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Abstract— Most of the existing Data Mining algorithms have 

been manually produced, that is, have been developed by a 

human programmer. A prominent Artificial Intelligence research 

area is automatic programming – the generation of a computer 

program by another computer program. Clustering is an 

important data mining task with many useful real-world 

applications. Particularly, the class of clustering algorithms based 

on the idea of data density to identify clusters has many 

advantages, such as the ability to identify arbitrary-shape 

clusters. We propose the use of Estimation of Distribution 

Algorithms for the artificial generation of density-based 

clustering algorithms. In order to guarantee the generation of 

valid algorithms, a directed acyclic graph (DAG) was defined 

where each node represents a procedure (building block) and 

each edge represents a possible execution sequence between two 

nodes. The Building Blocks DAG specifies the alphabet of the 

EDA, that is, any possibly generated algorithm. Preliminary 

experimental results compare the clustering algorithms 

artificially generated by AutoClustering to DBSCAN, a well-

known manually-designed algorithm.  

Automatic Programming, Density-Based Clustering, Estimation 

of Distribution Algorithms, Data Mining  

I.  INTRODUCTION  

Clustering is an important Data Mining task that groups 
items in a dataset into meaningful classes. Many clustering 
algorithms have been proposed [1], [2], [3], [4], [5], [6], [7], 
[8]. Density-based clustering algorithms, in particular, focus on 
the identification of clusters of arbitrary shape by identifying 
dense areas in a dataset. Each algorithm, however, is based on a 
different definition of density and uses a different process to 
identify these dense areas. 

A common characteristic of all clustering algorithms and 
actually of most algorithms in general, is that they are manually 
produced, i.e. they were developed by one or more human 
beings. A current research topic in Artificial Intelligence is the 
study of automatic programming. This task is usually the focus 
of Genetic Programming algorithms. The more recent area of 
Estimation of Distribution Algorithms (EDA) relies on the 
evolution of probabilistic models of the analyzed population of 

individuals instead of the more common evolutionary operators 
such as mutation and crossover [11]. 

EDAs have recently been proposed as a new paradigm for 
automatic program construction [15]. However, in that work 
the EDA was used to evolve solutions to relatively simple 
Genetic Programming benchmark problems, i.e., no algorithm 
invention was attempted, nor any Data Mining task 
investigated. By contrast, this work addresses the much more 
challenging task of developing an EDA for the automatic 
creation of clustering algorithms. 

More precisely, the goal of this paper is to develop an EDA 
called AutoClustering that automatically generates density-
based clustering algorithms. It is important to distinguish the 
goal of this work from other projects using evolutionary 
algorithms for clustering. The output of those other 
evolutionary algorithms was a set of clusters selected for a 
specific dataset [10].  

The present work has a much more ambitious goal. We 
propose the evolution of a new clustering algorithm, 
specifically designed for a given dataset. Therefore, the output 
of AutoClustering is a fully-fledged clustering algorithm – 
including loops, for instance.  

To the best of our knowledge there is no previous work on 
the automatic generation of clustering algorithms. The most 
related work seems to be [16], which proposes a genetic 
programming system for automatically generating a very 
different kind of data mining algorithm, viz. classification 
algorithms. Classification involves supervised learning, unlike 
clustering, which involves unsupervised learning, so the two 
tasks are very different. Also, we propose an EDA for our 
target task, whilst [16] proposed a very different genetic 
programming system. 

In order to increase the chances for a good clustering 
algorithm to be generated by AutoClustering, the alphabet is 
defined as a number of carefully-selected typical clustering 
procedures (building blocks of clustering algorithms). 
Additionally, the EDA uses a pre-defined data structure that 
implicitly represents all the valid sequences of building blocks. 



This data structure is a directed acyclic graph (DAG), which 
specifies the generic structure of density-based clustering 
algorithms. We will call this a Building Blocks DAG. 
AutoClustering searches the Building Blocks DAG after the 
execution of each building block to recall which blocks are 
valid next. 

We have analyzed in detail many density-based clustering 
algorithms, in order to identify the most significant density-
based clustering procedures. Many recently proposed 
algorithms present relatively small contributions in relation to 
previous algorithms. We have therefore selected a small 
number of basic density-based clustering algorithms – those 
presenting a particularly different approach to the task. Any 
subsequent version of these algorithms proposed later for 
slightly improving performance or flexibility was therefore not 
considered. 

As expected, the selected basic algorithms had some 
building blocks in common. A set of typical density-based 
clustering procedures was then extracted from these basic 
algorithms. The procedures were generalized as building 
blocks to be executed in any order specified by a given 
sequence of edges in the Building Blocks DAG. Hence, the 
building blocks will be combined by the EDA producing new 
density-based clustering algorithms. As a result, these 
automatically-created clustering algorithms will be potentially 
free from the limitations and biases associated to the manually-
created existing clustering algorithms, introducing a new level 
of automation in the clustering task of Data Mining. 

The next sections will present the selected basic clustering 
algorithms, the corresponding identified building blocks, the 
Building Blocks DAG and the proposed structure for the EDA. 

II. SELECTED ALGORITHMS 

Eight density-based clustering algorithms were selected as 
basic algorithms for this work.  

• DBSCAN [2] is a well-known density-based clustering 
algorithm. It identifies clusters as a set of density-
connected items in a dense area. It uses the parameter 
MinPts to specify the minimum number of items for a 
certain neighborhood to be considered dense and the 
parameter Eps to specify the radius of this 
neighborhood. Items not included in any cluster are 
labeled as noise.  

• DENCLUE [3] initially partitions the dataset into 
multidimensional hyper-cubes. It identifies the local 
density function associated to each item in the highly 
populated cubes and its adjacent cubes. A hill-climbing 
procedure determines the local maximum for each item 
– called density-attractor. A cluster is then defined for 
each density-attractor item and its attracted items.  

• DBCLASD [7] increments an initial cluster while the 
internal distance is compatible to the expected distance 
distribution. SAMs (spacial access methods) are used 
to fetch the surrounding items.  

• CLIQUE [1] searches for dense units in a bottom-up 
approach starting with one-dimensional dense units. It 
generates a partition of connected units in the dataset.  

• DHC [4] produces an attraction tree connecting each 
item to its density attractor. The attraction tree is 
reduced to a density tree that identifies the clusters.  

• DESCRY [6] builds an adaptable k-d tree from the 
dataset. Each node of the tree is associated to 
approximately the same number of items. Clusters are 
initially defined as the gravity center of each node and 
then an agglomerative hierarchical procedure is 
performed to obtain the number of clusters specified by 
the user.  

• SUDEPHIC [8] partitions the dataset in equally sized 
grids. The cells with highest density are hierarchically 
merged. The criterion for the cells to be merged is the 
density in the overlap area.  

• AMR [5] creates well-spaced grids from the dataset 
and recursively refines the highly dense regions. This 
process generates a hierarchical tree representing the 
dataset. Each node of the tree is initially considered a 
cluster. The algorithm then analyzes the parent nodes 
of each cluster assigning each item to the closest 
cluster.  

III. PROPOSED BUILDING BLOCKS 

The analysis of the basic algorithms briefly referred to in 
the previous section inspired the design and implementation of 
the following set of 16 density-based clustering building 
blocks.  

Some of these building blocks are used in more than one of 
the selected clustering algorithms, but only one algorithm is 
specifically indicated in the description of the building block 
for the sake of simplicity. The implementation of the building 
block was based on that indicated algorithm. 

Each building block demands the specification of one or 
more parameters. The parameter values were included in the 
individual specification so that the EDA would select not only 
a set of building blocks but also the appropriate parameters in 
each case. 

• createCandidatesByDistance – creates cluster 
candidates formed by items in a specified 
neighborhood as in the DBSCAN algorithm. Input: a 
dataset. Output: a set of items. Parameters:  the 
distance, the minimum number of items. 

• createClusterByConnectiveness – checks if every 
item in the cluster is density-connected as defined in 
the DBSCAN algorithm. Input: a set of items Output: a 
cluster. Parameters:  the distance, the minimum 
number of items. 

• createCandidatesByNPts – selects the N closest items 
to each item of the dataset as in the DBSCLAD 
algorithm.  Input: a dataset. Output: a set of items. 
Parameter: the number of items. 



• createClusterByDistribution – iteratively adds items 
to a cluster as in the DBCLASD algorithm. Each item 
is added to the cluster if the updated cluster distribution 
is still acceptable. If a not acceptable distribution is 
achieved, the item is not added to cluster.  Input: a set 
of items. Output: a cluster. Parameter: the number of 
items. 

• createAttractionTree– creates a tree connecting each 
item in the dataset to its attractor as defined in the 
DHC algorithm. Input: a set of items. Output: an 
attraction tree. Parameters: the number of points, the 
sigma value, the threshold value. 

• createDensityTree– transforms an attraction tree into 
a density tree as in the DHC algorithm. Input: an 
attraction tree. Output: a density tree. Parameters: the 
number of points, the sigma value, the threshold value. 

• createASH– builds average shifted histograms to 
identify dense areas in the dataset as in the DENCLUE 
algorithm. Input: a dataset. Output: a set of items in the 
dense areas. Parameters: the sigma value, the epsilon 
value. 

• createClusterByAttractor – creates a cluster for each 
density-attractor item found by a hill-climbing 
procedure as in DENCLUE. Input: a set of items. 
Output: a set of clusters. Parameters: the sigma value, 
the epsilon value. 

• idDenseAreas – recursively identify dense areas in 
each dimension starting with one-dimensional dense 
units as in CLIQUE. Input: a set of items. Output: a set 
of dense units. Parameters: the number of slices, the 
threshold value. 

• createClusterByPartition – connects dense units into 
partitions describing a cluster for each identified 
partition as in CLIQUE. Input: a set of dense units. 
Output: a set of clusters. Parameters: the number of 
slices, the threshold value. 

• createEquallySizedGrid – divides the dataset into a 
grid of uniformly sized cells as in AMR. Input: a 
dataset. Output: a set of cells. Parameter: the number of 
slices. 

• createAdaptableKDTree– partitions the dataset into a 
binary tree where each node is connected to 
approximately the same number of items as in 
DESCRY. Input: a set of items. Output: an adaptable 
kd-tree. Parameters: the number of items in each node, 
the K value. 

• createAMRTree – creates a tree of recursively refined 
grids as in the AMR algorithm. Input: a set of cells 
forming a grid. Output: AMR tree. Parameters: the 
density value, the lambda values, the number of slices. 

• createAMRCluster – creates a cluster for each leaf of 
the input AMR tree and assigns parent items to the 
corresponding cluster in a bottom-up agglomerative 
process. Input: an AMR tree. Output: a set of clusters. 

Parameters: the density value, the lambda values, the 
number of slices. 

• mergeByOverlap – hierarchically merges similar 
clusters until the specified number of clusters is 
reached, using the density in the clusters overlap as 
similarity criterion as in the SUDEPHIC algorithm. 
Input: a set of partitions for a dataset. Output: a set of 
clusters. Parameters: none. 

• mergeByDistance – merges the closest pair of clusters 
until the specified number of clusters is reached as in 
the DESCRY algorithm. Input: a set of partitions for a 
dataset. Output: a set of clusters. Parameter: the 
number of clusters. 

IV. INDIVIDUAL REPRESENTATION 

An individual for the proposed EDA is a density-based 
clustering algorithm. The algorithm is any valid sequence of 
the selected building blocks, that is, a possible sequence from 
the Building Blocks DAG in Fig. 1, from the root node to a 
terminal node in the figure, plus a set of parameter values for 
all the parameters of the building blocks composing the 
sequence.  

Hence, the Building Blocks DAG incorporates important 
background knowledge about the clustering task that supports 
AutoClustering in the task of creating valid clustering 
algorithms. 

Each node of the Building Blocks DAG represents one of 
the density-based clustering building blocks. Each directed 
edge represents a sequential connection between two 
procedures, that is, the procedure pointed by the edge should be 
executed immediately after the execution of the procedure from 
which the edge comes out. Each edge has an associated weight 
that represents the probability of the procedure pointed to by 
the edge to be selected. The edge weights are not shown in the 
figure in order to keep it simple. 

The total weight (sum of probabilities) of the edges coming 
out from a node is always 1, since those edges represent 
mutually exclusive ways of selecting a new procedure to be 
executed next, but the individual probabilities of the edges are 
updated each time a new population is produced by the EDA.  

This probability update follows a conventional scheme for 
updating the probability vector of an EDA like PBIL [11], with 
the difference that in our case each component of the 
“probability vector” is the probability associated with an edge 
(connecting two procedures) in the Building Blocks DAG, 
rather than being a variable as in PBIL. 

More formally, an EDA individual is represented by a path 
in the Building Blocks DAG from the initial node to a terminal 
node, i.e., a node from which no edge comes out. A path in the 
Building Blocks DAG is a sequence of nodes n1,..., nk where 
n1 is the initial node, ni, i = 2,...,k is a child (successor) node of 
ni - 1 and nk is a terminal node.  

Recall that an individual represents a density-based 
clustering algorithm. Different clustering algorithms are 
generated for each different path in Building Blocks DAG.  



 
Figure 1.  Building Blocks DAG 

For instance, a candidate algorithm for a particular dataset 
could be represented by the sequence of nodes in Fig. 2. This 
path would represent a novel clustering algorithm inspired by a 
combination of ideas from three existing density-based 
clustering algorithms: CLIQUE, AMR and DESCRY. 

Additionally, the evolved algorithm would include the best-
suited parameter values for the specific dataset involved. The 
parameter values are part of the individual representation and 
are evolved by the EDA. For each building block associated to 
each individual, the necessary parameter values are selected 
from a pre-specified range of values. For instance, the number 
of slices for the AMR algorithm may vary from 25 to 30.  

There are 6,051,800 different possible algorithms that may 
be generated for each dataset considering the 20 possible paths 
of the building blocks DAG and the possible parameter values 
for each building block. 

V. FITNESS FUNCTION 

The fitness of an individual must be based on the results of 
the corresponding clustering algorithm. However, defining the 
fitness function is not a trivial task, since clustering is an 
unsupervised learning task. The user does not supply 
previously clustered data to the clustering algorithm and 
therefore, although there are several objective criteria to 
evaluate a clustering result [10], the ultimate evaluation of a 

clustering process is usually regarded as a subject issue. This is 
in contrast with classification algorithms, which have well-
defined objective evaluation criteria, since they are supervised 
learning algorithms. Note that in this work it is essential to use 
an objective criterion to evaluate clustering results, since we 
are automating the process of clustering algorithm creation. 
Our proposed solution to this problem is described next. 

In general, the result of a clustering algorithm can be 
expressed as a list of data items where each item is associated 
to a specific cluster or, in some cases, to no cluster (when the 
item is considered noise). In order to evaluate the results of the 
clustering algorithms produced by AutoClustering we propose 
the use of a method that takes advantage of the objective nature 
of classifier evaluation.  

The Clest method [9] was originally proposed to estimate 
the adequate number of clusters for a dataset. We have adapted 
this method to estimate the quality of clustering results in the 
following steps. 

1. Split the dataset in two subsets: a training set and a 

test set. 

2. Apply the clustering algorithm to the training set.  

3. Assign a label to each data item indicating the cluster 

it belongs to. 

4. Apply a classification algorithm to the training set 

using as target (class) attribute value the cluster label 

specified by the clustering algorithm. This will 

generate a classifier, which was trained from this 

specific subset of items. 

 
Figure 2.  Possible Path in Building Blocks DAG 



5. Apply the clustering algorithm to the test set 

specifying a cluster (target attribute value) to each 

item.  

6. Apply the classifier built in step 4 to the test set. 

7. Compare the results of the clustering algorithm and the 
results of the classifier on the test set.  

The evaluation of an AutoClustering individual therefore 
considers the performance of the classifier on the test set, after 
the clustering algorithm has been independently used to assign 
cluster labels to data items in both training and test sets.  

The main advantage of the proposed adapted Clest method 
over existing objective metrics for clustering evaluation [13] 
lies in the flexibility and generality of the former approach. 
Any classifier may be used to evaluate the clustering results. 
Therefore, this method is applicable to any dataset with any 
combination of data types. Other proposed clustering 
evaluation metrics would introduce a strong bias towards some 
distribution of the data or particular data types. 

The fitness of an individual takes into consideration the 
performance of the corresponding clustering algorithm on the 
given dataset. The fitness function value for each individual is 
determined by the accuracy rate of the classifier on the test set, 
after the corresponding clustering algorithm has specified 
cluster labels to the training and the test sets. 

VI. AUTOCLUSTERING – AN EDA FOR AUTOMATIC 

DENSITY-BASED CLUSTERING ALGORITHM GENERATION 

The EDA uses a probability DAG instead of the more 
commonly used probability vector. The evolution process 
updates the probabilities associated to each edge of the 
BuildingBlocksDAG according to the evaluation of the 
algorithms using the corresponding building blocks. 

Fig. 3 presents the pseudo-code for updating the probability 
DAG. In this procedure, α is the average fitness of selected  
individuals using the corresponding edge. 

The population evolution is therefore guided by the 
probabilities of the BuildingBlocksDAG edges. The better the 
individuals using a specific edge, i.e., using both the building 
blocks coming from and to the edge, the better are the chances 
of this edge to be selected by the EDA.  

The following steps outline the execution of 
AutoClustering. 

1. Generate a population of N density-based algorithms. 

Each individual (or algorithm) represents a possible 

path in the BuildingBlocksDAG. 

2. Evaluate each individual using the CLEST method. 

3. Eliminate the 50% individuals with lowest fitness. 

4. Update the probabilities of each edge of the 

BuildingBlocksDAG according to its frequency of use 

in the selected population (the 50% highest-fitness 

individuals). 

5. Generate a new population of N individuals using the 

updated BuildingBlocksDAG 

6. Add the best individual of the previous population to 

the current one (implementing elitism). 

7. Repeat steps 2-7. 

VII. EXPERIMENTAL RESULTS 

Current experiments have been based on four public-
domain datasets from the well-known UCI dataset repository, 
often used for benchmarking in machine learning research [12]: 
Glass Identification (8 attributes, 214 instances); Pima Indians 
Diabetes (8 attributes, 768 instances); Bupa Liver-disorders (7 
attributes, 345 instances); and Cleveland Heart Diseases (13 
attributes, 294 instances). The class attributes of each dataset 
were not considered.  

The EDA was set to evolve 50 individuals during 500 
generations. In order to compare results of the best algorithm 
produced by the EDA to the manually-designed selected 
algorithms, we have set Autoclustering to exclusively run pre-
selected paths of the Building Blocks DAG. So it was possible 
to reproduce the exact sequence of procedures of the original 
algorithms and therefore obtain the results of CLIQUE, AMR, 
DESCRY, DBSCAN, DBCLASD, DENCLUE, SUDEPHIC 
and DHC for the selected datasets. 

We then performed 30 executions of the EDA and 30 
executions of each of the 8 manually-designed algorithms for 
each dataset in order to analyze the difference in accuracy 
between the results of the algorithms generated by 
AutoClustering and the other evaluated algorithms. 

The same Clest method used in the fitness of the EDA was 
used when running the evaluated algorithms, in order to make 
the comparison between these algorithms as fair as possible.  

Each of the evaluated algorithms independently produced 
cluster labels in the training and test subsets for each dataset, as 
explained earlier. The J48 classification algorithm [14] (a Java 
version of the well-known C4.5 decision-tree induction 
algorithm) built a classifier based on each training set. The 
classifier was applied to the corresponding test set for each of 
the selected datasets. We compute the accuracy between the 
cluster label produced by the clustering algorithm and the 
corresponding classifier label, for each data item in the test set.  

Parameter DagNode – A node in a probability 

directed acyclic graph 
 

Parameter SelectedIndividuals – a subset of 

individuals from the current population selected 

by any evolutionary selection method (default: 50% 

highest-fitness individuals). 
 

Procedure updateDagProbabilities (DagNode, 

SelectedIndividuals) 

For each Edge coming out from current node 

  edgeProb= α + (1 - α)EdgeProb; 

  updateDagProbabilities (target node of current 

                       edge, selectedIndividuals); 

totalProb = total EdgeProb for all Edges coming                          

            out of current node; 

For each Edge coming out from current node 

 EdgeProb = EdgeProb / TotProb; 

Figure 3.  Updating the edge probabilities in the BuildingBlocksDAG 



We then compare the algorithms in terms of the accuracy 
rate of the comparison between the two labels for all data items 
in the test set. The box plots in the following figures indicate 
the minimum and maximum accuracy rate values, the 
corresponding lower and upper quartiles and the medium for 
each of the four selected datasets.  

The automatically-evolved algorithms by our EDA 
presented the best results for each dataset. DHC, DBCLASD 
and DBSCAN also presented good results for the Cleveland 
dataset. DENCLUE, DBCLASD and DHC performed well 
when analyzing the glass dataset. Only AMR and DBSCAN 
produced results below 80% when analyzing the Pima dataset. 
Finally, when analyzing the Bupa dataset, the best basic 
algorithms were DESCRY, DENCLUE, DBCLASD and 
DBSCAN. 

Autoclustering has built 30 different algorithms for each of 
the four analyzed datasets. In some cases, the only variation 
was in terms of parameter values since the same path was 
selected on the building-blocks DAG. In other cases, the 
selected path represented one of the classic clustering 
algorithms, such as DENCLUE or DBSCAN. However, in 
most cases the selected path on the building-blocks DAG 
represented a combination of parts of different algorithms, that 
is, essentially new algorithms – never before evaluated in any 
previous work.  

One simple example of an algorithm generated 
automatically by autoclustering is represented in Fig.8. This 
algorithm was evolved for the PIMA dataset. It begins by 
identifying dense areas as in the CLIQUE algorithm and 
finishes with the DENCLUE procedure that identifies clusters 
by the attraction criterion. 

VIII. CONCLUSIONS 

In this paper we propose the use of an EDA for automatic 
generation of density-based clustering algorithms. Many 
existing clustering algorithms were reviewed so that the 
appropriate building blocks – typical clustering procedures – 
could be identified.  

Figure 5.  Boxplot – fitness values on executions using the Bupa dataset  

Figure 6.  Boxplot – fitness values on executions using the Cleveland 

dataset  

Figure 4.  Boxplot – fitness values on executions using the Glass dataset 

 
Figure 8.  Path of one of the algorithms generated by Autoclustering for 

the Pima dataset. 
Figure 6. Boxplot – fitness values on executions using the Pima dataset 



 

The definition of the Building Blocks DAG specified the 
possible sequence of building blocks covered by the EDA, that 
is, the possible artificially generated algorithms. 

The fitness of an individual is based on an adaptation of the 
Clest method. The generated clustering algorithm is executed 
on both training and test sets separately, so the appropriate 
cluster label is assigned to each data item. Then a classifier 
algorithm is executed on the training set and applied to the test 
set. The fitness is then determined by the accuracy of the 
classifier on the test set. We emphasize that information about 
the classes of examples in the test set is not used during the 
training of the classification algorithm, preserving the 
fundamental principle of separation between training and test 
sets in the classification task. The idea is that a more suited 
clustering algorithm for a given dataset will produce cluster 
labels that are more easily predicted by a classifier method 
because they represent a consistent structure in the dataset. 

The algorithms generated by Autoclustering for the selected 
public-domain datasets performed better, on average, than any 
of the 8 selected classic clustering algorithms. The developed 
EDA will potentially generate efficient algorithms specifically 
designed for any particular dataset.  

This approach is particularly interesting when one needs to 
repeatedly apply a clustering algorithm to the same dataset, so 
the computation cost is compensated by the benefits of 
generating a new clustering algorithm tailored to the dataset. 

Our plans for future work include the analysis of the 
difference in accuracy between the results of the classic 
algorithms and the algorithms generated by AutoClustering. 
We intend to use ANOVA, a statistical test that generalizes the 
Student t-test for more than two groups. 
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