
AutoClustering
An Estimation of Distribution Algorithm for the Automatic Generation of Clustering

Algorithms

Aruanda S. G. Meiguins, Roberto C. Limão

PPGEE - UFPA

Belém, Brasil

Bianchi S. Meiguins, Samuel F. S. Junior

ICEN- UFPA

Belém, Brasil

Alex A. Freitas

University of Kent at Canterbury

Canterbury, UK

Abstract— Most of the existing Data Mining algorithms have

been manually produced, that is, have been developed by a

human programmer. A prominent Artificial Intelligence research

area is automatic programming – the generation of a computer

program by another computer program. Clustering is an

important data mining task with many useful real-world

applications. Particularly, the class of clustering algorithms based

on the idea of data density to identify clusters has many

advantages, such as the ability to identify arbitrary-shape

clusters. We propose the use of Estimation of Distribution

Algorithms for the artificial generation of density-based

clustering algorithms. In order to guarantee the generation of

valid algorithms, a directed acyclic graph (DAG) was defined

where each node represents a procedure (building block) and

each edge represents a possible execution sequence between two

nodes. The Building Blocks DAG specifies the alphabet of the

EDA, that is, any possibly generated algorithm. Preliminary

experimental results compare the clustering algorithms

artificially generated by AutoClustering to DBSCAN, a well-

known manually-designed algorithm.

Automatic Programming, Density-Based Clustering, Estimation

of Distribution Algorithms, Data Mining

I. INTRODUCTION

Clustering is an important Data Mining task that groups
items in a dataset into meaningful classes. Many clustering
algorithms have been proposed [1], [2], [3], [4], [5], [6], [7],
[8]. Density-based clustering algorithms, in particular, focus on
the identification of clusters of arbitrary shape by identifying
dense areas in a dataset. Each algorithm, however, is based on a
different definition of density and uses a different process to
identify these dense areas.

A common characteristic of all clustering algorithms and
actually of most algorithms in general, is that they are manually
produced, i.e. they were developed by one or more human
beings. A current research topic in Artificial Intelligence is the
study of automatic programming. This task is usually the focus
of Genetic Programming algorithms. The more recent area of
Estimation of Distribution Algorithms (EDA) relies on the
evolution of probabilistic models of the analyzed population of

individuals instead of the more common evolutionary operators
such as mutation and crossover [11].

EDAs have recently been proposed as a new paradigm for
automatic program construction [15]. However, in that work
the EDA was used to evolve solutions to relatively simple
Genetic Programming benchmark problems, i.e., no algorithm
invention was attempted, nor any Data Mining task
investigated. By contrast, this work addresses the much more
challenging task of developing an EDA for the automatic
creation of clustering algorithms.

More precisely, the goal of this paper is to develop an EDA
called AutoClustering that automatically generates density-
based clustering algorithms. It is important to distinguish the
goal of this work from other projects using evolutionary
algorithms for clustering. The output of those other
evolutionary algorithms was a set of clusters selected for a
specific dataset [10].

The present work has a much more ambitious goal. We
propose the evolution of a new clustering algorithm,
specifically designed for a given dataset. Therefore, the output
of AutoClustering is a fully-fledged clustering algorithm –
including loops, for instance.

To the best of our knowledge there is no previous work on
the automatic generation of clustering algorithms. The most
related work seems to be [16], which proposes a genetic
programming system for automatically generating a very
different kind of data mining algorithm, viz. classification
algorithms. Classification involves supervised learning, unlike
clustering, which involves unsupervised learning, so the two
tasks are very different. Also, we propose an EDA for our
target task, whilst [16] proposed a very different genetic
programming system.

In order to increase the chances for a good clustering
algorithm to be generated by AutoClustering, the alphabet is
defined as a number of carefully-selected typical clustering
procedures (building blocks of clustering algorithms).
Additionally, the EDA uses a pre-defined data structure that
implicitly represents all the valid sequences of building blocks.

This data structure is a directed acyclic graph (DAG), which
specifies the generic structure of density-based clustering
algorithms. We will call this a Building Blocks DAG.
AutoClustering searches the Building Blocks DAG after the
execution of each building block to recall which blocks are
valid next.

We have analyzed in detail many density-based clustering
algorithms, in order to identify the most significant density-
based clustering procedures. Many recently proposed
algorithms present relatively small contributions in relation to
previous algorithms. We have therefore selected a small
number of basic density-based clustering algorithms – those
presenting a particularly different approach to the task. Any
subsequent version of these algorithms proposed later for
slightly improving performance or flexibility was therefore not
considered.

As expected, the selected basic algorithms had some
building blocks in common. A set of typical density-based
clustering procedures was then extracted from these basic
algorithms. The procedures were generalized as building
blocks to be executed in any order specified by a given
sequence of edges in the Building Blocks DAG. Hence, the
building blocks will be combined by the EDA producing new
density-based clustering algorithms. As a result, these
automatically-created clustering algorithms will be potentially
free from the limitations and biases associated to the manually-
created existing clustering algorithms, introducing a new level
of automation in the clustering task of Data Mining.

The next sections will present the selected basic clustering
algorithms, the corresponding identified building blocks, the
Building Blocks DAG and the proposed structure for the EDA.

II. SELECTED ALGORITHMS

Eight density-based clustering algorithms were selected as
basic algorithms for this work.

• DBSCAN [2] is a well-known density-based clustering
algorithm. It identifies clusters as a set of density-
connected items in a dense area. It uses the parameter
MinPts to specify the minimum number of items for a
certain neighborhood to be considered dense and the
parameter Eps to specify the radius of this
neighborhood. Items not included in any cluster are
labeled as noise.

• DENCLUE [3] initially partitions the dataset into
multidimensional hyper-cubes. It identifies the local
density function associated to each item in the highly
populated cubes and its adjacent cubes. A hill-climbing
procedure determines the local maximum for each item
– called density-attractor. A cluster is then defined for
each density-attractor item and its attracted items.

• DBCLASD [7] increments an initial cluster while the
internal distance is compatible to the expected distance
distribution. SAMs (spacial access methods) are used
to fetch the surrounding items.

• CLIQUE [1] searches for dense units in a bottom-up
approach starting with one-dimensional dense units. It
generates a partition of connected units in the dataset.

• DHC [4] produces an attraction tree connecting each
item to its density attractor. The attraction tree is
reduced to a density tree that identifies the clusters.

• DESCRY [6] builds an adaptable k-d tree from the
dataset. Each node of the tree is associated to
approximately the same number of items. Clusters are
initially defined as the gravity center of each node and
then an agglomerative hierarchical procedure is
performed to obtain the number of clusters specified by
the user.

• SUDEPHIC [8] partitions the dataset in equally sized
grids. The cells with highest density are hierarchically
merged. The criterion for the cells to be merged is the
density in the overlap area.

• AMR [5] creates well-spaced grids from the dataset
and recursively refines the highly dense regions. This
process generates a hierarchical tree representing the
dataset. Each node of the tree is initially considered a
cluster. The algorithm then analyzes the parent nodes
of each cluster assigning each item to the closest
cluster.

III. PROPOSED BUILDING BLOCKS

The analysis of the basic algorithms briefly referred to in
the previous section inspired the design and implementation of
the following set of 16 density-based clustering building
blocks.

Some of these building blocks are used in more than one of
the selected clustering algorithms, but only one algorithm is
specifically indicated in the description of the building block
for the sake of simplicity. The implementation of the building
block was based on that indicated algorithm.

Each building block demands the specification of one or
more parameters. The parameter values were included in the
individual specification so that the EDA would select not only
a set of building blocks but also the appropriate parameters in
each case.

• createCandidatesByDistance – creates cluster
candidates formed by items in a specified
neighborhood as in the DBSCAN algorithm. Input: a
dataset. Output: a set of items. Parameters: the
distance, the minimum number of items.

• createClusterByConnectiveness – checks if every
item in the cluster is density-connected as defined in
the DBSCAN algorithm. Input: a set of items Output: a
cluster. Parameters: the distance, the minimum
number of items.

• createCandidatesByNPts – selects the N closest items
to each item of the dataset as in the DBSCLAD
algorithm. Input: a dataset. Output: a set of items.
Parameter: the number of items.

• createClusterByDistribution – iteratively adds items
to a cluster as in the DBCLASD algorithm. Each item
is added to the cluster if the updated cluster distribution
is still acceptable. If a not acceptable distribution is
achieved, the item is not added to cluster. Input: a set
of items. Output: a cluster. Parameter: the number of
items.

• createAttractionTree– creates a tree connecting each
item in the dataset to its attractor as defined in the
DHC algorithm. Input: a set of items. Output: an
attraction tree. Parameters: the number of points, the
sigma value, the threshold value.

• createDensityTree– transforms an attraction tree into
a density tree as in the DHC algorithm. Input: an
attraction tree. Output: a density tree. Parameters: the
number of points, the sigma value, the threshold value.

• createASH– builds average shifted histograms to
identify dense areas in the dataset as in the DENCLUE
algorithm. Input: a dataset. Output: a set of items in the
dense areas. Parameters: the sigma value, the epsilon
value.

• createClusterByAttractor – creates a cluster for each
density-attractor item found by a hill-climbing
procedure as in DENCLUE. Input: a set of items.
Output: a set of clusters. Parameters: the sigma value,
the epsilon value.

• idDenseAreas – recursively identify dense areas in
each dimension starting with one-dimensional dense
units as in CLIQUE. Input: a set of items. Output: a set
of dense units. Parameters: the number of slices, the
threshold value.

• createClusterByPartition – connects dense units into
partitions describing a cluster for each identified
partition as in CLIQUE. Input: a set of dense units.
Output: a set of clusters. Parameters: the number of
slices, the threshold value.

• createEquallySizedGrid – divides the dataset into a
grid of uniformly sized cells as in AMR. Input: a
dataset. Output: a set of cells. Parameter: the number of
slices.

• createAdaptableKDTree– partitions the dataset into a
binary tree where each node is connected to
approximately the same number of items as in
DESCRY. Input: a set of items. Output: an adaptable
kd-tree. Parameters: the number of items in each node,
the K value.

• createAMRTree – creates a tree of recursively refined
grids as in the AMR algorithm. Input: a set of cells
forming a grid. Output: AMR tree. Parameters: the
density value, the lambda values, the number of slices.

• createAMRCluster – creates a cluster for each leaf of
the input AMR tree and assigns parent items to the
corresponding cluster in a bottom-up agglomerative
process. Input: an AMR tree. Output: a set of clusters.

Parameters: the density value, the lambda values, the
number of slices.

• mergeByOverlap – hierarchically merges similar
clusters until the specified number of clusters is
reached, using the density in the clusters overlap as
similarity criterion as in the SUDEPHIC algorithm.
Input: a set of partitions for a dataset. Output: a set of
clusters. Parameters: none.

• mergeByDistance – merges the closest pair of clusters
until the specified number of clusters is reached as in
the DESCRY algorithm. Input: a set of partitions for a
dataset. Output: a set of clusters. Parameter: the
number of clusters.

IV. INDIVIDUAL REPRESENTATION

An individual for the proposed EDA is a density-based
clustering algorithm. The algorithm is any valid sequence of
the selected building blocks, that is, a possible sequence from
the Building Blocks DAG in Fig. 1, from the root node to a
terminal node in the figure, plus a set of parameter values for
all the parameters of the building blocks composing the
sequence.

Hence, the Building Blocks DAG incorporates important
background knowledge about the clustering task that supports
AutoClustering in the task of creating valid clustering
algorithms.

Each node of the Building Blocks DAG represents one of
the density-based clustering building blocks. Each directed
edge represents a sequential connection between two
procedures, that is, the procedure pointed by the edge should be
executed immediately after the execution of the procedure from
which the edge comes out. Each edge has an associated weight
that represents the probability of the procedure pointed to by
the edge to be selected. The edge weights are not shown in the
figure in order to keep it simple.

The total weight (sum of probabilities) of the edges coming
out from a node is always 1, since those edges represent
mutually exclusive ways of selecting a new procedure to be
executed next, but the individual probabilities of the edges are
updated each time a new population is produced by the EDA.

This probability update follows a conventional scheme for
updating the probability vector of an EDA like PBIL [11], with
the difference that in our case each component of the
“probability vector” is the probability associated with an edge
(connecting two procedures) in the Building Blocks DAG,
rather than being a variable as in PBIL.

More formally, an EDA individual is represented by a path
in the Building Blocks DAG from the initial node to a terminal
node, i.e., a node from which no edge comes out. A path in the
Building Blocks DAG is a sequence of nodes n1,..., nk where
n1 is the initial node, ni, i = 2,...,k is a child (successor) node of
ni - 1 and nk is a terminal node.

Recall that an individual represents a density-based
clustering algorithm. Different clustering algorithms are
generated for each different path in Building Blocks DAG.

Figure 1. Building Blocks DAG

For instance, a candidate algorithm for a particular dataset
could be represented by the sequence of nodes in Fig. 2. This
path would represent a novel clustering algorithm inspired by a
combination of ideas from three existing density-based
clustering algorithms: CLIQUE, AMR and DESCRY.

Additionally, the evolved algorithm would include the best-
suited parameter values for the specific dataset involved. The
parameter values are part of the individual representation and
are evolved by the EDA. For each building block associated to
each individual, the necessary parameter values are selected
from a pre-specified range of values. For instance, the number
of slices for the AMR algorithm may vary from 25 to 30.

There are 6,051,800 different possible algorithms that may
be generated for each dataset considering the 20 possible paths
of the building blocks DAG and the possible parameter values
for each building block.

V. FITNESS FUNCTION

The fitness of an individual must be based on the results of
the corresponding clustering algorithm. However, defining the
fitness function is not a trivial task, since clustering is an
unsupervised learning task. The user does not supply
previously clustered data to the clustering algorithm and
therefore, although there are several objective criteria to
evaluate a clustering result [10], the ultimate evaluation of a

clustering process is usually regarded as a subject issue. This is
in contrast with classification algorithms, which have well-
defined objective evaluation criteria, since they are supervised
learning algorithms. Note that in this work it is essential to use
an objective criterion to evaluate clustering results, since we
are automating the process of clustering algorithm creation.
Our proposed solution to this problem is described next.

In general, the result of a clustering algorithm can be
expressed as a list of data items where each item is associated
to a specific cluster or, in some cases, to no cluster (when the
item is considered noise). In order to evaluate the results of the
clustering algorithms produced by AutoClustering we propose
the use of a method that takes advantage of the objective nature
of classifier evaluation.

The Clest method [9] was originally proposed to estimate
the adequate number of clusters for a dataset. We have adapted
this method to estimate the quality of clustering results in the
following steps.

1. Split the dataset in two subsets: a training set and a

test set.

2. Apply the clustering algorithm to the training set.

3. Assign a label to each data item indicating the cluster

it belongs to.

4. Apply a classification algorithm to the training set

using as target (class) attribute value the cluster label

specified by the clustering algorithm. This will

generate a classifier, which was trained from this

specific subset of items.

Figure 2. Possible Path in Building Blocks DAG

5. Apply the clustering algorithm to the test set

specifying a cluster (target attribute value) to each

item.

6. Apply the classifier built in step 4 to the test set.

7. Compare the results of the clustering algorithm and the
results of the classifier on the test set.

The evaluation of an AutoClustering individual therefore
considers the performance of the classifier on the test set, after
the clustering algorithm has been independently used to assign
cluster labels to data items in both training and test sets.

The main advantage of the proposed adapted Clest method
over existing objective metrics for clustering evaluation [13]
lies in the flexibility and generality of the former approach.
Any classifier may be used to evaluate the clustering results.
Therefore, this method is applicable to any dataset with any
combination of data types. Other proposed clustering
evaluation metrics would introduce a strong bias towards some
distribution of the data or particular data types.

The fitness of an individual takes into consideration the
performance of the corresponding clustering algorithm on the
given dataset. The fitness function value for each individual is
determined by the accuracy rate of the classifier on the test set,
after the corresponding clustering algorithm has specified
cluster labels to the training and the test sets.

VI. AUTOCLUSTERING – AN EDA FOR AUTOMATIC

DENSITY-BASED CLUSTERING ALGORITHM GENERATION

The EDA uses a probability DAG instead of the more
commonly used probability vector. The evolution process
updates the probabilities associated to each edge of the
BuildingBlocksDAG according to the evaluation of the
algorithms using the corresponding building blocks.

Fig. 3 presents the pseudo-code for updating the probability
DAG. In this procedure, α is the average fitness of selected
individuals using the corresponding edge.

The population evolution is therefore guided by the
probabilities of the BuildingBlocksDAG edges. The better the
individuals using a specific edge, i.e., using both the building
blocks coming from and to the edge, the better are the chances
of this edge to be selected by the EDA.

The following steps outline the execution of
AutoClustering.

1. Generate a population of N density-based algorithms.

Each individual (or algorithm) represents a possible

path in the BuildingBlocksDAG.

2. Evaluate each individual using the CLEST method.

3. Eliminate the 50% individuals with lowest fitness.

4. Update the probabilities of each edge of the

BuildingBlocksDAG according to its frequency of use

in the selected population (the 50% highest-fitness

individuals).

5. Generate a new population of N individuals using the

updated BuildingBlocksDAG

6. Add the best individual of the previous population to

the current one (implementing elitism).

7. Repeat steps 2-7.

VII. EXPERIMENTAL RESULTS

Current experiments have been based on four public-
domain datasets from the well-known UCI dataset repository,
often used for benchmarking in machine learning research [12]:
Glass Identification (8 attributes, 214 instances); Pima Indians
Diabetes (8 attributes, 768 instances); Bupa Liver-disorders (7
attributes, 345 instances); and Cleveland Heart Diseases (13
attributes, 294 instances). The class attributes of each dataset
were not considered.

The EDA was set to evolve 50 individuals during 500
generations. In order to compare results of the best algorithm
produced by the EDA to the manually-designed selected
algorithms, we have set Autoclustering to exclusively run pre-
selected paths of the Building Blocks DAG. So it was possible
to reproduce the exact sequence of procedures of the original
algorithms and therefore obtain the results of CLIQUE, AMR,
DESCRY, DBSCAN, DBCLASD, DENCLUE, SUDEPHIC
and DHC for the selected datasets.

We then performed 30 executions of the EDA and 30
executions of each of the 8 manually-designed algorithms for
each dataset in order to analyze the difference in accuracy
between the results of the algorithms generated by
AutoClustering and the other evaluated algorithms.

The same Clest method used in the fitness of the EDA was
used when running the evaluated algorithms, in order to make
the comparison between these algorithms as fair as possible.

Each of the evaluated algorithms independently produced
cluster labels in the training and test subsets for each dataset, as
explained earlier. The J48 classification algorithm [14] (a Java
version of the well-known C4.5 decision-tree induction
algorithm) built a classifier based on each training set. The
classifier was applied to the corresponding test set for each of
the selected datasets. We compute the accuracy between the
cluster label produced by the clustering algorithm and the
corresponding classifier label, for each data item in the test set.

Parameter DagNode – A node in a probability

directed acyclic graph

Parameter SelectedIndividuals – a subset of

individuals from the current population selected

by any evolutionary selection method (default: 50%

highest-fitness individuals).

Procedure updateDagProbabilities (DagNode,

SelectedIndividuals)

For each Edge coming out from current node

 edgeProb= α + (1 - α)EdgeProb;

 updateDagProbabilities (target node of current

 edge, selectedIndividuals);

totalProb = total EdgeProb for all Edges coming

 out of current node;

For each Edge coming out from current node

 EdgeProb = EdgeProb / TotProb;

Figure 3. Updating the edge probabilities in the BuildingBlocksDAG

We then compare the algorithms in terms of the accuracy
rate of the comparison between the two labels for all data items
in the test set. The box plots in the following figures indicate
the minimum and maximum accuracy rate values, the
corresponding lower and upper quartiles and the medium for
each of the four selected datasets.

The automatically-evolved algorithms by our EDA
presented the best results for each dataset. DHC, DBCLASD
and DBSCAN also presented good results for the Cleveland
dataset. DENCLUE, DBCLASD and DHC performed well
when analyzing the glass dataset. Only AMR and DBSCAN
produced results below 80% when analyzing the Pima dataset.
Finally, when analyzing the Bupa dataset, the best basic
algorithms were DESCRY, DENCLUE, DBCLASD and
DBSCAN.

Autoclustering has built 30 different algorithms for each of
the four analyzed datasets. In some cases, the only variation
was in terms of parameter values since the same path was
selected on the building-blocks DAG. In other cases, the
selected path represented one of the classic clustering
algorithms, such as DENCLUE or DBSCAN. However, in
most cases the selected path on the building-blocks DAG
represented a combination of parts of different algorithms, that
is, essentially new algorithms – never before evaluated in any
previous work.

One simple example of an algorithm generated
automatically by autoclustering is represented in Fig.8. This
algorithm was evolved for the PIMA dataset. It begins by
identifying dense areas as in the CLIQUE algorithm and
finishes with the DENCLUE procedure that identifies clusters
by the attraction criterion.

VIII. CONCLUSIONS

In this paper we propose the use of an EDA for automatic
generation of density-based clustering algorithms. Many
existing clustering algorithms were reviewed so that the
appropriate building blocks – typical clustering procedures –
could be identified.

Figure 5. Boxplot – fitness values on executions using the Bupa dataset

Figure 6. Boxplot – fitness values on executions using the Cleveland

dataset

Figure 4. Boxplot – fitness values on executions using the Glass dataset

Figure 8. Path of one of the algorithms generated by Autoclustering for

the Pima dataset.
Figure 6. Boxplot – fitness values on executions using the Pima dataset

The definition of the Building Blocks DAG specified the
possible sequence of building blocks covered by the EDA, that
is, the possible artificially generated algorithms.

The fitness of an individual is based on an adaptation of the
Clest method. The generated clustering algorithm is executed
on both training and test sets separately, so the appropriate
cluster label is assigned to each data item. Then a classifier
algorithm is executed on the training set and applied to the test
set. The fitness is then determined by the accuracy of the
classifier on the test set. We emphasize that information about
the classes of examples in the test set is not used during the
training of the classification algorithm, preserving the
fundamental principle of separation between training and test
sets in the classification task. The idea is that a more suited
clustering algorithm for a given dataset will produce cluster
labels that are more easily predicted by a classifier method
because they represent a consistent structure in the dataset.

The algorithms generated by Autoclustering for the selected
public-domain datasets performed better, on average, than any
of the 8 selected classic clustering algorithms. The developed
EDA will potentially generate efficient algorithms specifically
designed for any particular dataset.

This approach is particularly interesting when one needs to
repeatedly apply a clustering algorithm to the same dataset, so
the computation cost is compensated by the benefits of
generating a new clustering algorithm tailored to the dataset.

Our plans for future work include the analysis of the
difference in accuracy between the results of the classic
algorithms and the algorithms generated by AutoClustering.
We intend to use ANOVA, a statistical test that generalizes the
Student t-test for more than two groups.

 REFERENCES

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos and Prabhakar
Raghavan, “Automatic subspace clustering of high dimensional data” in
ACM-SIGMOD Int. Conf. Management of Data. Washington, 1998.

[2] M. Ester, H-P. Kriegel, J. Sander and X. Xu “A density-based algorithm
for discovering clusters in large spatial databases with noise”, in Proc. of
KDD-96, AAAI Press, 1996. pp. 226 - 231.

[3] A. Hinneburg and D. Keim, “A general approach to clustering in large
databases with noise”, in Knowledge and information systems, vol. 5, n.
4., Springer London, 2003, pp. 387 - 415.

[4] D. Jiang, J. Pei and A. Zhang, “DHC: A Density-based Hierarchical
Clustering Method for Time Series Gene Expression Data”, in
Proceedings of the 3rd IEEE Symposium on Bio-informatics and Bio-
engineering, USA, pp. 393-400, 2003.

[5] W. Liao, Y. Liu and A. Choudhary, “A Grid-based Clustering Algorithm
using Adaptive Mesh Refinement” in Proceedings of the 7th Workshop
on Mining Scientific and Engineering Datasets, Lake Buena Vista, USA,
April 2004.

[6] F. Angiulli, C. Pizzuti and M. Ruffolo, “DESCRY: A Density Based
Clustering Algorithm for Very Large Dataset”, Fifth International
Conference on Intelligent Data Engineering and Automated Learning,
Exeter, UK, 2004.

[7] X. XU, M. Ester, H-P Kriegel, J. Sander. “A Distribution-Based
Clustering Algorithm for Mining in Large Spatial Databases” in
Proceedings of the Fourteenth International Conference on Data
Engineering.Orlando, USA, 1998. p. 324 - 331.

[8] D. ZHOU, Z. Cheng, C. Wang, H. Zhou, W. Wang and B. Shi,
“SUDEPHIC: Self-tuning Density-based Partitioning and Hierarchical
Clustering” in Lecture Notes in Computer Science, 2004, vol. 2973, pp.
69-108.

[9] S. Dudoit and J. Fridlyand, “A prediction-based resampling method for
estimating the number of clusters in a dataset” in Genome Biology, vol.
3, n. 7, pp. 1-21, 2002.

[10] A. A. Freitas,. Data Mining and Knowledge Discovery with
Evolutionary Algorithms. Springer, 2002.

[11] J. A. Lozano, P. Larrañaga, I. Inza and E. Bengoetxea. Towards a new
Evolutionary Computation: Advances on Estimation of Distribution
Algorithms. Springer-Verlag, 2006. 294p.

[12] A. Frank and A. Asuncion, UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science, 2010.

[13] P-N. Tan, M. Steinbach, V. Kumar Introduction to Data Mining. Boston:
Addison Wesley, 2005. 769 p.

[14] I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kauffmann
Publishers, San Francisco, 2000.

[15] K. Yanai and H. Iba, “Estimation of Distribution Programming: EDA-
based approach to program generation” in J.A. Lozano et al. (Eds.)
Towards a new evolutionary computation: advances on EDAs, 103-157.
Springer, 2006.

[16] G.L. Pappa and A.A. Freitas. Automating the Design of Data Mining
Algorithms: an evolutionary computation approach. 187 pages. Springer,
2010.

