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André C. P. L. F. de Carvalho
Instituto de Ciências Matemáticas e de Computação
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Abstract—Hierarchical Multi-Label Classification (HMC) is
a challenging task in data mining and machine learning. Each
instance in HMC can be classified into two or more classes
simultaneously. These classes are structured in a hierarchy, in
the form of either a tree or a directed acyclic graph. Therefore,
an instance can be assigned to two or more paths from the hier-
archical structure, resulting in a complex classification problem
with hundreds or thousands of classes. Several methods have been
proposed to deal with such problems, including several algorithms
based on well-known bio-inspired techniques, such as neural
networks, ant colony optimization, and genetic algorithms. In this
work, we propose a novel global method called GEHM, which
makes use of grammatical evolution for generating HMC rules. In
this approach, the grammatical evolution algorithm evolves the
antecedents of classification rules, in order to assign instances
from a HMC dataset to a probabilistic class vector. Our method
is compared to bio-inspired HMC algorithms in protein function
prediction datasets. The empirical analysis conducted in this work
shows that GEHM outperforms the bio-inspired algorithms with
statistical significance, which suggests that grammatical evolution
is a promising alternative to deal with hierarchical multi-label
classification of biological data.

I. INTRODUCTION

Hierarchical multi-label classification is a challenging task
in data mining and machine learning. It differs from the well-
known flat single-label classification approach regarding the
organization and assignment of classes.

In flat single-label classification, each instance is assigned
to a single class. The classes are mutually-exclusive and
there are no assumptions regarding their relationships. In
hierarchical single-label classification (HC) [1], the classes
are organized in a well-defined hierarchy, which dictates the
relationship among classes — some classes are specializations
of other classes. This hierarchy is usually found in the form of
either a tree or a directed acyclic graph (DAG). Each instance
in a HC scenario may be assigned to more than one class,
though these classes must be located within the same hierar-
chical path. In hierarchical multi-label classification (HMC),
the classes are also organized in a well-defined hierarchy, in
the form of a tree or a DAG, though there are no constraints
regarding the assignment of classes in different paths — each
instance may be assigned to classes in distinct paths within
the hierarchy of classes.

HMC problems, due to their own nature, are quite complex
to be handled. They are much more challenging than flat
single-label classification for the following reasons [2]:

• In most cases, it is more difficult to discriminate
between classes located at the bottom of the hierarchy
than classes at the top of the hierarchy, since the
number of instances per class tends to be smaller at
lower levels of the hierarchy as opposed to top levels
of the hierarchy.

• Class predictions must satisfy hierarchical parent-child
relationships, given that an instance associated with a
class is automatically associated with all its ancestors
classes.

• Multiple unrelated classes (classes which are not in-
volved in ancestor/descendant relationship) may be
predicted at the same time.

Well-known examples of these complex HMC problems are
the tasks of text classification [3]–[5] and protein function pre-
diction [6]–[8]. The latter is an increasingly important research
field, bearing in mind the availability of unknown proteins
for analysis and determination of their biological functions.
Protein function prediction can be seen as a data mining
problem in which each protein is a dataset instance, whereas
different protein features are used as predictive attributes, and
the objective is to classify these proteins according to different
functions they can perform. A protein can perform multiple
functions, and these functions are usually organized in a
hierarchical structure (e.g., the FunCat [9] and Gene Ontology
[10] protein functional-definition schemes), characterizing the
protein function prediction as a typical HMC problem.

The focus of this work will be the protein function predic-
tion HMC problem, and therefore we highlight the importance
of generating comprehensible classification models — a model
which can be validated by biologists — in order to provide
new insights about the correlation of protein features and their
functions. For a detailed study regarding the importance of
comprehensible models in protein function prediction, please
refer to [11].

Well-known comprehensible classification models are de-
cision rules, in which a set of if-then-else rules are



employed for classifying instances according to their predictive
attributes. In the context of HMC problems, a possible example
of decision rule would be:

if A1 ≥ 0.75 AND A2 ≤ 3.59 ... AND An > 0.20

then xi = {C1, C1.1, C2, C2.3, C2.3.1}
where Aj is the jth predictive attribute, xi is the instance
whose classes should be predicted, and Cl is a given class
within the hierarchy of classes.

In this paper, we propose generating HMC rules with
a novel grammatical evolution algorithm, namely GEHM
(Grammatical Evolution for Hierarchical Multi-label classi-
fication). To the best of our knowledge, this is the first
work to present a grammatical evolution approach for solving
HMC problems. Grammatical evolution is the state-of-the-art
in grammar-based evolutionary algorithms. It combines the
advantages of grammar-based GP — flexibility and ability of
incorporating prior knowledge to the problem being tackled
— with the advantages of genetic algorithms — simplicity of
breeding operations over vectors. In addition, grammatical evo-
lution allows for neutral mutations, the so-called degenerative
genetic code [12].

This paper is organized as follows. Section II briefly
presents work related to our approach. Section III details
GEHM, our novel algorithm for generating HMC rules. Sec-
tion IV describes the methodology employed during the em-
pirical analysis which is itself presented in Section V. We
conclude this paper and point to future research in Section VI.

II. RELATED WORK

Several previous studies found in the literature have inves-
tigated new alternatives to solve HMC problems for protein
and gene function prediction. Some of them make use of
“black-box” approaches, which do not provide any means to
understand the reasons that have led to a certain prediction.
Others make use of comprehensible approaches, such as deci-
sion trees and decision rules, allowing for user interpretation
and hypothesis’ creation. These two categories are used for
dividing the existing work in HMC.

Recall that, in this paper, we propose a comprehensible
approach for HMC. It generates rules that are easily inter-
preted, allowing the user (biologist, bioinformatician, etc.) to
understand the process that has led to a given prediction. To the
best of our knowledge, our approach is the first to employ the
Grammatical Evolution (GE) technique to hierarchical multi-
label classification.

A. Algorithms Producing Black-Box Models

In Kiritchenko [13], [14], a black-box strategy was pro-
posed for the classification of Gene Ontology (GO) [10] genes
based on the classification of documents from the MedLine
repository that describe these genes. This method expands the
sets of classes by including their ancestral classes and then
applies the AdaBoost algorithm [15] in the modified dataset.

Barutcuoglu et al. [6] proposed a black-box strategy that
employs a hierarchy of SVM [16] classifiers for the prediction
of gene functions structured according to the GO. The classi-
fiers are trained separately for each class, and the predictions

are then combined using Bayesian Networks [17], aiming at
finding the most probable consistent set of predictions.

An ensemble of classifiers, named True Path Rule Ensem-
ble (TPR), was proposed by Valentini [18]. In this method,
each trained classifier estimates the local probability p̂j(xi)
that a given instance xi belongs to a given class cj . A
combination phase estimates the global consensual probability
pj(xi). In Valentini and Re [19] and Valentini [20], the authors
modified this method in order to modulate the relationship
between the prediction of a class and the prediction of its
descendants.

Cerri et al. [21] proposed a black-box approach that em-
ploys a sequence of connected artificial neural networks for
protein function prediction. Each network is associated to a
hierarchical level, and the output of the network in level l is
used as the input of the network in level l+ 1. A strategy for
avoiding inconsistent predictions is employed, since a given
neural network may predict a class whose superclass had not
been predicted before.

B. Algorithms Producing Comprehensible Models

One of the first HMC methods was proposed by Clare and
King [22]. This method, named HMC4.5, is based on decision-
tree induction algorithms. It is a variant of C4.5 [23] with
modifications in the calculation of class entropy. In the original
C4.5 algorithm, the entropy is used to decide the best data split
in the decision tree, i.e., the best attribute to be placed in a tree
node. The proposed modification uses the sum of the number
of bits needed to describe membership or non-membership of
each class, and also the information related to the size of the
tree rooted by a given class.

Vens et al. [8] proposed three methods based on the concept
of Predictive Clustering Trees (PCT). The authors proposed
the global Clus-HMC method [24] that induces a single
decision tree to cope with the entire classification problem.
They compared its performance with two local methods. The
first one, Clus-SC, induces an independent decision tree for
each class of the hierarchy, ignoring the relationships between
classes. The second one, Clus-HSC, explores the hierarchical
relationships between the classes to induce a decision tree for
each class. The authors applied the methods to hierarchies
structured as trees and DAGs, and discussed the modifications
needed so the algorithms could cope with both types of
hierarchical structures.

Alves et al. [25] proposed a global method using Artificial
Immune Systems (AIS) [26] for the generation of HMC rules.
The method, named Multi-label Hierarchical Classification
with an Artificial Immune System (MHC-AIS), is divided
into two basic procedures: Sequential Covering (SC) and
Rule Evolution (RE). These procedures produce candidate
classification rules whose antecedent (IF part) is represented
by a vector of attribute-value conditions and the consequent
(THEN part) is represented as a set of predicted classes. The
SC procedure iteratively calls the RE procedure until all (or
almost all) training instances (antigens) are covered by the
discovered rules. The RE procedure evolves classification rules
(antibodies) that are used to classify the instances. The best
antibody is added to the set of discovered rules. The authors



extend their work by proposing new procedures to improve the
algorithm’s prediction performance [27].

Sangsuriyun et al. [28] proposed a comprehensible method
based on rule sets, named Hierarchical Multi-Label Associative
Classification (HMAC), which can be applied to both tree and
DAG structured hierarchies. The method uses the so-called
negative rules, which consider important the absence of a
given attribute for the classification of an instance. The method
also takes into account the rules that predict a negative set of
classes, i.e., rules that indicate that an instance does not belong
to a given set of classes.

Otero et al. [29] proposed hAnt-Miner, a global method
for hierarchical single-label classification using Ant Colony
Optimization (ACO) [30]. Two ACO algorithms are employed
to construct the rules in an cooperative manner, one for
optimizing the antecedents and the other for rule consequent.
The authors extended this method proposing hmAnt-Miner,
which allows multi-label classification [2], considering both
tree and DAG structured hierarchies. The hmAnt-Miner dis-
covers hierarchical multi-label classification rules in the format
if-then.

Cerri et al. [31] proposed a Genetic Algorithm (GA) to
produce HMC rules. The GA evolves the antecedents of
classification rules in order to optimize the level of coverage
of each antecedent. The fitness function employed in that work
gives a better reward to rules with the antecedents which cover
a higher number of instances. The set of optimized antecedents
is selected to build the corresponding consequent of the rules
(set of classes to be predicted).

III. GEHM

Grammatical Evolution for Hierarchical Multi-label classi-
fication (GEHM) is a grammatical evolution (GE) algorithm
aimed at generating hierarchical multi-label classification rules.
Given that GEHM is a grammar-based evolutionary algorithm
(EA), it differs from traditional EAs in the use of a grammar G
in the evolutionary process. The grammar G defines a language
L whose terms are the functions and terminals.

It is important to understand the differences between
grammar-based genetic programming (GGP) and GE. In GGP,
the individual that undergoes evolution is a derivation tree.
Both genotype and phenotype are represented as the same
structure (the derivation tree). In GE, genotype and phenotype
have different encoding structures. The genotype is represented
as a linear string of codons (sequence of 8 bits) of variable size,
which is then decoded into a vector of integers. The phenotype,
which is the structure that defines fitness, is represented by a
derivation tree (resulting from the application of a grammar).
Hence, a mapping from genotype to phenotype is required
in a GE algorithm. The mapping process to decode the
string chromosomes into derivation trees is called genotype-
phenotype mapping (GPM). Among the alleged benefits of GE
are the unconstrained search of the genotype while ensuring
phenotype validity, and enhancing genetic diversity by allow-
ing mutations which are neutral with respect to the phenotype
(various genotypes can represent the same phenotype) [12].
Figure 1 depicts the typical GE scheme.

For performing the genotype-phenotype mapping, the fol-
lowing procedure is executed. First, each codon is converted

<exp>

<exp>                    <op>                    <exp>

<var>                       +                      (<exp>)

x                                              <coef> * <var>

a            y
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Fig. 1. Grammatical evolution typical scheme.

into an integer value int. Then, the GPM function is given by:

GRi = int mod nri (1)

where GRi is the index of the grammar rule to be selected
in non-terminal i, int is the codon integer value and nri is
the number of rules available for derivation in non-terminal
i. The operator mod returns the remainder of the division
of one number by another. For exemplifying this procedure,
considering the following rule in a context-free grammar:

<exp>::= <exp> + <exp> | <exp> - <exp> | <number>

Now, consider that the codon responsible for deriving
grammar rule <exp> represents the integer 79. Since <exp>
offers three options for further derivation, the value of nri is
3. Hence, solving Equation (1) results in:

GRi = 79 mod 3 = 1 (2)

Since each derivation option is assigned an index —
<exp> + <exp> is assigned index 0, <exp> - <exp> is
assigned index 1, and <number> is assigned index 2 —,
the second derivation option is chosen (<exp> - <exp>)
because 79 mod 3 = 1.

A. Grammar

In GEHM, each individual of the evolutionary algorithm
corresponds to the antecedent of a HMC rule. For mapping
the string of codons into a derivation tree, we make use of the
grammar presented in Figure 2.

This grammar provides typical Boolean operators such as
≥,≤, and also a double operator such as num1 ≤ x ≤ num2.
Non-terminal <att> selects randomly one of the dataset’s
attributes (an attribute index), and non-terminal <num> gen-
erates random continuous values in the range [0,1] from a
uniform distribution (an ephemeral random constant). Opera-
tors AND and OR perform their respective Boolean operations.
We believe this simple grammar is capable of generating a
thorough search-space of HMC rules’ antecedents.



1) <start>::= <exp>
2) <exp>::= <exp2> AND <exp2> | <exp> AND
<exp> | <exp2> OR <exp2> | <exp> OR <exp>
3) <exp2>::= <att> ≥ <num> | <att> ≤ <num>
4) <exp2>::= <num> ≤ <att> ≤ <num> | <exp>
5) <att>::= randomly chosen dataset attribute
6) <num>::= U(0,1)

Fig. 2. Grammar for deriving antecedents of HMC rules.

B. Genetic Operators

In the beginning of the evolutionary process, the individuals
of the population are randomly initialized. They have variable
length, with a minimum size of five codons each, and a chance
of 85% that new codons will be incrementally added to the
individual. Recall that each codon is comprised of 1 byte (8
bits), which is randomly generated.

To evolve the current generation of individuals, the follow-
ing mutually-exclusive genetic operations can be performed:
crossover, mutation, and duplication. Crossover has a chance
of 90% of being performed, and both duplication and mutation
have a chance of 5% of being applied. These operations
are executed until all individuals of the new population are
generated.

For crossover to be performed, two individuals are chosen
via tournament selection. After the individuals are selected,
they take part in a standard one-point crossover operation,
generating two children. In the duplication process, one in-
dividual is also selected using tournament selection, and then
two codons of the individual are randomly selected, copying all
codons located between these two selected codons to the end of
the individual. Finally, mutation requires one individual to be
selected via tournament selection. This individual is traversed
codon by codon, where each codon has a 10% probability of
having its value replaced by a randomly-generated 8-bit value.
The three operators are illustrated in Figure 3.
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Fig. 3. GEHM’s genetic operators.

C. Sequential Covering

GEHM is both generational EA and sequential covering
rule algorithm. In a sequential covering algorithm, instances
which are covered by a rule are removed from the training
set, so the new rules generated can fit the remaining uncovered
instances. Algorithm 1 shows this sequential covering strategy.

GEHM runs a full evolutionary cycle (lines 3-34), and
then saves the best rule from the last generation. Furthermore,
all instances which are covered by a rule are removed from
the training set (line 35). Next, GEHM starts a full new
evolutionary cycle, and this process is repeated until only a
few instances (user-defined parameter) are left uncovered, or
until there are no instances left in the training set.

Algorithm 1 GEHM.
Require: Training dataset X, number of generations N,

population size p, maximum number of uncovered instances
maxUncovered, grammar G.

1: Rules← ∅
2: while (|X| > maxUncovered) do
3: Randomly generate InitialPop
4: Phenotype← mapping(InitialPop,G)
5: calculateF itness(Phenotype,X)
6: CurPop← InitialPop
7: j ← N
8: while (j > 0) do
9: NewPop← ∅

10: NewPop← NewPop ∪ CurPop.elite()
11: repeat
12: Switch genetic operator
13: Case crossover:
14: Parents← selection(CurPop, 2)
15: Children← crossover(Parents)
16: NewPop← NewPop ∪ Children
17: end case
18: Case Duplication:
19: Parent← selection(CurPop, 1)
20: Child← duplication(Parent)
21: NewPop← NewPop ∪ Child
22: end case
23: Case mutation:
24: Parent← selection(CurPop, 1)
25: Child← mutation(Parent)
26: NewPop← NewPop ∪ Child
27: end case
28: until (|NewPop| = p )
29: CurPop← ∅
30: CurPop← NewPop
31: Phenotype← mapping(CurPop,G)
32: calculateF itness(Phenotype,X)
33: j ← j − 1
34: end while
35: Rules← Rules ∪ CurPop.bestRule()
36: Remove instances from X covered by Rules
37: end while
38: return Rules

D. Consequent Generation and Fitness Function

GEHM performs the same deterministic procedure for
generating the consequent of a rule as HMC-GA [31] and
hmAnt-Miner [2], as follows. Given the set of instances Xr

covered by a rule r, the consequent of a rule is a vector
of length k (where k is the number of class labels in the
class hierarchy), which means each position of the vector
corresponds to a given class of the hierarchy. The value for
each component of the consequent vector for rule r is given by:

consequentr,i =
|Xr ∧ Ci|

|Xr|
(3)



where |Xr ∧ Ci| is the number of instances covered by rule
r that belong to class Ci. Thus, the consequent of a rule is
given by the mean class label vector of all instances that are
covered by that rule.

According to Equation (3), each position of the consequent
vector is a continuous value in the range [0,1], instead of a
Boolean value indicating whether or not the particular class is
being predicted. As a result, the value in the ith component of
the consequent vector of a rule represents the probability of an
instance that satisfies its antecedent to belong to class Ci of the
hierarchy. In order to obtain the class label predictions from a
rule, one needs to select a classification threshold. If the value
of the ith component of the consequent is greater than or equal
to the classification threshold, the Ci class label is predicted.
Therefore, GEHM is a probabilistic method whose predictions
vary according to the “degree of certainty” the user defines
for predicting classes in the hierarchy. Lower thresholds lead
to a larger number of classes being predicted, whereas higher
thresholds lead to a smaller number of predicted classes.

Once the HMC rules have their consequent built according
to the previously described procedure, the rule can be evaluated
through a fitness function. We have chosen the variance gain
[2] as the fitness function for GEHM. Variance gain measures
the decrease of variance achieved among instances that are
covered by the rule and instances that are not. The variance
gain is given by:

varianceGain(X, r) = variance(X)

−|Xr|
|X|

× variance(Xr)

−|¬Xr|
|X|

× variance(¬Xr) (4)

where variance(·) is the variance of the class vectors of
all instances belonging to the set that has been passed as
argument, |Xr| is the number of instances that are covered
by rule r, and |¬Xr| is the number of instances that are not
covered by rule r. Note that the smaller the variance within the
covered and uncovered sets, the larger the variance gain, and
thus the better the rule. An ideal rule would provide the best
discrimination between the covered and not covered instances
(high variance gain).

IV. METHODOLOGY

In this section, we present the methodology employed dur-
ing the empirical analysis. We present the baseline algorithms
(Section IV-A), the datasets (Section IV-B), and the evaluation
measures (Section IV-C) employed for assessing the perfor-
mance of GEHM in the context of protein function prediction.

A. Baseline Algorithms and Parameters

Three of the methods reviewed in Section II are employed
as the baseline methods for the experiments performed in
this work. We make use of the Ant Colony Optimization
(ACO) based method hmAnt-Miner [2], which is a method
that employs ACO for generating HMC rules. GEHM is also
compared to HMC-GA [31], which is a genetic algorithm
that also evolves the antecedent of HMC rules. The third

algorithm used as a baseline is HMC-LMLP [21], which is
a local method that creates a sequence of connected neural
networks throughout the levels of the hierarchy of classes. We
chose these methods because they are all based on bio-inspired
techniques: ant colony optimization, genetic algorithms, and
neural networks. In addition, they produce the same type of
output provided by GEHM — a probabilistic class vector —
allowing the computation of the evaluation measures presented
in Section IV-C.

Table I shows the user-defined parameter values used in
GEHM. No attempt to tune these parameter values was made,
since we do not try to optimize the parameters of the baseline
methods either. Parameter optimization is a topic left for
future research.

TABLE I. GEHM PARAMETERS.

Parameter Description Value

maxUncovered Maximum number of uncovered instances 10
G Number of generations 100
p Population size 200
lp Probability of adding codon in initialization (rate) 85%
cr Crossover rate 90%
mr Mutation rate 5%
dr Duplication rate 5%
mp Mutate gene probability 10%
t Tournament size 3
e Elitism rate 0.5%

B. Datasets

Ten freely available1 datasets related to protein function
prediction are used in the experiments. These datasets are
related to issues like phenotype data and gene expression
levels. They are organized according to two different class
hierarchy structures: tree structure (FunCat data sets) and
directed acyclic graph structure (Gene Ontology data sets). The
directed acyclic graph (DAG) structure represents a complex
hierarchical organization, where a particular node of the hier-
archy can have more than one parent, in contrast to only one
parent in tree structures.

Table II presents the main characteristics of the training,
validation, and test datasets employed in the experiments. Usu-
ally, the training set is used to generate the prediction model
for a set of algorithmic parameters, whereas the validation set
is used to choose the models that yielded the best predictive
performance among those generated by different parameter
settings. Finally, the test set is used to evaluate the model
in unseen cases, in order to provide a realistic assessment of
performance. In the particular case of the rule-based algorithms
employed in the experimental analysis (including GEHM), the
training and validation datasets are merged and used together
to generate the predictive models, and then the resulting set of
rules is used to classify the instances that belong to the test
set. For the case of HMC-LMLP, the validation set is used to
evaluate the neural networks across different epochs (for more
details, please refer to [21], [32]).

Note that these are very imbalanced datasets, with very
few positive instances for each class. A description of each
dataset can be found in [8]. The datasets used in this paper have
only numeric attributes, since the current version of GEHM’s

1http://www.cs.kuleuven.be/∼dtai/clus/hmcdatasets.html



TABLE II. SUMMARY OF DATASETS: NUMBER OF ATTRIBUTES (|A|), NUMBER OF CLASSES (|C|), TOTAL NUMBER OF INSTANCES (TOTAL) AND
NUMBER OF MULTI-LABEL INSTANCES (MULTI).

Structure Dataset |A| |C| Training Valid Test
Total Multi Total Multi Total Multi

Tree

Cellcycle 77 499 1628 1323 848 673 1281 1059
Derisi 61 499 1608 1309 842 671 1275 1055
Eisen 79 461 1058 900 529 441 837 719
Gasch1 173 499 1634 1325 846 672 1284 1059
Gasch2 52 499 1639 1328 849 674 1291 1064

DAG

Cellcycle 77 4125 1625 1625 848 848 1278 1278
Derisi 61 4119 1605 1605 842 842 1272 1272
Eisen 79 3573 1055 1055 528 528 835 835
Gasch1 173 4125 1631 1631 846 846 1281 1281
Gasch2 52 4131 1636 1636 849 849 1288 1288

grammar cannot cope with nominal attributes. For executing
GEHM in these datasets, all missing values were replaced with
the mean value of the respective attribute.

Also note that the only baseline method that provided
results for the DAG-based datasets is hmAnt-Miner [2], so
we present a comparison of GEHM with the three baseline
methods only for the five tree-based datasets, whereas GEHM
is only compared with hmAnt-Miner [2] in all datasets (the
five tree-based datasets plus the five DAG-based datasets).

C. Evaluation Measures

Since every algorithm tested in this work outputs a vector
of class probabilities for each instance being predicted, we
make use of the area under the average PR-curve (AU(PRC))
as the evaluation measure to compare them. To obtain a PR-
curve for a given algorithm, different thresholds ranging within
[0,1] are applied to the outputs of the methods, and thus
different values of precision and recall are obtained, one for
each threshold value. Each threshold value then represents a
point within the PR space. The union of these points form
a PR-curve, and the area below the curve is calculated. In
order to calculate the area below the PR-curve, the PR-points
must be interpolated [33]. This interpolation guarantees that
the area below the curve is not artificially increased, which
would happen if the curves were constructed just connecting
the points without interpolation. Given a threshold value, a
precision-recall point (Prec,Rec) in the PR-space can be
obtained through Equations (5) and (6). They correspond to
the micro-average of precision and recall,

Prec =

∑
i TPi∑

i TPi +
∑

i FPi
(5)

Rec =

∑
i TPi∑

i TPi +
∑

i FNi
(6)

where i ranges from 1 to |C|, and TP, FP, and FN stand,
respectively, for the number of true positives, false positives,
and false negatives.

In addition to the AU(PRC), the methods were also com-
pared considering the size of the model created. For GEHM,
HMC-GA, and hmAnt-Miner, the model size is defined as the
number of rules discovered. Note that HMC-LMLP does not
generate rules, and thus we do not provide such information.

V. RESULTS AND DISCUSSION

Since only the hmAnt-Miner algorithm is capable of deal-
ing with DAG-based datasets, we divided the experiments into
two parts. In the first part, we compare GEHM with HMC-
GA and HMC-LMLP regarding the five tree-based datasets.
In the second part, we compare GEHM with hmAnt-Miner in
both tree-based and DAG-based datasets. The GEHM results
reported are the means and standard deviations obtained after
10 executions of the algorithm varying the random seed. The
results presented for the other methods are those provided in
their respective references ( [2], [21], [31]), since we are using
exactly the same training, validation, and test sets.

Table III shows the results of the first part of the ex-
periments. Note that GEHM outperforms HMC-GA regarding
both average AU(PRC) and model size, for all five protein
function datasets. It also outperforms HMC-LMLP regarding
the average AU(PRC) in all datasets. The average values
of AU(PRC) provided by GEHM are much larger than the
respective values provided by HMC-GA and HMC-LMLP.
GEHM presents a larger standard deviation than HMC-GA,
but it is considerably more stable than HMC-LMLP.

Despite the higher variance when compared to HMC-GA,
GEHM is capable of generating rules that are much more ac-
curate than HMC-GA in all five datasets. The fact that GEHM
also generates a smaller set of HMC rules is also encouraging,
since a small set of rules is much easier to interpret than
a large set of rules. However, it should be noticed that the
rules generated by GEHM may eventually be more complex
than those generated by HMC-GA, considering the possibility
of aligning several conjunctions and disjunctions, whereas
HMC-GA only generates rules whose terms are connected by
conjunctions.

Table IV shows the results of the second part of the exper-
iments. In this table, we present the result for the ten datasets
provided by GEHM and hmAnt-Miner. Note that GEHM
outperforms hmAnt-Miner in the majority of the datasets (9
out of 10), and it generates a smaller set of rules in all datasets
(though possibly more complex rules). Even though hmAnt-
Miner seems to be more stable across different runs (smaller
variance), GEHM is capable of achieving much larger values
of AU(PRC).

The next step of this experimental analysis is to assess the
statistical significance of the results achieved by our method.
Since we do not have a large number of datasets (five datasets
structured as trees and five datasets structured as DAGs), and



TABLE III. COMPARISON OF GEHM WITH HMC-GA AND HMC-LMLP. VALUES ARE THE AVERAGE AU(PRC) AND MODEL SIZE OBTAINED IN THE
FIVE DATASETS ORGANIZED AS TREES.

GEHM HMC-GA HMC-LMLP
AU(PRC) |Rules| AU(PRC) |Rules| AU(PRC)

Cellcycle 0.165 ± 0.005 5.10 ± 1.52 0.150 ± 0.001 66.70 ± 13.4 0.144 ± 0.009
Derisi 0.164 ± 0.006 4.30 ± 1.34 0.152 ± 0.001 37.00 ± 10.2 0.138 ± 0.008
Eisen 0.187 ± 0.007 3.70 ± 1.34 0.165 ± 0.005 63.80 ± 7.7 0.173 ± 0.009
Gasch1 0.176 ± 0.006 5.40 ± 1.35 0.159 ± 0.004 136.8 ± 20.41 0.133 ± 0.018
Gasch2 0.174 ± 0.008 4.50 ± 2.01 0.151 ± 0.001 42.8 ± 8.77 0.127 ± 0.012

TABLE IV. COMPARISON OF GEHM WITH hmANT-MINER. VALUES ARE THE AVERAGE AU(PRC) AND MODEL SIZE OBTAINED IN THE TEN
DATASETS ORGANIZED BOTH AS TREES AND DAGS.

GEHM hmAnt-Miner
AU(PRC) |Rules| AU(PRC) |Rules|

Tree

Cellcycle 0.165 ± 0.005 5.10 ± 1.52 0.154 ± 0.001 28.67 ± 1.62
Derisi 0.164 ± 0.006 4.30 ± 1.34 0.161 ± 0.002 19.33 ± 1.66
Eisen 0.187 ± 0.007 3.70 ± 1.34 0.180 ± 0.003 19.00 ± 0.98
Gasch1 0.176 ± 0.006 5.40 ± 1.35 0.175 ± 0.003 24.87 ± 1.70
Gasch2 0.174 ± 0.008 4.50 ± 2.01 0.152 ± 0.0006 32.33 ± 1.52

DAG

Cellcycle 0.338 ± 0.012 5.40 ± 1.74 0.332 ± 0.002 35.40 ± 1.59
Derisi 0.343 ± 0.006 5.40 ± 1.26 0.334 ± 0.003 22.53 ± 1.94
Eisen 0.378 ± 0.003 4.40 ± 1.78 0.376 ± 0.002 18.20 ± 0.82
Gasch1 0.353 ± 0.005 3.80 ± 0.92 0.356 ± 0.002 27.93 ± 0.92
Gasch2 0.351 ± 0.004 4.30 ± 1.42 0.344 ± 0.002 34.20 ± 1.63

TABLE V. CRITICAL VALUES FOR THE TWO-TAILED SIGN TEST AT α = 0.05.

#Datasets 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18

we want to perform pairwise comparisons of the classifiers, we
compared the classifiers counting the number of datasets where
one classifier is better than another. If they perform similarly
(null hypothesis), each classifier should win in approximately
N/2 of N datasets. For N up to 25 datasets, the number of
wins is distributed according do the binomial distribution [34].
This test is known as sign test [35], and the critical number
of wins is shown in Table V.

According to Table III, GEHM obtained the largest
AU(PRC) values and also the smallest set of rules in all
datasets that were investigated. This observation alone is
already enough to conclude that GEHM is statistically superior
to HMC-GA and HMC-LMLP. Indeed, any non-parametric
ranking-based statistical test would suggest that the difference
between the results is statistically significant, given that we
are performing pairwise comparisons and GEHM will always
be ranked #1 whereas the other classifier will be ranked #2.
Indeed, according to the sign test (Table V), we can see that
GEHM is statistically superior with α = 0.05, because it
outperforms both HMC-GA and HMC-LMLP in five of the
five datasets involved in the comparison.

The sign test also suggests that GEHM outperforms hmAnt-
Miner with statistical significance regarding α = 0.05, because
GEHM wins in nine of the ten datasets investigated (column 7
of Table V). Considering that GEHM also provides the smaller
set of HMC rules in all the ten datasets, we can also conclude
that the difference between the results is statistically significant
in favor of GEHM.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a method called Grammatical
Evolution for Hierarchical Multi-label classification (GEHM).

GEHM is a grammatical evolution algorithm aimed at gener-
ating hierarchical multi-label classification rules.

The method differs from traditional evolutionary algo-
rithms in the use of a grammar during the evolutionary process.
This grammar defines a language whose terms are functions
and terminals. Productions of the grammar are encoded in the
genotype of the individuals, and are mapped to derivation trees.

We investigated the use of GEHM in datasets related to
the problem of protein function prediction. We made use of
datasets structured as both trees and directed acyclic graphs
(DAGs). Whereas in the tree structure, each class may have
only one superclass, in DAGs a class may have more than
one superclass, making the classification task of hierarchies
structured as DAGs much more challenging.

As GEHM is a bio-inspired algorithm, we compared it
with other bio-inspired algorithms in the literature. We em-
ployed three baseline methods based on genetic algorithms,
ant colony optimization, and neural networks. Throughout the
experimental analysis, we showed that GEHM outperforms all
the baseline bio-inspired methods with statistical significance.
Since every method in the experiments predicts a vector of
real numbers for each instance, we used the area under the
precision-recall curves (AU(PRC)) to evaluate the methods’
prediction performance, which allows a threshold independent
evaluation.

Besides obtaining the larger AU(PRC) values, GEHM
also provided the smaller sets of HMC rules for all datasets.
Smaller sets are usually easier to interpret than larger sets,
though we highlight the fact that GEHM is capable of gener-
ating more complex rules than either HMC-GA or hmAnt-
Miner. This is because GEHM’s grammar allows aligning



disjunctions and conjunctions of Boolean operators, instead
of the traditional sequence of conjunctions adopted by both
HMC-GA and hmAnt-Miner. We leave as future work a
more detailed analysis on the comprehensibility of the rules
generated by GEHM. Also as future work, we want to apply
GEHM to other HMC domains such as text categorization
[13], [36]. Finally, we want to extend GEHM’s grammar in
order to allow the use of datasets with categorical attributes.
A parameter optimization procedure can also be applied to
improve the method’s performance.
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