

Abstract— AIRS (Artificial Immune Recognition System)

has shown itself to be a competitive classifier. It has also proved

to be the most popular immune inspired classifier. However,

rather than AIRS being a classifier in its own right as

previously described, we see AIRS more as a pre-processor to a

KNN classifier. It is our view that by not explicitly classing it as

such development of this algorithm has been rather held back.

Seeing it as a pre-processor allows inspiration to be taken from

the machine learning literature where such pre-processors are

not uncommon. With this in mind, this paper takes a core

feature of many such pre-processors, that of attribute

weighting, and applies it to AIRS. The resultant algorithm

called WAIRS (Weighted AIRS) uses a weighted distance

function during all affinity evaluations. WAIRS is tested on 9

benchmark datasets and is found to outperform AIRS in the

majority of cases.

I. INTRODUCTION

AIRS is a supervised immune-inspired classification system
capable of assigning data items unseen during training to one
of any number of classes based on previous training
experience. AIRS is probably the best known AIS for
classification, having been developed in 2001 [1]. It has
undergone a number of revisions and refinements in order to
increase efficiency and increase accuracy [2, 3] and has been
shown to work competitively on benchmark tests using
standard public domain datasets [4, 5]. Indeed, when AIRS
was tested on the well known Iris dataset, Pima Indians
dataset, ionosphere dataset and Sonar dataset, AIRS was
comparable with the fifth to eighth most successful
classifiers found in the literature for three out of the four
datasets (where the Pima Indians dataset was the exception)
[6].

In the literature, AIRS is referred to as a classification
algorithm. However, we believe it would be useful if this
attitude was changed. Rather than a classification algorithm
in its own right, we believe it would be more useful to think
of AIRS as a pre-processor to a Nearest Neighbour (NN) or
K-Nearest Neighbour (KNN) algorithm. In this case AIRS
can be seen to perform an instance construction task, a
common task in the data mining literature [7]. Instance
construction is a data reduction technique that aims to
summarise a training dataset by creating a set of typical
instances or prototypes that best generalise those data. In this
way the amount of training data are reduced, increasing the
efficiency of the induction algorithm, and a correctly
functioning instance construction algorithm will remove

Manuscript received March 15th 2007.

A. Secker and A. A. Freitas are affiliated with the Computing
Laboratory at the University of Kent, Canterbury, Kent, UK CT2 7NF.
E-mail: a.d.secker@kent.ac.uk, a.a.freitas@kent.ac.uk

outliers and other noisy instances from the training data, thus
increasing classification accuracy over the test set. Re-
positioning AIRS as an instance construction algorithm can
allow users to take inspiration from the lazy learning
literature. As the subject of data pre-processing techniques
for nearest neighbour algorithms has been around for many
years there is a vast wealth of information available on this
subject. The use of such ideas applied to AIRS in turn may
give insight into improvements for AIRS.

It is the aim of this paper to do such a thing. By
identifying a weakness in the current AIRS implementation,
solutions can be found in the data mining literature. The
algorithm can then be augmented with these changes and the
resulting algorithm tested against benchmark data to
determine whether the changes have had a positive effect.

In the following section the AIRS algorithm is briefly
introduced and some points are raised concerning the
similarities between the high-level procedure of the AIRS
algorithm and other data reduction strategies applied to
classification. Section III is concerned with introducing the
reader to a number of data mining concepts pertinent to the
research, this section includes some technical details of the
chosen attribute weighting strategy. Section IV details the
changes made to the AIRS algorithm and these are tested
and evaluated in Section V. The final section contains a
summary and some concluding remarks.

II. AIRS

For technical details regarding the AIRS algorithm, the
reader is referred to the literature such as [1, 2] although it is
worth giving a quick overview of the algorithm. The AIRS
algorithm has three main stages. First there is an initial
seeding phase in which randomly chosen data vectors are
used to form an initial population of memory cells. These
cells will be of different classes as dictated by the underlying
data. The second phase is a training phase. During this
phase the affinity between cells and training data items is
computed, this affinity is based on a notion of Euclidean
distance. Cells are stimulated based on this degree of match
combined with a match between the training data and the
cell’s class. Processes of cloning and mutation take place
based on this stimulation value. While cloning would have
the effect of increasing the population size the number of
cells is controlled by a resource allocation mechanism where
ARBs (Artificial Recognition Balls) compete for resources
based on their stimulation level. This competition for
resources applies strong selective pressure on the population,
as any ARBs surviving this stage will go on to produce
offspring. The aim of this stage is to create a set of memory
cells that best summarise the training data that has been
seen, in order to maximise the classification accuracy and

WAIRS: Improving Classification Accuracy by Weighting

Attributes in the AIRS Classifier

Andrew Secker, Alex A. Freitas

efficiency of the following stage. These memory cells will
be derived from the best performing ARBs in this stage. The
final stage of the AIRS algorithm is the classification stage,
during which data items as yet unseen by the algorithm are
assigned a class based on the result of the algorithm’s
training. This classification is performed by the well known
nearest neighbour (NN) or K-nearest neighbour (KNN)
procedure, the details of which are expanded in the
following section.

Notice here how the AIRS algorithm pre-processes the
data but the actual classification is left to a standard
classification technique (NN or KNN). This follows the
same template as other instance selection or instance
reduction algorithms, such as IB2 [8] in which the raw
training data set is reduced in size before the actual
classification is performed by a standard lazy learning
technique using those reduced data.

AIRS was compared in [1] against four standard datasets:
iris, ionosphere, diabetes and sonar datasets from the UCI
repository [9]. It was noted that AIRS was very competitive
with other algorithms, achieving a higher classification
accuracy than both C4.5 and a Bayesian approach over the
diabetes dataset.

AIRS was updated to AIRS2 in [5] with five small
changes being made, including slight updates to the mutation
and cloning routines. AIRS2 was updated further to work as
an efficient parallel system in [3, 4].

III. DATA MINING ISSUES

Nearest neighbour classification algorithms use the available
training set, or a subset of it, to classify unseen data. During
training they do not infer any specific classification model,
rather they defer any induction until a classification is
requested. For this reason they are referred to as lazy
algorithms rather than eager, such as decision tree building
or rule induction. In essence, a simple nearest neighbour
classifier will store all training data. When a new instance is
to be classified it determines the most similar training
instance and assign the new item the class of that instance. It
is possible that the K most similar training instances will be
retrieved and the new item assigned the most frequent class.
In this case the algorithm is referred to as a K-nearest
neighbour.

As every training instance is interrogated every time a
classification is requested, the time taken to classify test
instances can be intractable if the training set size is very
large. Thus, a reduction in the size of the training set is
commonly sought to increase efficiency. It is the aim of a
data reduction algorithm to reduce the size of the training
set, whilst still maintaining that dataset’s characteristics and
therefore its predictive ability. In the most simple case,
instance selection [10], instances deemed redundant will be
removed from the training set. The goal here is to remove as
many training instances as possible whilst not significantly
impacting the final classification accuracy. [11] describes
how a concept (class) may be represented by a small number
of typical instances of that concept. This approach is
common in the literature, with a typical and easy to
understand example being IB2 [8]. The IB2 algorithm

selects only those instances from the training set that would
have been misclassified when a KNN classifier is applied.
This tends to leave only those instances close to class
boundaries while redundant and noisy instances are
removed.

Consider the example in Fig. 1 (A simplified version of
one given in [8]). Two linearly separable classes are
represented in two dimensions. The original training set is
shown in Fig. 1 (A), while the reduced set on instances is
shown in Fig. 1 (B). It can be seen that after the instance
selection step, point X for example ,would still be classified
as “-“ based on its nearest neighbour, even though its
neighbours are different between A and B. In this case the
redundant instances have been removed. The goal of such an
algorithm is, therefore, to remove as many instances as
possible whist retaining the information about the class
boundaries that was present in the original training set. I.e.
there should be no difference in the predictive accuracy of
an algorithm when it is using the original training data or the
reduced set of instances for training.

Fig. 1. Example of distribution of examples in a training set (A), the
reduced set of examples after processing by an instance selection algorithm
(B) and the reduced set of examples after processing by an instance
construction algorithm (C).

The above example concerns instance selection, but a
reduction in the size of the training set may be accomplished
in one of two ways, by instance selection or instance
construction [7]. In the case of instance construction the

C

+

+

+

+ +

+

+

-

-

-

 -

-

-

+

+

+

+

-

-

-

+ -

A

B

X

+

+ -

-

X

X

original training set is used to determine a new training set,
presumably of smaller size than the original, so that the
original training data are discarded and the algorithm trained
on this abstracted set. The important distinction here is that
instance selection algorithms use a subset of the original
instances while instance construction algorithms construct
new instances which are not present in the original data. Fig.
1 (C) shows how an instance construction algorithm may
represent the class boundary as Fig. 1 (A) but this time the
instances used to represent each class have been moved (i.e.
they are not present in the original training set) yet point X
will still be correctly classified. This example shows that
instance construction can be more efficient than instance
selection as the algorithm may place instances where they
are most efficient, rather than where the original training set
dictates. Indeed because this constraint is not present, the
constructed instances have the potential to better represent a
class boundary and therefore have the potential to increase
the classification accuracy compared with an instance
selection approach.

Examining the high-level outline of the AIRS algorithm
on Section II, it can be seen that AIRS effectively performs
instance construction, rather than instance selection. ARBs
are constructed to best represent the original training set,
which is discarded. The size of the ARB set is presumably
much smaller than the original training set. Not only does
this procedure have the effect of increasing the efficiency of
the classifier, but it can also serve to enhance the generality
of the training set and thus improve the classification
accuracy over test data. Hereafter we focus on instance
construction.

There exist a number of changes that could be made to
the basic AIRS algorithm to try to improve classification
accuracy. For example, a wealth of different distance
measures may be used. As standard, AIRS uses Euclidean
distance, but this distance measure may not be the best for a
given problem. Different distance measures have different
inductive biases making them suitable to different kinds of
data sets (Freitas and Timmis, 2006). [12] contains a
discussion of such distance metrics and presents a
comparison of these over three data sets. However, the
testing of different distance metrics is not the concern of this
study.

Predictor attributes should be normalised so that one
attribute with a large range or generally high values does not
dominate another attributes with a smaller ranges or values.
Attribute normalisation is performed by default in AIRS
already.

A. Attribute weighting

An important improvement to the standard KNN procedure
is that of weighting attributes. It stands to reason that, in
most cases, not all predictor attributes will contribute equally
to a correct classification. Weighting schemes may be
introduced such that irrelevant attributes are given a low
weighting while relevant attributes are given a large
weighting. These weightings are used when the distance
between a training instance and a classification instance is
computed such that relevant attributes exert a

disproportionately large influence on the final distance
value. In effect this weighting lengthens the axes of relevant
attributes in Euclidean data space, while shrinking the axes
of irrelevant attributes. In extreme cases, attributes can be
assigned a weight of 0, meaning they are deemed totally
irrelevant and as such are disregarded in the distance
calculation. A special case of this is feature selection, where
the weights 1 or 0 are assigned to attributes. This can have
the advantage of reducing the dimensionality of the data,
resulting in an increase in classification speed. However, as
a binary weight is assigned the algorithm is judging the
attribute to be either completely relevant or completely
irrelevant. This may not reflect the actual data where
features are likely to have varying degrees of relevance.

There are numerous examples in the literature where
attribute weighting has been shown to be beneficial on some
problems [13-17] while there is also a small amount of
theoretical work concerning the calculation of optimum
feature weights [18]. In addition to this, the addition of
attribute weighting to AIS algorithms has been encouraged.
In [19], the case is made that unweighted distance measures
are likely to be a suboptimal choice of affinity function for
AIS used as classifiers. The implementation of weighted
distance functions is one of ten research directions suggested
in that article.

The use of AIRS in situations where noisy or irrelevant
attributes have been present has been briefly investigated
before. In [20], the authors tested AIRS on an artificial
problem and found a reduction in predictive accuracy of
around 5% but with a large increase in the number of output
cells, which is undesirable.

Computing the optimum weight for an attribute is a
complex problem. There are two general methods for the
discovery of weights; wrapper and filter (sometimes called
performance bias and preset bias respectively). In the case of
the wrapper approach, the predictive accuracy of the
classification algorithm is used as a feedback to guide the
weighting algorithm. The classification algorithm that will
use the attribute set should provide a better estimate of
accuracy than a separate measure that may have an entirely
different inductive bias. However, the major disadvantage is
the computational cost which results from calling the
classification algorithm to evaluate each set of attribute
weights [21]. In the investigation undertaken here, the
expected computational costs are too high to use this
approach and so a filter approach is preferred. A filter
approach will use the available training data to adjust the
attribute weights without using the classification algorithm
for feedback. Thus filter methods are usually independent of
the classification algorithm.

A great many attribute weighting algorithms exist in the
literature. Considering only filter approaches, methods such
as Continual Probabilities [22] and Class Projection [23] are
found in the literature.

An empirical comparison of weighting algorithms is
performed in [14] in which four common filter-based
weighting algorithms are compared. The mutual information
(MI) approach is seen to perform the best on average. The
MI of two variables is the reduction in uncertainty of one

variable’s value given the knowledge of the other [24]. In
this case, the weighting changes as the mutual information
between a predictor attribute and the instance’s class change.
Thus if an attribute provides absolutely no information about
the class, its weight will be 0. The weight w of feature
(attribute) f is computed as shown in Equation 1.

()
()

() ()

=×

=
×== ∑∑

∈ ∈ vxpcp

vxcp
vxcpfw

fj

fj

Vv Jc

fj

f j

,
log,)((1)

There exists a problem with this metric in that one must

determine the frequency with which an attribute value
predicts a given class. This is meaningless over continuous
attributes as there are an infinite number of values a
predictor attribute may take. Instead, some kind of attribute
discretization must be undertaken to assign each continuous
attribute value to one discrete value (an interval of
continuous values). In this way the probability of a discrete
value predicting a class may be computed as shown in
Equation 1.

B. Attribute Discretization

Discretization is the process of converting a numerical
attribute into a symbolic attribute by partitioning the
attribute domain [25]. Discretization of continuous attributes
is fundamental to many decision tree algorithms and is
therefore a well researched area in data mining [26]. Many
decision tree algorithms such as ID3, C4.5 and CART all
require binary splits at decision nodes [27]. The value at
which this split occurs is usually determined by a
discretization algorithm, although the difference here is that
this discretization will occur in a dynamic manner as the tree
is built, rather than occurring as a pre-processing step as
occurs in nearest neighbour algorithms. As such there are
commonalities with algorithms such as naïve Bayes in which
discretization often occurs before the classification
algorithm is run. In these cases the discrete values resulting
may not be binary, rather, numerous partitions may be
created if the data requires and it is this multiple splitting
that is the concern of this section.

TABLE I

EXAMPLE OF NAÏVE DISCRETIZATION

Predictor attribute value Class Symbolic value
1 -
2 -

A

3 -
4 +

B

5 +
6 +

C

The most straightforward method for discretization is to

assign data instances to a partition based on user defined
partition boundaries. However, this strategy causes two
issues that may negatively impact the performance of the
algorithm. Firstly the number of partitions may not naturally
fit the data and secondly the partition boundaries that result
may not naturally fit the data. Consider a case in which the

data can be classified into two classes. A “low” value of a
predictor attribute indicates one class while a “high” value
indicates another. Forcing this data into three subsets may,
incorrectly, force the position at which the boundary point
occurs into one of the subsets. Notice in the example, Table
I, how the data naturally partitions into two classes while
forcing it into three symbolic, discrete values would lead to
substandard performance as discrete value B contains data
from two classes.

This example illustrates that it is generally beneficial for
a discretization algorithm to choose the number of partitions
and the partition boundaries in a data driven manner, i.e.
discretization algorithms should be supervised. Many well-
known discretization algorithms are supervised and as such
fulfil the criteria above. Suitable choices include ChiMerge
[28] and Vector Quantization [29] or Recursive Minimal
Entropy Partitioning [30]. An empirical comparison of these
was undertaken in [26]. The strategy of Fayyad and Irani is
used in this paper as it is found to be common throughout
the literature [31] and was seen to fare well in the above
empirical evaluation on a number of standard public domain
datasets. The chosen method uses the calculated entropy of
each class to select the most suitable partition boundary,
where the class information entropy can be calculated as
shown in Equation 2.

() () ()2
2

1
1 Ent Ent ;, S

S

S
S

S

S
STAE ×+×= (2)

In Equation 2, S is a set of instances, A is a given feature

(attribute) and T is a partition boundary. For feature A, the
boundary Tmin that minimises the entropy over all possible
boundaries is selected [27]. The application of this will
therefore result in a binary split, and the method can be
applied recursively until a stopping criterion is met, in this
case, a criterion based on the Minimum Description Length
Principle.

IV. A NEW, ATTRIBUTE WEIGHTED VERSION OF THE AIRS2

ALGORITHM

Attribute weighting was added to the AIRS algorithm as a
pre-processing stage. The Mutual Information weighting
scheme was implemented according to Equation 1. This used
the Fayyad and Irani’s discretization technique as described
in Section III.B and Equation 2. The code used to perform
the discretization was taken from the open source “Bayesian
Network Classifiers Toolbox (JBNC)” [32].

The data used to determine the weight of each attribute
was the same training data used by AIRS. Once initialised,
the weights do not change during the run of AIRS.

The standard Euclidean distance measure is changed to
include the weight w of a feature f such that the distance d
between two data instances, x and y, is determined as
follows [16]:

()∑
=

−×=
n

f

fff yxwyxd
1

2),((3)

While, in this paper, the concept of attribute weights was

introduced in the context of the KNN classifer, it should be
noted that the inclusion of attribute weights will affect the
whole AIRS algorithm, not just the final KNN classification
routine. This modified Euclidean distance measure is used
whenever an affintiy is evaluated during the training stage.

It should be noted that while this investigation only uses
Euclidean distance, other distance measures are available for
AIRS [6]. Not only do these new distance measures inclue
measures for continuous attributes (i.e. manhattan distance),
they also include measures for symbolic data (Value
Distance Metric) and mixed data (Hetrogeneous Euclidean-
Overlap Metric). The intrioduction of these metrics was not
only found to make AIRS more flexible as it could be used
for more datasets, in some cases the use of a non-Euclidean
distance measure was found to increase the accuracy of the
classifier.

V. COMPUTATIONAL RESULTS

Experiments were carried out in order to determine how an
AIRS with weighted features performed compared to a
standard AIRS implementation. Java source code was
obtained from the original author of the AIRS algorithm
[33]. This source code was for the revised AIRS algorithm,
AIRS2, as described in [2]. Both the WAIRS (Weighted-
feature AIRS) and standard AIRS algorithms were run with
the default parameters found in the code, i.e. no optimisation
of parameters was performed. This makes the comparison
between the two algorithms as fair as possible. The values of
the parameters can be found in Table II.

A number of datasets were retrieved from the well-known
UCI machine learning repository [9]. Due to the inability of
AIRS to handle datasets in which continuous and discrete
attributes are present, the chosen datasets used continuous
attributes only. The datasets were temporarily discretized, as
explained earlier, just for the sake of computing feature
weights in a pre-processing phase. Once those weights have
been determined, they are fixed throughout the run of
WAIRS – i.e., the algorithm learns a classification model
from the originally continuous features. The “waveform 40”
dataset is as used in [14] and [16] to evaluate the quality of
weighting methods, as this includes 19 artificially irrelevant
attributes. Along similar lines the “Iris+4” dataset is the
standard iris dataset with an additional 4 irrelevant attributes.
The remaining datasets are left as standard.

TABLE II

ALGORITHM PARAMETERS

Parameter Value
Clonal rate 10
Mutation rate 0.7
Affinity threshold 0.2
Stimulation threshold 0.95
Resources 200
Hypermutation rate 10
K value in KNN classifier 3

A 10-fold cross validation approach was taken to estimate

the predictive accuracy of the algorithms. In this approach,
data instances are randomly assigned to one of 10
approximately equal size subsets. At each iteration, all but
one of these sets are merged to form the training set while
the classification accuracy of the algorithm is measured on
the remaining subset. This process is repeated 10 times,
choosing a different subset as the test set each time until all
data instances have been used 9 times for training and once
for testing. The weighting algorithm is run once per fold
using the same training data as the main AIRS algorithm.
The final predictive accuracy is computed over all folds in
the usual manner but dividing the number of correct
classifications taken over all folds by the number of data
instances in all folds. As there is a certain amount of non-
determinism involved both in the random partitioning of the
data and the running of AIRS, at each of the 10 iterations of
the cross-validation procedure both WAIRS and AIRS2
were run 10 times, varying the random seed used to create
the initial population in each run.

Table III shows the mean classification accuracy obtained
when running AIRS on the selection of publicly available
datasets. The AIRS and WAIRS columns show the mean
predictive accuracy of the respective algorithm. The
‘significance’ column shows the probability of the accuracy
obtained for AIRS2 and WAIRS do not differ. A value in
this column of <0.05 is deemed significant while a value of
<0.01 is highly significant. This figure was obtained by
comparing the results of each algorithm using a two-tailed
unpaired Student’s t-test [34, 35]. Significant results are
shown in bold type.

TABLE III

COMPARISON OF CLASSIFIACTION ACCURACY

Dataset AIRS2 WAIRS Significance
Iris+4 88.07% 94.73% 6.2226E-07
Waveform 40 75.92% 81.91% 3.5782E-17
Iris 95.00% 94.53% 0.17303348
Waveform 80.24% 81.59% 3.5147E-06
Wine 95.74% 97.47% 0.00010374
Sonar 77.10% 79.34% 0.02448068
Ionosphere 88.40% 87.81% 0.12493906
Glass 60.77% 60.03% 0.31628134
Diabetes 71.52% 71.29% 0.32420265

The results show that WAIRS achieves significantly

higher predictive accuracy in both datasets where irrelevant
attributes have been artificially injected into the data. The
increase in accuracy is really quite striking in both cases.
Out of the remaining 7 datasets, WAIRS achieves a
significantly higher predictive accuracy over 3 of the 7
datasets. Of the remaining 4 datasets, any difference in the
accuracies reported was not found to be statistically
significant. On no occasion did WAIRS result in a
significantly lower classification accuracy than AIRS2.

The main test of this algorithm was whether the
classification accuracy would increase over AIRS2 when run
on data with attributes known to be irrelevant. Thus it can be
concluded that the weighting procedure is working as
expected. The results shown here contrast with those found

in [20], in which the accuracy was found to decrease when
AIRS was tested using a dataset with known irrelivet
attributes.

Over the remaining datasets, those taken directly from the
UCI repository produced mixed, although no negative,
results. While these public datasets are comprised of real-
world data, they are often pre-processed, including the
selection of attributes particularly suited to the target data
mining task. As such it is likely that no or few irrelevant
features are included in the data, thus it was not expected
that any large increase in accuracy would be seen. The fact
that there was no significant difference in the classification
accuracy over these datasets was pleasing and suggests the
chosen strategy may be robust.

It should be noted that in previous publications where
datasets have been used to evaluate AIRS2, the reported
accuracies differ from the figures in Table III. This is due to
differences in the testing strategy and in the parameters used.
In [1, 36] a 5-fold cross validation approach was taken,
while in [4] different datasets were tested differently with 5,
10 or 13 folds used. However in the case of the Ionosphere
dataset, no cross validation was applied and a single
test/training set was used. In all cases the tests were repeated
three tines and the averages taken. In addition to this,. the
parameters were optimised for performance on each dataset
separately. In the case of [2], no details of the testing
strategy or the parameter values are given, but taking
information from [4] it is believed that test procedures and
parameters were the same as the previous papers. Thus is
likely that these two factors conspire to result in the
accuracies reported here that are slightly lower than those
previously reported. the interested reader wishing to assess
the quality of AIRS classification accuracy in the wider
context of machine learning should therefore consult
previously published papers such as [5] which contain tables
comparing AIRS with other state-of-the-art classifier
systems in a fairer context.

A. Data reduction

As discussed in Section III, when performing classification
with a KNN type algorithm one major goal is a reduction in
training data while maintaining accuracy. We have shown in
the previous subsection that predictive accuracy is either
improved or not significantly impacted but it is of interest to
observe the number of final memory cells produced after
training to determine whether WAIRS produces fewer
memory cells than AIRS2. The results are shown in Table
IV. All results obtained were statistically highly significant
(probability less than 1%) and so a significance column
would be redundant.

From Table IV, it can be seen that in 5 of the 9 datasets
WAIRS resulted in a decrease in the number of data items
used to perform the KNN classification. There does not,
however, seem to be much consistency in these results, for
example, an increase in classification accuracy (Table III)
does not necessarily predict an increase/decrease in B-cells
produced. Bold values show a reduction in memory cells.
Rather it is expected that this may be dataset dependent.
Notice how the numbers of cells for both the Iris datasets

have reduced while the numbers of cells for both the
Waveform datasets has increased. This, as yet, cannot be
explained. What is important is that the increase in the
number of cells is not exclusively for the datasets that
resulted in the better classification accuracy. Significantly,
however, the massive increase in memory cells reported in
[20] was not repeated when datasets containing noisy
attributes are compared to the same dataset which does not
contain noisy attributes (Iris vs. Iris+4 and Waveform vs.
Waveform 40).

TABLE IV
COMPARISON OF THE NUMBER OF MEMORY CELLS LEFT AFTER TRAINING

 Final memory cells
Dataset AIRS2 WAIRS
Iris+4 124.56 37.57
Waveform 40 3086.3 3513.9

Iris 49.61 37.22
Waveform 3330.4 3472.6

Wine 137.38 133.16
Sonar 127.41 153.32

Ionosphere 144.79 159.86

Glass 89.49 74.95
Diabetes 494.05 422.41

VI. CONCLUSION

In this paper we have highlighted that the well known AIS-
based classification algorithm, AIRS, can be thought of as a
pre-processor to a KNN algorithm functioning as a powerful
instance construction algorithm. The case was made that
inspiration could be taken from the data mining literature
and the performance of AIRS could be enhanced by
determining individual weights for data attributes. An
enhanced affinity function was utilised to make use of the
attribute weights, with the same function being used to
compute the distances during KNN classification. The
results of a comparison between this new algorithm,
WAIRS, and the previously published AIRS2 showed that
WAIRS outperformed AIRS2 significantly in 5 out of 9
datasets. Of the remaining 4 datasets no significant
difference between the results of both algorithms was found.
In cases where a dataset contains irrelevant attributes,
WAIRS is likely to outperform AIRS, while in cases where
no irrelevant attributes are present both algorithms work
equally well.

It was noted in the background section that filter type
attribute weighting schemes such as that implemented here
can not take account for attribute interaction as it is
independent of the classification algorithm used. An obvious
improvement would be to use a wrapper approach to further
improve attribute weighting.

As part of the aim of this paper was to illustrate that
AIRS may be better classified as an instance construction
algorithm rather than a classifier in itself, the next logical
progression of this work would be to compare
AIRS2/WAIRS to other instance construction algorithms in
terms of both data compression and the ability of each to
maintain or improve classification accuracy.

REFERENCES

[1] A. Watkins, "AIRS: A Resource Limited Artificial Immune
Classifier", Masters Dissertation, Department of Computer Science,
Mississippi State University, MS. USA, 2001.
[2] A. Watkins and J. Timmis, "Artificial Immune Recognition
System (AIRS): Revisions and Refinements" in 1st International

Conference on Artificial Immune Systems (ICARIS 2002), Canterbury, UK,
2002, pp.173-181.
[3] A. Watkins and J. Timmis, "Exploiting Parallelism Inherent in
AIRS" in 3rd International Conference on Artificial Immune Systems

(ICARIS 2004), Catania, Sicily, 2004, pp.427-438.
[4] A. Watkins, "Exploiting Immunological Metaphors in the
Development of Serial, Parallel, and Distributed Learning Algorithms",
PhD. Thesis, Computer Science, University of Kent, Canterbury, England,
2005.
[5] A. Watkins, et al., "Artificial Immune Recognition System
(AIRS): An Immune-Inspired Supervised Learning Algorithm", Genetic

Programming and Evolvable Machines, 5(3), pp. 291-317, 2004.
[6] J. Hamaker and L. Boggess, "Non-Euclidean Distance Measures
in AIRS, an Artificial Immune Classification System" in 2004 Congress on

Evolutionary Computation (CEC 2004), 2004, pp.1067-1073.
[7] H. Liu and H. Motoda, Instance Selection and Construction for

Data Mining. Kluwer Academic Publishers, 2001.
[8] D. W. Aha, et al., "Instance-Based Learning Algorithms",
Machine Learning, 6(1), pp. 37-66, 1991.
[9] D. J. Newman, et al., "UCI Repository of machine learning
databases", Retrieved September 2006 from:
http://www.ics.uci.edu/~mlearn/MLRepository.html. 1998.
[10] H. Liu and H. Motoda, "On Issues of Instance Selection", Data

Mining and Knowledge Discovery, 6(2), pp. 115-130, 2002.
[11] J. Zhang, "Selecting Typical Instances in Instance-Based
Learning" in 9th International Conference on Machine Learning (ICML

2000), Aberdeen, Scotland, UK, 1992, pp.470-479.
[12] S. Saltzberg, "Distance Metrics for Instance-Based Learning" in
6th International Symposium on Methodologies for Intelligent Systems

(ISMIS-91), Charlotte, USA, 1991, pp.339-408.
[13] D. W. Aha, "Tolerating Noisy, Irrelevant and Novel Attributes in
Instance-Based Learning Algorithms", International Journal of Man-

Machine Studies, 6(1), pp. 267-287, 1992.
[14] D. Wettschereck, et al., "A Review and Empirical Evaluation of
Feature Weighting Methods for a Class of Lazy Learning Algorithms",
Artificial Intelligence Review, 11, pp. 273-314, 1997.
[15] G. Demiroz and H. A. Güvenir, "Genetic Algorithms to Learn
Feature Weights for the Nearest Neighbor Algorithm" in BENELEARN-96,
1996, pp.117-126.
[16] D. Wettschereck and D. W. Aha, "Weighting Features" in First

International Conference on Case Based Reasoning Research and

Development, 1995, pp.347-358.

[17] D. Wettschereck and T. G. Dietterich, "An Experimental
Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle
Algorithms", Machine Learning, 19(1), pp. 5-27, 1995.
[18] C. X. Ling and H. Wang, "Computing Optimal Attribute Weight
Settings for Nearest Neighbour Algorithms", Artificial Intelligence Review,
11, pp. 255-272, 1997.
[19] A. A. Freitas and J. Timmis, "Re-visiting the Foundations of
Artificial Immune Systems for Data Mining", To appear in IEEE

Transactions on Evolutionary Computation, pp. 2006.
[20] L. Boggess and J. S. Hamaker, "The Effect of Irrelevant Features
on AIRS, an Artifcial Immune-Based Classifier" in Intelligent Engineering

Systems through Artifcial Neural Networks (AINNIE), 2003, pp.219-224.
[21] P. Langley, "Selection of Relevant features in machine
Learning" in AAAI Fall Symposium on Relevance, New Orleans, 1994,
pp.1-5.
[22] R. H. Creecy, et al., "Trading MIPS and Memory for Knowledge
Engineering", Communications of the ACM, 35, pp. 48-64, 1992.
[23] C. Stanfill and D. Waltz, "Toward Memory-based reasoning",
Communications of the ACM, 29(12), pp. 1213-1228, 1986.
[24] T. M. Cover and J. Thomas, Elements of Information Theory.
Wiley, 1991.
[25] J. W. Grzymala-Busse, "Data reduction: discretization of
numerical attributes", in Handbook of Data Mining and Knowledge

Discovery, W. Klösgen and J. M. Zytkow Ed. Oxford University Press,
2002, pp. 218 - 225.
[26] J. Dougherty, et al., "Supervised and Unsupervised
Discretization of Continuous Features" in 12th International Conference on

Machine Learning, San Francisco, USA, 1995,
[27] P. Perner and S. Trautzsch, "Multi-Interval Discretization
Methods for Decision Tree Learning" in SSPR/SPR, 1998, pp.475-482.
[28] R. Kerber, "ChiMerge: Discretization of Numeric Attributes" in
10th National Conference on Artificial Intelligence, San Jose, USA, 1992,
pp.123-128.
[29] T. Kohonen, Self-Organization and Associative Memory.
Springer-Verlag, 1989.
[30] U. M. Fayyad and K. B. Irani, "Multi-interval Discretization of
Continuous-Valued Attributes for Classification Learning" in 13th

international joint Conference on Artificial intelligence (IJCAI '93), 1993,
pp.1022-1027.
[31] K. M. Ting, "Discretisation in Lazy Learning Algorithms",
Artificial Intelligence Review, 11, pp. 157-174, 1997.
[32] J. Sacha, "JBNC - Bayesian Network Classifiers Toolbox",
Retrieved September 2006 from: http://sourceforge.net/projects/jbnc/. 2004.
[33] J. Hamaker and A. Watkins, "Artificial Immune Recognition
System (AIRS) Java source code", 2003
[34] H. L. Alder and E. B. Roessler, Introduction to Probability and

Statistics. W. H. Freeman, 1968.
[35] J. H. Creighton, A First Course in Probability Models and

Statistical Inference. Springer-Verlag, 1994.
[36] A. Watkins and L. Boggess, "A New Classifier Based on
Resource Limited Artificial Immune Systems" in Congress on Evolutionary

Computation (CEC 2002), Honolulu, USA, 2002, pp.1546-1551.

