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Abstract  

Introduction  

Most surgical specialities have attempted to address the concern of unfair comparison of outcomes 

by ‘risk-adjusting’ data in order to benchmark speciality specific outcomes indicative of quality of 

care. We are building on previous work to address the current need in Head and Neck surgery for a 

robust validated means of risk adjustment.  

 

Methods  

A dataset of care episodes recorded as a clinical audit of complications after surgery for Head and 

Neck Squamous Cell Carcinoma (n=1254) was analysed within the WEKA Machine Learning 

programme. The outcome(s) were 4 classification models that predict for complications using pre-

operative patient demographic data, operation data, functional status data and tumour stage data.  

 

Results  

Of 4 models developed, 3 performed acceptably.  The first model, predicting 'any complication' 

within 30days (Area Under the Receiver Operator Curve, AUROC 0.72).  The second model 

predicted severe complications (Clavien-Dindo Grade 3 or greater) within 30days was also 

acceptable (AUROC, 0.70) and the 3rd model predicted prolonged length of hospital stay >15 days, 

(AUROC, 0.81). The final model, developed on a subgroup of patients who had free tissue transfer 

(n=443) performed poorly (AUROC, 0.59)  

 

Conclusion  

Sub-speciality groups within the Oral & Maxillofacial speciality are seeking metrics that will allow 

meaningful comparison of quality of care delivered by surgical units in the UK.  In order for metrics 

to be effective they must demonstrate variation between units, be amendable to change by service 

personnel, and have baseline data available in the literature. We argue metrics can be effectively 

modelled in order that meaningful benchmarking, which takes account of variation in complexity of 

patient need / care, is possible. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction  

 

Benchmarking care in surgical audit requires definition of outcomes that allow meaningful 

comparison of different treatment centres. There is growing consensus that mortality rates, which 

are low (0.5-2%) in our speciality are not likely to be a helpful indicator of quality of surgical care.  

 

Morbidity rates vary between surgical units and rates can be upto 70% from units reporting series of 

patients receiving major Head & Neck surgery with free-tissue transfer.1  

 

To mitigate some of the subjectivity involved in recognising a complication, and to improve 

consistency, the Clavien-Dindo classification system was developed 2, which is well covered in the 

surgical literature and has been applied to Head and Neck surgery by multiple authors1,3,4,5,6 it 

allows recording of surgical complications and systemic complications in a clear fashion that 

facilitates comparative audit. The authors state that 'complications are “any deviation from the ideal 

postoperative course that is not inherent in the procedure and does not comprise a failure to cure” 

and further underscore their belief that “the incidence of postoperative complications [should still 

be] the most frequently used surrogate marker of quality in surgery.”7   

 

Work has been done to benchmark quality of care after Head and Neck surgery more broadly by 

creating and testing additional metrics such as length of stay, use of blood products, adequacy of 

pathology reports in addition to those items contained in the Clavien – Dindo classification, namely 

return to theatre rates and mortality rates.8   

 

In order for quality metrics to be effective they must demonstrate variation between units, be 

amendable to change by service personnel, and have baseline data available in the literature. We 

argue that a fourth criteria be added, that they can be effectively modelled statistically in order that 

meaningful benchmarking is possible that takes account of variation in complexity of patient need / 

care.  

 

We attempt to test if all complications and severe complications (Clavien-Dindo Level 3 and above) 

are valid outcomes to capture for the purpose of comparative audit of quality of care. We also 

attempt to test if length of hospital stay is a proxy indicator of quality of care. Finally we test if it is 

preferable to model just the subset that receives immediate free-tissue transfer reconstruction.  

 

 

Methods  

1254 patient care episodes for surgical care (with curative intent) under general anaesthesia for 

HNSCC were analysed. This represented the combined dataset of 6 treatment units.  

Of these 160 from Site 1, 203 from Site 2, 521 from Site 3, 175 from Site 4, 83 from Site 5 and 112 

from Site 6. 444/1254 (35%) had free tissue transfer. Data pertaining to length of hospital stay (not 

included in the dataset from Site 3) was available on 733/1254 (58%).  

Data was preprocessed by the lead author and experiments were performed using three methods in 

the ‘Classify’ panel of the WEKA data mining (or machine learning) tool: AutoWEKA 8 , the J48 

decision tree, and the random forest algorithm.  Auto-WEKA is an advanced machine learning 



method which automatically selects the best classification algorithm and its best configuration for 

an input dataset, by doing a systematic search of many different types of algorithms and their 

configurations available in WEKA. Both the J48 and the random forest algorithms are included in 

the large set of algorithms considered by Auto-WEKA during its search, but we also used these two 

algorithms separately for the following reasons. J48 learns an interpretable model in the form of a 

decision tree, highlighting the most relevant attributes for classification. Although J48 does not 

achieve very high predictive performance in the analysed datasets, some parts of a decision tree can 

be substantially more accurate than the tree as a whole.  Some examples of very accurate and 

interpretable rules extracted from a J48 decision tree will be shown later. The random forest 

algorithm was used because it is among the state-of-the-art algorithms regarding predictive 

performance.  As a measure of predictive performance, the results are reported using only the Area 

Under the Receiver Operating Characteristic curve (AUROC).  Auto-WEKA is a non-deterministic 

method (its results depend on a random seed used to initialize the program), hence we ran Auto-

WEKA multiple times and report the mean AUROC in a process called 10 fold cross validation set 

in run-time frames of 5 hours and 20 hours for each experiment.  For predicting the length of stay 

class variable, cut-offs based on previous work were tested, namely >15 days and >20 days. The 

AUROC statistics are quoted with ROC diagrams.  

 

Results.  

Successful analysis of the dataset allowed modelling of the following (Table 1) using the J48 

decision tree, random forest plot algorithm and the Auto-WEKA package.  

* Complications with 30 days  

* Complications within 30days that were Clavien Dindo grade 3 or higher  

* Length of hospital stay.  

*  Complications within 30 days in the immediate free tissue transfer group 

 

The best model predicting ‘Complication within 30 days’ was produced by Auto-WEKA, which 

selected a ‘Bagging of J48 decision trees’, i.e. a collection of decision trees, with an AUROC of 

0.730. It is hard to interpret the entire collection of many decision trees, though; therefore, for 

interpretation purposes we focus on the single decision tree produced by the J48 algorithm. This 

model still has an adequate AUROC value of 0.705, and it can be readily embedded within a 

database for immediate computation of predicted risk. 

The J48 decision tree (Figure 1) demonstrates the most important predictors of risk of complication 

in a graphical and hierarchical form, where in general the most relevant predictors are closer to the 

top of the decision tree, and less relevant predictors are further down in the tree.  Use of 

tracheostomy, immediate free tissue transfer and complexity of surgery appear at the top of the tree. 

The AUROC was higher with Auto-Weka, though it is harder to interpret the model, unlike those of 

the J48 decisiion tree which are directly interpretable. 

A basic classification rule that can be derived from this model states that: ‘IF Scale of Surgery = 

Minor (1) and Tracheostomy = Absent (0) and Free Flap = Absent (0) (i.e. ‘no’), THEN the patient 

should have no complication’. This rule is 85% accurate, correctly classifying 204.38 out of the 

240.38 patients in our dataset. Therefore, a threshold complication rate of 15% should be tolerated 

in this ‘low-risk’ group.  

 

The best model predicting ‘Complications within 30 days graded as Clavien – Dindo 3 or greater’ 

was produced by the random forest algorithm. This model was acceptable with AUROC of 0.70.  



The Random Forest algorithm however demonstrates a substantial shortfall, the model is 

consistently predicting ‘no complication’ and only predicting a complication in about 1% of the 

cases (11/1322), despite the fact that the average observed complication rate across all sites is 

14.4% – though the range varies significantly (Site 1: 6%, Site 2: 9%, Site 3: 11%, Site 4: 30%, Site 

5: 21%, and Site 6 14%).  

 

Classification models were built for predicting the Length of stay using 15 day and 20 day cut-offs. 

The best models for both cut-offs were produced by Auto-WEKA, in both cases with a good 

AUROC value greater than 0.8. and the model structure is interpretable.  A highly reproducible rule 

is available from the decision tree produced by J48 for predicting < 20 days of stay, namely:  

IF (Tracheostomy = 0) THEN (InPatient Days < 20 days)  

.This rule has an accuracy of 90.2%, correctly classifying 515.5 out of 571.25 patients. 

Finally the ‘Complications within 30 days model in the immediate free tissue transfer group’ had 

acceptable discrimination in AutoWeka (AUROC of 0.71) which degraded once validated (AUROC 

dropped to 0.6, best algorithm recommended by Auto-WEKA, LWL (Locally Weighted Learning) 

with Decision Stump). LWL uses a nearest-neighbour algorithm to assign instance weights which 

are then used by a specified base classifier, which in this case was a simple Decision Stump (a 

decision tree with just one node). This accuracy is barely acceptable as an algorithm for the purpose 

of risk adjustment in audit.  The dataset for this group was smaller (n=444) and modelling may 

improve with more data, if performance of contributing units is similar to the 6 units contributing 

data thus far.   

 

The confusion matrix of the 4 models are shown (Figure 3).  A composite on the AUROC are also 

shown (Figure 4).    

 

Discussion  

The results suggest that acceptable performance, for the purposes of risk adjustment  is found in the 

models predicting any complication in the period of 30 days after surgery and predicting length of 

hospital stay (using cut-offs of 15 and 20 days).  There is some concern that the model for 

predicting severe complications (Clavien Dindo 3 or greater) is insufficiently discriminating, as it is 

tending to predict all patients as not having a severe complication with few exceptions.  Finally, the 

model predicting any complications in the period of 30 days after free flap surgery is at present 

insufficient for the purpose of risk-adjustment in an audit process. 

Models developed by other surgical specialities use risk-adjustment algorithms with AUROC 

between 0.65 and 0.85.  There must be some acceptance that discrimination is imperfect and 

predicted morbidity scores should therefore not be used to plan individual patient care.  However, 

calibration for the purpose of comparative audit can nevertheless be acceptable and previous work 

using a neural network in this setting demonstrates weak discrimination but excellent calibration 

when predicting for all complications in the entire cohort.3 

Interestingly, while excellent discrimination may remain an unmet objective of this work, useful 

classification rules have emerged from the analysis, and these rules may present easily measured 

means of highlighting differences in performance.  The use of such rules has not been seen in other 

national audits and may provide a bridge in the Quality Assurance process, whilst the development 

of better performing algorithms developed from national datasets progresses. 

A strength of this work is that the analysis captures the activity of 6 units with demonstrably 

different case mix and outcomes.  This makes modelling intrinsically more robust relative to units 

publishing algorithms developed on a single unit's activity, where a phenomenon termed 'over-



fitting' may suggest over-optimistic results that only become evident when external validation of the 

algorithms is carried out. 

Assessing quality of care after Head and Neck surgery is not limited to complication rates or length 

of hopsital stay or similar surgical metrics. Additional metrics should be developed with an attempt 

to risk-adjust for surgical care.  Quality of Life measurement focusing in particular on the multiple 

domains covered in the University of Washington Quality of Life questionnaire or the EATOC 

H&N .9-11   Objective Functional Outcomes such as the water swallow test (WST) or the Penetration 

Aspiration Scale have focused on the cohort receiving chemo-radiotherapy12  though exceptions are 

in the literature they focus on primary surgery for advanced oropharyngeal disease. 13,14  Early first 

reports are suggesting an interest in composite outcome reporting14,15 which remains for the 

foreseeable future fragmented. 

Collaboration with computer scientists with statistical and machine learning training is becoming 

established in modern medicine.    Whilst over-complex and obscure processes may not win 

confidence of medical professionals, 'the black box effect', collaboration can help choose lesser 

models that are intuitive and therefore more acceptable because they demonstrate in a transparent 

fashion the relative weights that different pre-morbid factors carry. 
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