]. Second, it is assumed that the genes in the
test and training sets are random samples from the same gene population,
whereas the candidate genes are normally chosen because they are more
likely to have the phenotype of interest than the other genes in the genome,
according to expert knowledge.

In this work, we compare classification and enrichment methods by
analysing their approaches of finding over-represented gene properties,
contrasting the underlying assumptions of both methods. We also comment
briefly on the use of classification algorithms to perform gene prioritization
tasks, which is a direct by-product of the machine learning workflow
studied here. The contribution of this paper is twofold. First, we discuss
the advantages and disadvantages of applying classification algorithms
and enrichment methods to identify biological patterns – in particular,
identifying gene properties that discriminate between gene classes.
Second, we provide high-level recommendations for using enrichment
and classification methods.

The remainder of this paper is organised as follows: Section 2 gives an
overview of both enrichment and classification methods for bioinformatics.
Section 3 discusses the advantages and disadvantages of classification
and enrichment methods in bioinformatics (our first contribution). Lastly,
Section 4 presents our conclusions and gives high-level recommendations
for using enrichment and classification methods in bioinformatics (our
second contribution).

2 Background

2.1 Overview of enrichment methods for bioinformatics

Enrichment analysis methods are popularly divided into three categories
[2, 9, 10]: Singular Enrichment Analysis (SEA), Gene Set Enrichment
Analysis (GSEA), and Modular Enrichment Analysis (MEA). Briefly,
these categories group enrichment methods based on the type of statistical
tests used and what corrections, if any, are made.

SEA methods calculate an enrichment p-value for each tested term
based on its representation in a user-defined seed gene set, often using the
hypergeometric distribution [2]. Next, the subset of terms with statistically
significant p-values (after correcting for multiple hypothesis testing) is
considered ‘enriched’ in the gene set.

GSEA methods do not require a user defined seed gene set, instead
calculating an ‘enrichment score’ for each term based on its distribution
along a list of all the genes studied in the experiment, ranked by some
experimental measure such as fold-change or significance of differential
expression. The original GSEA method used a Kolmogorov-Smirnov-like
statistic as the enrichment score [11], whereby the algorithm walks down
the ranked list of genes, increasing a running statistic each time a gene is
annotated with the term of interest and decreasing it each time a gene is
not. The enrichment score is then given as the maximum deviation from
zero that the Kolmogorov-Smirnov-like statistic reaches.

MEA methods build on the SEA and GSEA approaches by
incorporating corrections for the network structures of the data, for
instance by accounting for the hierarchical nature of GO terms or
correlations between genes themselves [2]. A subset of MEA, introduced
by [4] is pathway topology-based approaches (PTA). These methods
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focus on incorporating network and pathway interaction information from
knowledge bases such as KEGG [12], Reactome [13] and RegulonDB [14].
PTA, similarly to GSEA methods, use a ranked list of genes instead of
using a pre-defined score cutoff, with the difference that the structure
of the biological pathways is taken into consideration when computing
gene-level statistics, not just the fact that the gene is in the pathway.

Recently, an ensemble method has been developed which combines
methods from all three categories, referred to as the ensemble of gene set
enrichment analyses (EGSEA) [15]. This approach calculates a range of
gene set statistics using multiple methods and then computes a score based
on these statistics with which to rank the gene set. Although this is only
one approach, it does constitute a potentially new ensemble category of
enrichment analyses.

Although MEA is the most sophisticated non-ensemble approach,
given its incorporation of knowledge on the complex networks common
to biological systems, it is not necessarily the best option. SEA methods
have been shown to give equally good or better results in real datasets [16]
while GSEA may be more appropriate for experimental designs where it
is difficult to provide user-defined gene sets. Examples of this could be
an RNA-Seq experiment producing very few significantly differentially
expressed genes, which would likely result in very few (or no) significantly
enriched GO categories when testing by MEA, or conversely an RNA-Seq
experiment producing thousands of significantly differentially expressed
genes, which would result in a large number of significantly enriched
GO categories when testing by MEA, and thus leave the biological
interpretation of the results open to a large amount of bias based on the
expertise of the researcher analysing them [11].

All of these approaches have proved popular in the analysis of high-
throughput data. SEA methods have been used to good effect for focusing
investigations into differentially expressed gene lists, for instance focusing
a study on multiple sclerosis principally onto the differentially expressed
genes involved in oxidative phosphorylation and synaptic transmission
[17]. Further, SEA methods have been used to link high-throughput results
to an observed phenotype, as in an analysis of a colon and rectal cancer
dataset that was able to link the enrichment of ’response to wounding’
proteins to poor prognosis in these cancers [18]. GSEA methods were
instrumental in establishing the pathways affected by resveratrol, a drug of
interest for its effects on metabolism and lifespan [19, 20], and along with
MEA methods continue to see wide use, for instance in the determination
of pathways involved in cancer [21, 22].

2.2 Overview of classification methods (from machine
learning) for bioinformatics

The classification task is the computational problem of inducing a
classification model that maps given instances to classes using the
(typically) numerical features of each instance (Box 1 gives a complete
glossary of the main machine learning terms used in this paper). We will
now illustrate this with a hypothetical computational experiment wherein
the instances are genes, the features are the GO terms associated to each
gene, and the class label to be predicted is ‘change in expression with age’.
Thus, the purpose of the experiment is to induce a model that, for a given
gene, predicts whether that gene will be differentially expressed with age
based on its associated GO terms.

To perform this experiment, two sets of genes are required – a training
set and a test set. The training set contains genes for which the class label
is already known, in this case it would be a set of genes known to either
be differentially expressed (the positive class label) or not differentially
expressed (the negative class label) with age. The test set on the other hand
contains genes for which the class label is not known, so in this case it
would be all the genes for which the expression change with age was not
known.

Once these sets are established, the classification model can be
constructed based on the training data – a model is created that predicts
whether a given gene will be differentially expressed with age based on its
annotated GO terms. Before applying this model to the test set however,
it should first be validated. Validation is an important step to estimate
the predictive performance (generalization ability) of the model, and thus
estimate its accuracy. In this case, a validation set should be used consisting
of genes with known class labels that were not present in the training set.
It is important that the validation set does not overlap with the training set
to prevent overestimation of the accuracy of the model.

Once the model has been validated, if its estimated predictive
performance is satisfactory then it can be used to classify the test set,
and thus predict hitherto unknown expression changes with age that can
later be validated experimentally (the task is selecting the genes for further
validation is called ‘gene prioritization’). Note that, in academic studies,
very often there is no test set in the aforementioned sense, there is no
‘real’ prediction, and conclusions about predictive power are based on the
validation set only with no empirical confirmation. In addition, machine
learning terminology is not completely standardized and what is here called
the validation set is often called the test set in the literature.

Classification methods have been extensively used in bioinformatics [8,
23, 24]. In this context, usually both the training and validation sets contain
a list of genes with the phenotype of interest (instances with the positive
class value) with a list of genes without the phenotype of interest. Note
that, usually, the latter list is actually a list of genes that are not known to
be associated with the phenotype. The test set is usually a set of genes that
could be associated with the phenotype of interest (e.g.: the whole genome
excluding the genes in the training and validation sets, or a subset of genes
selected using expert knowledge).

Another important aspect of using classification algorithms for gene
prioritization is how to define the numerical features describing the
instances (genes). Popular approaches include the use of experimentally-
derived gene properties, such as: GO terms [25], Protein-Protein
Interactions (PPIs) from BioGrid [26], functional protein associations from
STRING [27], and pathway information from databases like KEGG [12].
The features encoding these properties are normally binary, where a feature
value of ‘1’ (the positive feature value) indicates that the property is
associated with the gene, while a value of ‘0’ (the negative feature value)
means that the property is not currently known to be associated with the
gene. Note that these features suffer from a high level of ‘research bias’,
that is, highly researched genes tend to have more positive annotations
than less popular genes. In addition, the negative value of a feature is much
less informative than the positive value, since the negative value usually
indicates ‘lack of evidence’ rather than ‘evidence of absence’ [28]. There
are ‘lower-level’ features, that are less impacted by research bias, e.g.:
unbiased gene descriptors, such as physicochemical gene properties [29],
gene co-expression scores measured using genome wide methods [30, 31],
and gene expression levels across tissues [32]. The values of these lower-
level features, however, are harder to interpret, i.e., usually it is more useful
to know that a gene is involved in a given biological pathway (higher-level
feature) than to know its expression level (lower-level feature).

In principle, the issues of research bias and uninformative negative
values affect both enrichment and classification methods. Standard
classification methods, however, seem more vulnerable since they tend
to compound these effects while making a prediction, potentially using
several unreliable feature values. Decision trees, for instance, may use
several properties with negative values to predict the class of a single
instance, perhaps with no property being a reliable predictor. Also, the
‘enrichment’ statistics, as the name suggests, are focused on calculating
how probable the observed gene properties are (the properties with positive
feature values) given the null hypothesis, and not the unobserved gene
properties (the properties with negative feature values).
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Machine Learning Glossary

• Classification Algorithm (or method)– An algorithm that builds a classification model from training instances during its training phase. Each
classification algorithm has its own biases, internal representation strategy and limitations.

• Classification Model – A function (in the mathematical sense) that maps a classification instance to a class label.
• Classification Instance – The entity being classified (a gene in our case). A classification instance comprises 2 parts: the features and the classes.

In this work, we are dealing with standard classification problems, where the instances have just one class variable. Note that in the test set (see
below) the instances’ classes are unknown.

• Features – Usually a numerical vector that describes the instances. E.g., a vector of real values representing co-expression strengths; or a vector
of binary features, each representing the presence (value 1) or absence (value 0) of GO terms or KEGG pathways, where the value ’1’ (’0’) for
a feature is also known as the ’positive’ (’negative’) value.

• Vector – An ordered set containing values, usually real numbers.
• Class Variable – A variable in the instance that holds the phenotype of interest (the class labels). For instance: ‘associated with diseases’

(positive class label) and ‘not associated with diseases’ (negative class label). One should be careful not to mix the concepts of class variable
and class label. A class variable is a gene property (e.g.: expression change) and the class labels are the possible values the property can take
(e.g.: over-expression, under-expression, no change in expression). The class variable takes discrete, or nominal, values.

• A Model’s Prediction – The output of a classification model for an instance. The prediction is usually the most likely class label associated with
the instance according to the model. Alternatively, it may be a score for each class label representing the likelihood of each class label being
associated with the instance according to the classification model.

• Training Set – A set of instances with known class labels used by a classification algorithm to induce (build) a classification model.
• Validation Set – A set of instances with known class labels not present in the training set that is used to estimate the predictive power (generalization

ability) of the classification model.
• Test Set – A set of instances with unknown class labels. The instances in this set are presented to the classification model and the model’s predictions

for these instances may be used for further investigation. Note that the machine learning nomenclature is not completely standardised, what we
call ‘test set’ is sometimes called ‘validation set’.

• Predictive Performance – A measure of the accuracy of the predictions of the classification model. This value is estimated by classifying the
validation instances and comparing the model’s predictions with the instances’ class labels. Note that in practice the class labels are temporarily
removed from the validation instances when evaluating a classification model, making sure that the model is not using that information to make
its predictions.

• Hyper-parameters – A set of parameters, set by the user before the training phase. The term ‘hyper’ is used to distinguish such parameter set
before training from other ‘parameters’ learned by the model during its training. Hyper-parameter setting is an important step in the classification
workflow: a poor hyper-parameter setting choice will likely lead to classification models with low predictive power.

Box 1: Glossary of machine learning terms.

Some classification models, besides being useful for predicting the
class labels of unknown-function instances (genes), can also be used
to gain knowledge about the underlying classification problem. For
instance, decision tree models are relatively easy to interpret, being
capable of generating rules involving several features to classify instances,
and have been used in bioinformatics to generate potentially interesting
biological knowledge [23]. Note that the kind of knowledge extracted from
classification models depends on the type of model being used: while
decision trees are capable of generating easily interpretable rules, other
types of classification models (e.g. Bayesian networks) generate models
that can be interpreted with some effort [33]. Other types of classification
models (e.g. deep neural networks) are hardly interpretable at all, requiring
post-processing methods to be analysed [34].

One can also use the output of feature selection methods to get insights
about important features (gene properties) [35]. Feature selection methods
are typically used to rank the features (or feature subsets) in terms of
discriminative power, placing redundant features and features with low
discriminative power lower in the rank than more discriminative ones.
Note, however, that the insight that feature selection methods can provide
is limited. Analysing a simple list of ranked features does not explicitly
show complex feature relationships or value-dependent conditions, which
is the kind of more detailed insight provided by analysing classification
models such as sets of IF-THEN prediction rules or decision trees. For
instance, in [36] the authors report the following classification rule:

IF GO:0050896 (response to stimulus) = yes

  AND GO:0048518 (pos. reg. of biological process) = yes

  AND number_of_protein_interacting_partners > 15

THEN class is aging-related DNA repair gene

which means that, if a gene satisfies all three conditions in its IF part (i.e.,
a case of feature interaction), the gene is classified as an ageing-related
DNA repair gene.

In recent years, the use of deep learning neural networks has been
growing significantly in almost every field where labelled data is abundant,
including biology [37]. Deep neural networks differ from traditional neural
networks mainly in their highly flexible model, capable of automatically
creating higher-level representations of the data that, in many cases, result
in very good predictive performance. However, one should note that this
potential is usually realised when the training sets are considered ‘large’.
As a rule of thumb, training sets should have more than 20,000 instances
and each class label should annotate at least 5,000 instances [38], which
is much more data than available in many biological datasets.

A good example of the practical limitation of deep learning when
the number of instances per class is not large can be found in [39]. In
that work, deep learning was applied to a more complex variation of the
classification task called hierarchical classification [40], where there is a
large number of class labels organised into a hierarchical structure, with
generalization/specialization relationships among the class labels. More
precisely, in [39] two hierarchical classification tasks were addressed,
where the class labels to be predicted are Gene Ontology (GO) terms and
protein families (as defined in the Uniprot database). However, instead of
trying to predict all possible class labels, deep learning was used to predict
only the labels associated with at least 200 instances (genes) in the case
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of GO terms and at least 150 genes in the case of Uniprot (super/sub)
families. This reduced the number of class labels to be predicted to “only”
983 for the GO terms and 698 for Uniprot families. Although these are
large numbers of class labels, they represent a relatively small proportion
of the available class labels and, importantly, in general they represent the
class labels at higher levels of the class hierarchy, i.e. more generic GO
terms or Uniprot families. These are, broadly speaking, the easiest class
labels to be predicted, because there are so many instances annotated with
those class labels. It would be much harder to predict the numerous most
specific GO terms and Uniprot families, which are annotated with less
(often much less) than 200 and 150 instances.

The studies [28, 41] are examples of classification techniques applied
to find biological patterns. In [28] the authors proposed an approach
to identify important features to predict ageing-related classes using
random forests (an ensemble of decision trees). The authors interpreted
the biological meaning of the extracted patterns and concluded that they
are indeed related to ageing. In [41], a relatively simple classification
model (also based on decision trees) was able to achieve high predictive
performance while classifying human genes as ageing-related or non-
ageing-related. The authors identified new candidate proteins having
strong computational evidence of their role in ageing and also found a small
set of highly predictive features to classify the genes as ageing-related.

3 Enrichment methods vs. classification
methods from machine learning

Enrichment analysis is strongly based on the concept of statistical
significance. This concept is related to the concept of predictive power
in the classification task of machine learning since both enrichment
and machine learning approaches tend to give more importance to gene
properties that are over-represented in one of the experimental conditions
(or class labels). Rule induction algorithms, for instance, in general will
choose to use a predictive feature value that is over-represented in one
class, rather than choosing an under-represented feature value in that class,
since the former has better predictive power. However, a high degree
of enrichment (significance) does not necessarily imply high predictive
power, and vice-versa, high predictive power does not necessarily imply
statistical significance. An example of each of these two cases is discussed
next.

Suppose we have two classes of genes, say overexpressed (positive
class) and not overexpressed (negative class), each gene annotated with
many Gene Ontology (GO) terms that can be used as features. Suppose
these classes have prior probabilities (before observing any GO term) of
10% for the positive class and 90% for the negative class. Hence, if a certain
GO term shows no correlation with the class variable, we would expect,
by chance, that out of the genes annotated with that GO term, 10% belong
to the positive class, and 90% belong to the negative class. Suppose now
that we observe, in the data, that 50% of the genes annotated with that GO
term belong to the positive class, and the other 50% belong to the negative
class. Assume the actual number of genes with these annotations is large
enough for this result to be statistically significant, indicating a significant
enrichment of that GO term in the positive, over-expressed, class. Now, if
we use only the presence of that GO term annotation to predict the class of
a gene, that occurrence of that GO term has low predictive power: given
the information that the gene is annotated with that GO term, there is a
50% chance of the gene belonging to each class.

Note that this does not mean that the GO term is completely useless
for classification. After all, the probability of observing that GO term
in the over-expressed class is 5 times higher than by chance. So, if we
combine the occurrence of that GO term with the occurrence of other GO
terms which are also significantly enriched for the over-expressed class,

it is quite possible that a combination of those GO terms increases the
probability of the over-expressed class to substantially higher than 50%.
This is why it is important to consider GO term interactions by doing a
multi-variate analysis.

In the above example, the problem is that the relatively large increase
in the probability of the class given that we observe an enriched GO term
is not enough to compensate for the very low relative frequency of the
positive (over-expressed) class. That is, despite statistical significance, the
“signal” is not strong enough to predict the over-expressed class. Also,
broadly speaking, the result of a statistical significance test tends to be
quite sensitive to the size of the sample. Even if the data is nearly random
(with a very small effect size), if an extremely large sample is used, the
test will tend to return a significant result anyway [5].

The above example shows that a statistically significantly enriched
GO term may not have a strong predictive power by itself. Let us now
consider the opposite case. Suppose that in the dataset there are only 20
genes annotated with a certain GO term, and 18 of these genes belong
to the positive class (overexpressed), with two genes belonging to the
negative class. Assume these small numbers are not enough to achieve
statistical significance, so the GO term would not be considered to be
(significantly) enriched in the positive class. Despite that, this GO term
has a high predictive power: given that we observe the occurrence of that
GO term in a gene to be classified, if we classify that gene based just on that
GO term, there is a 90% probability of the gene having the over-expressed
class, a 9-fold increase in the prior probability of the class. The small
number of genes with that GO term clearly means that only that GO term,
by itself, would not be able to classify many genes, so again we would
need to do a multivariate analysis of the data (considering many other GO
terms as features) in order to reliably classify many more genes. However,
the example showcases that, when looking at each GO term separately,
without considering interaction with other GO terms, a non-enriched (i.e.
not statistically significant) GO term can have a lot more predictive power
than an enriched (significant) GO term. Figure 1 illustrates the above two
cases graphically.

It is clear that the importance given to gene properties by enrichment
and classification methods are misaligned. This is not surprising, as the
objectives of these methods are, although related, fundamentally different.
Enrichment methods are designed to, given two or more sets of genes, find
properties that are significantly over-represented in one of those sets, with
respect to the other set(s). Classification methods, on the other hand, seek
to ‘explain’ how the gene sets associated with the classes given by the user
were created. In other words, a classification algorithm aims to create a
model that reproduces the division of the genes into mutually exclusive
classes given by the user as close as possible using gene properties. This
model can be used to classify previously ‘unseen’ genes into the groups
(classes). For this reason, a gene property that correctly classifies 18 out
of 20 genes (as in the previous example) is much more valuable to the
classification model than properties that are over-represented in many
genes but misclassify the majority of them. Recall that, even though a
rare highly predictive GO term is not enough to correctly classify many
genes, the combination of many such relatively rare GO terms can correctly
classify many genes, as mentioned earlier.

In summary, the main similarity between enrichment and machine
learning methods to find biological patterns rests on their principles for
finding gene properties (features) that are over-represented in the class
label (phenotype) of interest. That is, both types of methods tend to rank
or select features based essentially on their degree of over-representation in
the class of interest. However, enrichment and machine learning methods
have different biases when ranking the features. Enrichment methods rank
features (gene properties) according to their statistical support independent
of their predictive power, while machine learning tends to give more
importance to features (gene properties) with greater predictive power. In
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Fig. 1: Graphical representation of a hypothetical statistically significantly enriched GO term with poor predictive performance (Subfigure A, on the
left-hand side) and a non-statistically significantly enriched GO term with high predictive performance (Subfigure B, on the right-hand side). This figure
shows that although the hypothetical GO term is significantly enriched in Subfigure A, it has poor predictive power (only 50% of the genes annotated
with the GO term are overexpressed). On the other hand, the non-significantly enriched hypothetical GO term in Subfigure B (that annotates fewer genes)
has good predictive power (90% of the genes annotated with the hypothetical GO term are overexpressed). This shows that significantly enriched gene
properties are not necessarily good predictions, and vice-versa.

concrete terms, this means that highly predictive features (features that can
differentiate the instances among the classes with high predictive accuracy)
will tend to be considered more important than features with high statistical
support (features whose correlation with the class variable is statistically
significant but that do not necessarily have high predictive power).

Also, these methods differ greatly on how they search for
over-represented features and how they measure the feature’s over-
representation score. Machine learning methods usually employ some
type of optimisation procedure to search for over-represented features
that, when taken together, are good predictions of the class label, whereas
enrichment methods usually follow a simpler procedure that considers only
one feature (gene property) at a time, ignoring feature interactions. For this
reason, machine learning methods are capable of providing richer results
than a list of gene properties ranked by their importance. Decision tree
algorithms, for instance, can return classification rules involving several
gene properties that can be much more predictive than any individual
feature taken in isolation. Enrichment methods, on the other hand, have the
advantage of having a more grounded statistical support for their findings.

In Table 1 we show a real example contrasting the results of
using traditional enrichment methods and machine learning approaches
to identify biological patterns. These results were taken from the
supplementary material of [35]1, where the authors used traditional
enrichment methods and also a feature selection method that takes into
consideration the hierarchical structure of the GO to find the GO terms
most related to pro-longevity in the C. elegans model organism. Feature
selection is a widely used machine learning technique that seeks to find
a subset of highly predictive features, eliminating the uninformative
ones. It is clear from Table 1 that the top-10 GO terms identified by
the ‘traditional’ enrichment approach contain several redundancies (e.g.:
positive regulation of growth is a type of regulation of growth), whereas
the results of the feature selection method contain more distinct terms.
This is expected, as removing redundancies among features to improve
predictive power is one of the aims of feature selection algorithms.

1 Supplementary files ‘GO-Terms-rankings-biological-process.xls’
and ‘Pro longevity.xlsx’, available at https://github.com/
maglab/genage-analysis/blob/master/Dataset_
2_data_mining.zip and https://github.com/
maglab/genage-analysis/blob/master/Dataset_1_
functional_enrichment.zip (respectively).

Note also that, overall, the top-10 GO terms identified by the
enrichment and feature selection approaches are quite different, although
there is some overlap (e.g. for GO terms related to development). This
difference reinforces the motivation to use both approaches, since they
make different assumptions and have, to some extent, complementary
pros and cons, as discussed next. Using both approaches we have
more opportunities to discover biological patterns, and patterns identified
by both approaches (like development-related GO terms in the above
example) can be considered particularly strong.

3.1 Advantages and disadvantages of classification
methods from machine learning

The main advantages of classification methods are as follows.
First, most modern classification methods are non-parametric in the

statistical sense – i.e.: they do not assume that the data is distributed in a
certain way. Instead, they adapt the learned model to the characteristics
of the problem automatically during their training phase. Therefore, in
principle, most classification algorithms can be used to discover very
different types of relationships among variables in the data, including
the discovery of highly non-linear correlations between the features
(gene properties) and the class labels (the phenotype of interest). Most
enrichment methods, on the other hand, are parametric in the statistical
sense, and each method performs the same statistical calculations
regardless of the extent to which the data satisfies the assumptions of
the statistical test used.

Second, some types of classification models (e.g.: decision trees) are
relatively easily interpretable by users [42]. Such models can be used both
for predictions and to gain insights about how the class label is related to
the features in a relatively human-friendly fashion.

Third, most classification methods consider multivariate interactions
between the features and the class label. On the other hand, most
enrichment methods analyze one feature at a time, ignoring the fact that,
sometimes, two or more gene properties, when taken at the same time, can
be much more predictive (or enriched) than the individual properties.

The main disadvantages of classification methods are as follows.
First, some classification methods lack formal statistical basis – several

classification algorithms cannot make principled statistical assessments
regarding the data. That is, the predictions are made without confidence
intervals or p-values.

https://github.com/maglab/genage-analysis/blob/master/Dataset_2_data_mining.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_2_data_mining.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_2_data_mining.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_1_functional_enrichment.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_1_functional_enrichment.zip
https://github.com/maglab/genage-analysis/blob/master/Dataset_1_functional_enrichment.zip
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Table 1. Comparison of the top-10 GO terms associated with ‘pro-longevity’ genes in the worm model organism according to enrichment and machine learning
(feature selection) methods. Each sub-table shows the GO term identifier, the full GO term name and the p-value used to rank the GO terms (note that these p-values
are not directly comparable since they are testing different hypotheses). The results were taken from the supplementary materials of [35]. Note that although the two
GO term sets are distinct at first glance, they have important similarities. For instance, GO terms that appear both in the machine learning gene set (GO:0001708,
GO:0045138, GO:0010172) and in the enrichment method set (GO:0010259, GO:0007568, GO:0002119, GO:0002164, GO:0040024) are related to developmental
processes.

Machine learning method Enrichment method

Rank GO Id. GO term name p-value GO Id. GO term name p-value

1 GO:0006914 autophagy 1.53E-03 GO:0010259 multicellular organismal aging 1.69E-48
2 GO:0051094 positive regulation of developmental process 3.56E-03 GO:0008340 determination of adult life span 1.69E-48
3 GO:0001708 cell fate specification 5.19E-03 GO:0007568 aging 1.69E-48
4 GO:0008285 negative regulation of cell proliferation 2.46E-02 GO:0002119 nematode larval development 4.49E-39
5 GO:0044262 cellular carbohydrate metabolic process 2.46E-02 GO:0002164 larval development 4.97E-39
6 GO:0045138 tail tip morphogenesis 2.46E-02 GO:0009791 post-embryonic development 8.13E-39
7 GO:0070265 necrotic cell death 2.46E-02 GO:0040007 growth 4.05E-25
8 GO:0018991 oviposition 4.77E-02 GO:0040024 dauer larval development 2.76E-21
9 GO:0010172 embryonic body morphogenesis 6.21E-02 GO:0040008 regulation of growth 1.81E-19
10 GO:0006352 DNA-templated transcription, initiation 6.21E-02 GO:0045927 positive regulation of growth 2.88E-19

Second, many classification methods are very computationally
intensive. For instance, deep neural networks are very computationally
demanding, often requiring the use of specialized hardware to run in
reasonable times [7]. Note, however, that some well-known classification
methods, like most decision tree algorithms and Naive Bayes, are relatively
fast [43].

Third, hyper-parameter setting is not trivial. Recall that most
classification algorithms have settings (hyper-parameters) that control
important aspects of the learning process. A poor hyper-parameter choice
can lead to low (even close to random) predictive performance. Many
classification algorithms are very sensitive to these settings, requiring
either expert knowledge or computationally expensive hyper-parameter
tuning methods. These tuning methods usually work by running the
classification algorithm several times, with different hyper-parameter
settings, estimating the predictive performance of the constructed models
to determine which hyper-parameter setting is the best one. One must be
careful while performing this hyper-parameter tuning to not measure the
predictive performance in the ‘validation set’, where the final predictive
performance estimation will be carried out, but rather in a subset of the
‘training set’. The predictive power of classification algorithms will very
likely be grossly overestimated if one uses the ‘validation set’ to tune the
algorithm’s hyper-parameters.

Fourth, bioinformatics datasets often have two important particularities
that can negatively impact the predictive performance of traditional
classification algorithms: high class imbalance and structured biological
descriptors. Regarding the issue of class imbalance, the datasets are
often very unbalanced towards the negative class label – most whole-
genome enrichment analyses involve thousands of genes without the
phenotype of interest and only a few dozens with the phenotype of
interest. Most classification algorithms do not cope well with this high
level of class imbalance. However, there has been extensive research on
methods for improving the performance of classification algorithms in
this scenario, including the use of over(under) sampling of the minority
(majority) class to create a more balanced training set [44]. Regarding the
issue of structured biological descriptors, some descriptors (e.g. GO and
FunCat terms) have a hierarchical structure. However, most classification
algorithms treat them as unstructured, which may lead to problems
due to the high correlation between terms. Exceptions are classification
algorithms for hierarchical classification [40] and hierarchical feature
selection methods for classification [45].

3.2 Advantages and disadvantages of enrichment methods

Enrichment methods and their tools are an extremely popular approach to
summarise the functional characteristics of seed gene sets. These methods
present several advantages when compared to other approaches, as follows.
First, they are quick and computationally light, often able to analyse large
gene sets using only a laptop computer, especially given the large number
of web tools available. This makes enrichment analysis very suitable for
small labs which may not have access to high-power computing clusters
or machine learning experts, or for situations where a quick summary of
gene set functionality is sufficient and a more sophisticated method would
be unnecessary and overly time consuming.

Second, there are a wide variety of tools available covering multiple
statistical methods. Many of these tools (for instance the highly popular
DAVID tool [46]) are very user friendly with good documentation and
clear explanations of their methodology to allow users to determine the
best method for their data. These tools tend to use methods based on
classical statistical tests that non-statisticians are likely to have at least
some understanding of.

Finally, although less popular, Bayesian statistical methods have
been incorporated into some enrichment analysis tools, allowing a more
sophisticated statistical approach. The oldest of these is BayGO, which
uses a Bayesian inference method to incorporate Goodman and Kruskal’s
Gamma score of association. The association of differential expression
to each GO term is measured and Monte Carlo simulations are employed
to determine the probability of randomly observing a stronger level of
GO term enrichment than the measured level [47]. Other Bayesian tools
are GO-Bayes [48], model-based gene set analysis (MGSA) [49] and
multi-level ontology analysis (MONA) [50]; which all attempt to infer
the probability that a given GO term is associated with a supplied gene set.
These methods alleviate some of the concerns affecting most enrichment
analysis methods, since the probability estimations account for some of the
network characteristics inherent in biological data, while also considering
all terms simultaneously, thus removing the need for multiple hypothesis
testing correction. Most Bayesian methods also have the advantage of not
relying on classical tests of statistical significance, whose limitations were
discussed earlier. Instead, they are based on the prior probability (before
building the model) and the probability of observing the data given the
model, which are, arguably, easier concepts for most people to grasp than
p-values.

The main disadvantages of enrichment methods are as follows.
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First, most enrichment methods are heavily based on tests of
significance using p-values as the decision criterion. However, p-values by
themselves are not adequate as the main basis for scientific conclusions,
since they do not measure the effect size, importance, and reproducibility
of a result. For this reason, they should not be taken as definitive evidence
for the existence or size of an effect [51, 1]. Instead, researchers should use
p-values to help guide a broader analysis, avoiding absolute conclusions
based on them.

In [2] the authors point out that the p-values of enrichment methods are
often treated as a score of ‘interestingness’ and seldom the sensitivity and
specificity of the list of ‘interesting’ properties are estimated. That is, little
importance is given to the actual predictive power of the properties, giving
more value to differences in relative frequencies instead. The authors
also make the interesting point that the definition of the seed genes (for
SEA methods) and gene rankings (for GSEA methods) are based on the
assumption that the higher the differential expression of a gene, the more
important the gene should be considered in the analysis. This is often a valid
assumption, but not always: a small change in expression of a regulatory
gene may be much more biologically relevant than larger changes in, for
instance, a metabolism-related gene.

Second, most ‘traditional’ statistical tests assume that the sampling
units are independent. This is clearly not the case in most gene expression
experiments (where the sampling unit is usually a gene), a common
application of enrichment methods. There are several regulatory genes
that modulate the expression of other genes. When this assumption is
not satisfied, the tests tend to make more type I errors than what would
be expected (incorrectly rejecting the null hypothesis of ‘no differential
expression’) [52].

Third, SEA and GSEA enrichment methods (see Section 2.1)
ignore correlations between gene properties, analysing their enrichment
significance independently. However, normally there are strong
correlations among the gene properties: it is common that if a gene is
annotated with a property, it is much more likely to be annotated with
a second property. This is particularly common when using GO terms,
which are hierarchically structured (e.g.: every gene annotated with the
term ‘detection of stimulus’ is, by definition, also annotated with the term
‘response to stimulus’). Arguably, this fact is not so detrimental to the
enrichment methods as high gene correlation (mentioned in the previous
paragraph) [53] but it is still an important source of bias.

Table 2 lists the advantages and disadvantages of classification and
enrichment methods to identify gene properties.

4 Conclusions and Recommendations

4.1 Conclusions

Given a list of genes associated with a phenotype of interest (seed genes),
enrichment methods have been extensively used by biologists to retrieve
properties associated with the seed genes and sometimes to retrieve non-
seed genes for further investigation. Enrichment methods have several
desirable characteristics: they are usually computationally inexpensive to
run, produce principled statistically-based scores of importance, are easily
accessible and are popular among bioinformatics researchers.

However, in some scenarios, machine learning-based classification
algorithms may be more suited to deal with the task of identifying patterns
in genomic data. Unlike enrichment methods, classification approaches
aim to maximize ‘predictive performance’, that is, building a classification
model to discriminate between gene classes by maximising measures of
predictive performance estimated using different gene sets for training
and validation. Most enrichment methods, on the other hand, aim at
finding statistically significantly enriched properties in the seed genes.
These properties by themselves may not have good predictive power.

Besides the focus on maximizing predictive power, some classification
models, like decision trees, are able to output an interpretable classification
model, which can be analysed by the user, potentially giving insights
about the underlying biological processes. Also, most machine learning
methods are capable of finding non-linear relationships and are capable of
combining different gene properties to make a prediction.

4.2 Recommendations

One of the main practical challenges faced by biologists when applying
machine learning techniques to biological problems is how to construct
the classification datasets. While most enrichment tools have built-in data
sources, machine learning algorithms often require file inputs. Note that
having a built-in data source clearly facilitates the use of the tool but, on
the other hand, may lead to the unintentional use of low-quality data (due
to an out-of-date data source or to the use of low-confidence annotations).
Fortunately, most bioinformatics databases have a link for downloading
the entire database or Web APIs that can be used to extract the desired data.
Also, there are Python2, R [54], and Perl3 libraries that can be used to obtain
gene and protein data from several online resources. Biologists should also
keep in mind the characteristics of the data they are using. For instance, not
all gene annotations have the same level of confidence and the lack of an
annotation does not guarantee the absence of that property [28, 3]. These
aspects should be carefully weighted when building and interpreting the
results of both enrichment tools and classification models.

Choosing the right type of classification method for the task at hand
is essential. For instance, classification model interpretability is often
desirable when working with biological data [42]. If that is the case,
the user can focus on interpretable classification models. Note that
‘interpretability’ is subjective and highly dependent on the background
knowledge of the user of the classification system. Having said that,
decision trees, rule-based classifiers, naive Bayes and logistic regression
classifiers are commonly considered ‘interpretable’. When high predictive
power is more important than interpretability, we suggest using ‘black-
box’ models, that are very difficult to interpret but tend to have better
predictive performance. Support Vector Machines and Deep Neural
Network classifiers are popular examples of such models.

It is common to use ensembles of classification algorithms [55] to
improve the predictive performance of the classification system. Ensemble
methods combine the prediction of several ‘base’ classification models to
output the final prediction of the ensemble. Ensembles tend to have a
better predictive performance than the base models but have the drawback
of increased training and testing times and reduced interpretability [56].
Random Forests (ensembles of a type of decision tree), in particular, are
a popular approach in bioinformatics that usually have high predictive
performance [57] and are still somewhat interpretable, having a good
compromise between predictive power and interpretability.

For readers with no machine learning expertise who are interested
in more information about these (and other) machine learning topics,
we recommend the comprehensive book of Witten et al. [43], which
covers these topics providing an accessible theoretical basis and practical
examples in the Java programming language using the popular WEKA
software tool [58]. The newer scikit-learn software tool4 is another option
for readers interested in applying machine learning to their data using the
Python programming language. The scikit-learn tool has several extensions
that implement advanced machine learning approaches and is arguably a
better option for users looking for state-of-the-art algorithms.

2 https://github.com/biopython
3 https://www.ncbi.nlm.nih.gov/books/NBK25501/
4 https://scikit-learn.org/

https://github.com/biopython
https://scikit-learn.org/


i
i

“main” — 2019/2/6 — 18:34 — page 9 — #9 i
i

i
i

i
i

9

Table 2. Summary of advantages and disadvantages for classification and enrichment methods to identify biological patterns.

Method type

Classification Enrichment

Advantages • Most classification models are non-parametric in the
statistical sense: they do not assume the data follows a
certain type of probability distribution.

• Some models are interpretable. For instance, decision
trees and logistic regression models can be easily
interpreted by the user in many cases.

• Most classification algorithms consider multivariate
interactions between the features and class labels.

• Computationally light.
• There is a wide variety of tools, many with good

documentation and a clear methodology.
• Some tools use Bayesian methods instead of classical

statistical significance tests (whose problems were
discussed earlier).

Disadvantages • Many classification algorithms lack formal statistical
basis.

• Many methods are very computationally expensive.
• Hyper-parameter setting is not trivial.
• Many methods do not cope well with high class

imbalance and structured feature types (e.g. GO
and FunCat), common in bioinformatics datasets.
Although there are methods to mitigate both issues.

• Tests of statistical significance based on p-values (used
by many enrichment methods) are difficult to interpret
and provide limited information.

• The assumption made by most enrichment methods
that the genes are independent seldom holds in the
bioinformatics setting.

• There are strong correlations between gene properties,
which also violates the assumptions of many traditional
tests of statistical significance.

Table 3. Summary of recommendations for classification and enrichment methods to identify biological patterns.

Method type

Classification Enrichment

• One should carefully study the characteristics of the biological
data. Annotations may vary significantly in terms of confidence
and may have an underlying hierarchical structure, which ideally
should be considered by the algorithms. E.g.: GO term annotations
have varying degrees of confidence and have an underlying
structure, that ideally should be considered by the algorithms.

• Choosing the best kind of classification algorithm is important. The
user should consider aspects like model interpretability, training
time, and predictive power.

• Testing several types of classification algorithm is always
recommended (since different algorithms learn different types
of classification models), always being careful to estimate
their predictive performance properly. When comparing the
performance of multiple algorithms via statistical significance
tests, use appropriate multiple hypothesis correction methods.

• One should carefully choose which enrichment method to use
(checking its assumptions) rather than trying several methods and
choosing the preferred result – which could lead to the ‘p-hacking’
problem.

• According to some authors, the use of a seed gene set is usually
preferable to ranked lists of genes [16].

• If the creation of seed gene sets is too difficult, consider using a
GSEA approach or an MEA approach using multiple thresholds.

• The results of enrichment methods are mainly descriptive. If gene
prioritization is required, consider using guilt-by-association or
machine learning approaches.

When possible, we recommend testing a range of classification
algorithms and hyper-parameter settings for the problem at hand. This can
be done either manually, using expert knowledge, or automatically, using
Automated Machine Learning (Auto-ML) approaches [59, 60]. In either
case, it is important to compare the predictive performance of the models
using statistical tests of significance, always being careful to apply the
correct test and adjust the alpha (significance) values if multiple hypothesis
comparisons are made [61] – in order to avoid the risk of unintentional
p-hacking. Note that these statistical tests can be applied regardless of the
underlying assumptions of the classification algorithms, the tests treat the
models as ‘black boxes’ capable of making predictions.

Choosing the right enrichment method is equally important. It is
essential to consider carefully which method to use, checking the
assumptions of the method, rather than trying multiple approaches and
choosing the method that gives results that ‘make sense’ – which would
lead to over-optimistic p-values (p-value ‘hacking’ [5, 6]). The first
consideration that should be made is whether to use an approach requiring
a seed gene set, or an approach that tests all genes simultaneously based

on a ranked list. Seed-gene-set-based approaches have been shown to
perform better in many cases [62, 63], and so should be used when possible.
However, the creation of a seed gene set is not always easy. Seed-gene-
set-based approaches can be extremely sensitive to the thresholds used
for inclusion in the seed gene set [64, 65]. Creating a seed gene set
based purely on statistically significantly different expression changes, for
instance, often requires setting arbitrary cut-off values. E.g., when dealing
with large sample sizes, ‘popular’ p-value cut-offs will lead to inflated
seed gene sets, so using fold-change cut-offs is also necessary. However,
choosing a fold-change cut-off has its own problems, as genes with low
mean expression and high expression variance may erroneously meet the
cut-off (note that there are methods to alleviate this issue [66]). If there is
not strong evidence behind a seed list, then consider using either a GSEA
approach that tests all genes simultaneously, or test for enrichment using
MEA methods using multiple thresholds for inclusion in the seed gene
set, with enriched terms overlapping between the tests being likely true
positives.
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Enrichment analysis is mainly descriptive (rather than predictive) in
nature, and so the results should be interpreted as such. Being able to
describe the characteristics of a seed list or ranked gene list is useful
for understanding the mechanisms behind a response to a perturbation,
drug treatment or disease; however it is not sufficient evidence for the
prioritization of candidate genes for further study. For this purpose there are
a wide range of further tools, ranging from guilt-by-association methods
[67, 13, 31] to the machine learning methods previously discussed.
Combining enrichment analysis with predictive analysis tools is thus a
powerful way to identify the biological response to a perturbation, and
subsequently identify potential novel candidates for manipulating that
response.

Overall, we reinforce that none of the approaches discussed here is
the best for all problems. Nonetheless, we recommend the addition of
machine learning classification methods in the toolset of biologists when
exploring their data. In addition, machine learning principles (such as the
concept of separate training and validation sets for predictive performance
estimation, see the Glossary in Figure 1) should be considered when
extracting candidate genes from the data. Finally, if enrichment methods
are used, one should be aware of the limitations of the underlying statistical
methods and how to properly interpret the p-value statistics [1], which are
not easy to fully grasp.

A summary of the above recommendations is provided in Table 3.

Key points

• If enrichment methods are used, the limitations of null hypothesis
significance testing should be considered. Also, p-value statistics,
which are not easy to fully grasp, should be properly interpreted.

• We recommend the addition of machine learning classification
methods in the toolset of biologists when exploring their data.

• No single machine learning or enrichment method approach is
the best for all problems.
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Figure’s caption, as requested by the editorial office:

Fig 1. Graphical representation of a hypothetical statistically significantly
enriched GO term with poor predictive performance (Subfigure A, on

the left-hand side) and a non-statistically significantly enriched GO term
with high predictive performance (Subfigure B, on the right-hand side).
This figure shows that although the hypothetical GO term is significantly
enriched in Subfigure A, it has poor predictive power (only 50% of the
genes annotated with the GO term are overexpressed). On the other
hand, the non-significantly enriched hypothetical GO term in Subfigure
B (that annotates fewer genes) has good predictive power (90% of the
genes annotated with the hypothetical GO term are overexpressed). This
shows that significantly enriched gene properties are not necessarily good
predictions, and vice-versa.
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