
Clustering-based Bayesian Multi-net Classifier
Construction with Ant Colony Optimization

Khalid M. Salama
School of Computing

University of Kent
Canterbury, CT2 7NF, UK
Email: kms39@kent.ac.uk

Alex A. Freitas
School of Computing

University of Kent
Canterbury, CT2 7NF, UK

Email: A.A.Freitas@kent.ac.uk

Abstract—Bayesian Multi-nets (BMNs) are a special kind of
Bayesian network (BN) classifiers that consist of several local
networks, typically, one for each predictable class, to model an
asymmetric set of variable dependencies given each class value.
Alternatively, multi-nets can be learnt upon arbitrary partitions
of a dataset, in which each partition holds more consistent
variable dependencies given the data subset in the partition. This
paper proposes two contributions to the approach that clusters
the dataset into separate data subsets to build asymmetric local
BN classifiers, one for each subset. First, we extend the K-modes
algorithm, previously used by the Case-Based Bayesian Network
Classifiers (CBBN) approach to create clusters before learning the
BN classifiers. Second, we introduce the Ant-Clust-B algorithm
that employs Ant Colony Optimization (ACO) to learn clustering-
based BMNs. Ant-Clust-B uses ACO in the clustering step before
learning the local BN classifiers. Empirical results are obtained
from experiments on 18 UCI datasets.

I. INTRODUCTION

Ant Colony Optimization (ACO) [1] is a meta-heuristic
for solving combinatorial optimization problems, inspired by
observations of the behavior of ant colonies in nature. ACO
has been successfully employed in several research areas
related to our current work, classification [2], [3], [4], [5],
clustering [6], [7], [8], and learning general-purpose Bayesian
Networks (BNs) [9], [10], [11], [12]. Recently, the authors
have introduced ABC-Miner [13], the first ACO-based algo-
rithm to build Bayesian network classifiers, which has shown
better performance compared to some greedy and deterministic
BN algorithms. Thus, we carry on developing ACO-based
algorithms in the Bayesian classification area. Classification
is a central problem in data mining and machine learning
where the system builds, from labelled data instances, a model
(classifier) that predicts the class of unlabelled instances [14].
There are many types of classification methods [14], but in
this work we focus on building BN classifiers.

A BN classifier is a special kind of probabilistic networks
that aims to predict the class of a data instance by computing
the posterior probability of each available class value, given
the values of the predictor attributes of the instance, and
then labeling the instance with the class having the highest
posterior probability. Naı̈ve-Bayes, as discussed in [15], is the
simplest kind of BN classifier and it assumes the attributes are
independent given the class label. Although it obtained good
predictive performance in several domains [15], extensions

were developed to improve Naı̈ve-Bayes [16], [17], since
the independency assumption amongst attributes is often not
realistic.

In a BN classifier, a single network structure is built to
model the variable dependencies in the whole dataset. By
contrast, a Bayesian Multi-net (BMN) classifier consists of
several local networks, one for each subset of the dataset, to
model an asymmetric set of variable dependencies for each
data subset. Typically, data subsets are obtained by partitioning
the dataset based on the class values. Alternatively, arbitrary
partitions can be discovered, in which each partition holds
more consistent variable dependencies given the data subset in
the partition. Consequently, more effective local BN classifiers
are built for each data subset.

In this paper, we propose two new contributions to the
approach that clusters the dataset into separate data subsets
to build asymmetric local Bayesian network classifiers, one
for each subset. First, we extend the K-modes clustering
algorithm, previously used in Case-Based Bayesian Network
Classifiers (CBBN) approach [18], to create data clusters be-
fore learning the BN classifiers. The modifications are applied
on the clustering technique to cope well with the classification
objective of the algorithm by using different instance similarity
and cluster-belongingness measures. Second, we introduce
the new Ant-Clust-B algorithm that employs the ACO meta-
heuristics to learn cluster-based BMNs. Ant-Clust-B uses the
cluster-then-learn two-step approach, where ACO is utilized
in the clustering step, before a local Naı̈ve-Bayes classifier is
built on each data cluster in the next step.

The rest of the paper is structured as follows. The next
section gives a brief overview on BN classifiers, followed
by a background on ACO work in the related research areas
in Section III. Section IV gives an overview of our new
extensions and proposed approach. Section V describes the
basic clustering algorithm used in CBBN. Our proposed exten-
sions to the clustering technique for learning BMN classifiers
are discussed in Section VI. The Ant-Clust-B algorithm is
described in detail in Section VII. Experimental results on 18
benchmark UCI datasets, using different number of clusters,
are shown in Section VIII, followed by the conclusions and
future research directions in Section IX.

II. BAYESIAN NETWORKS OVERVIEW

Bayesian networks (BN) is one of the most powerful types
of method that model (in)dependence relationships between
variables [19], representing those (in)dependencies in a graph-
ical form. More precisely, a Directed Acyclic Graph (DAG)
is used to represent the variables as nodes and statistical
dependencies between the variables as edges between the
nodes. In addition, a set of conditional probability tables (BN
parameters), one for each variable, is obtained by computing
the probability distribution of the variable given its parents.
Inference is the main task of general-purpose BNs.

BN classifiers are a special kind of probabilistic networks
built to answer queries about the probability of a specific node:
the class attribute. Thus, the class node is treated as a special
variable in the network; it is set as the parent of all other
variables. The purpose is to compute the probability of each
value c of the class variable C given x (an instance of the input
attributes X = {X1, X2, ..., Xn}), then label the instance with
the class having the highest probability, as in the following
formulas:

C(x) = argmax
∀c∈C

P (C = c|x = x1, x2, ..., xn), (1)

letting Pa(Xi) be the set of parent predictor variables of Xi

in the network, according to the Bayes’ Theorem:

posterior probability︷ ︸︸ ︷
P (c|x1, x2, ..., xn)α

prior probability︷︸︸︷
P (c)

n∏
i=1

likelihood︷ ︸︸ ︷
P (xi|Pa(Xi), c) (2)

As mentioned earlier, Naı̈ve-Bayes is the simplest type of
BN classifier. Despite its very strong simplifying assumption
– namely, that the attributes are independent from each other
given the class label – Naı̈ve-Bayes has outperformed sev-
eral more sophisticated classification algorithms, especially in
datasets where its independency assumption is true [15].

The literature describes several types of Bayesian network
classifiers [16], [20], [17]: Tree Augmented Naı̈ve-Bayes
(TAN), Bayesian network Augmented Naı̈ve-Bayes (BAN),
and General Bayesian networks (GBN). TAN allows a node
in a network to have one parent, in addition the class variable
[17], which produces a BN with a tree-like structure. In a
BAN, a node can have up-to k-parents in the network. GBN
treats the class variable node as an ordinary node, which can
have both parent and children nodes.

Unlike a BN classifier, where a single network structure is
built to model the variable dependencies in the whole dataset,
a Bayesian Multi-net (BMN) classifier consists of several local
networks, one for each subset of the dataset, to model an
asymmetric set of variable dependencies for each subset – to
try to obtain a better dependency representation. This means
that two variables X and Y might be directly dependent
(X → Y) in one subset and independent in another subset,
while (X ← Y) might occur in a third one. Even if some
relationships in different subsets are the same, the parameters
that formalize the conditional dependencies might vary.

Typically, data subsets are obtained by partitioning the
dataset according to the class values, where each Local BN
corresponds to a value of class variable [20], [21]. In the class-
based BMN, the dataset D is partitioned into |C| subsets,
where |C| is the number of values in the domain of the class
attribute, and each subset Dl would contain only the instances
labeled by class value l. So, a general (not a classifier by
itself) Bayesian network BNl is built for each Dl subset.

Alternatively, arbitrary partitions can be discovered, where
each partition holds more consistent variable dependencies
given the data subset in the partition. Consequently, more
effective local BN classifiers are built for each data subset.
In which case, the dataset D is clustered into K data subsets,
where K is an input value, and each cluster (subset) Dk may
contain instances labeled by different class values. Hence,
a local BN classifier BNCk is built for each Dk with
X = {X1, X2, ..., Xn} and C variables.

A clustering-based BMN classifies an instance x by assign-
ing the instance x to its nearest data cluster, Dk (the cluster
that the instance would belong to), and then uses the local
BN classifier, BNCk, that is built on Dk, to compute the
class value C(x) that maximizes the posterior probability, as
shown in Equation 3. The clustering-based BMN approach is
our focus in this work.

C(x) = argmax
∀c∈C

P (c|x, BNCk),x ∈ Dk (3)

A common approach for learning a BN (classifier) from a
dataset D is to use a scoring function that evaluates several
candidate structures with respect to D, searching for the best
network G according to this function [20]. Then, parameter
learning can be done by simply computing a conditional prob-
ability table (CPT) for each variable with respect to its parent
variables. The CPT of variable Xi encodes the likelihood of
each value of this variable given each combination of values of
Pa(Xi) in the network structure G, and the likelihood of the
dataset D given a network G is denoted by P (D|G), which
the algorithm tries to maximize.

Most algorithms used in the literature that utilize the
Bayesian approach for classification focus on building a single
model (BN classifier) on the whole dataset, and use deter-
ministic and greedy search strategies. However, based on the
characteristics of the Bayesian multi-nets and the rationale
behind modeling them, stochastic meta-heuristic global search
methods such as ACO, which are less prone to get stuck in
local optima than greedy search methods, can be applied to
build more effective Bayesian classification models.

III. ANT COLONY OPTIMIZATION BACKGROUND

Ant Colony Optimization (ACO) is a meta-heuristic global
search method that is inspired by the collective behavior of
natural ants and is designed to achieve a certain goal [1].
ACO is a swarm intelligence paradigm that simulates real
ant colonies using artificial ants. Each artificial ant creates
a candidate solution to the problem at hand, then deposits
pheromone on the part of the search space that the ant visited

while constructing its solution. The amount of pheromone
deposited is proportional to the quality of the constructed
solution, so pheromone provides positive feedback to guide
the search to be done by other ants. The iterative process
of building candidate solutions, evaluating their quality and
updating pheromone values allows an ACO algorithm to
converge to near-optimal solutions.

ACO has been employed for learning general-purpose BNs
in several works [9], [10], [11], [12]. In the area of Bayesian
classification, the authors have recently introduced ABC-
Miner [13], at present the only algorithm that uses ACO for
learning a BN classifier in the structure of a BAN, rather
than a Bayesian Multi-net. Besides, ACO has contributed
effectively in tackling the classification problem. Ant-Miner
was the first ACO algorithm for classification rule discovery. A
recent survey on Ant-Miner and its related work is presented in
[22]. AnTree-Miner [23] and cACDT [24] are ACO algorithms
for building decision trees.

Since we focus on using ACO for learning clustering-based
BMN, we briefly review the use of ACO for clustering. Cluster
analysis consists of grouping a set of objects (data instances)
in such a way that objects in the same group (cluster) are more
similar (in some sense) to each other than to those in other
groups [25]. Many ACO algorithms for clustering are briefly
reviewed in [6]. Amongst these various ACO algorithms for
clustering, we extended the work in [7] for our clustering-
based BMN classification algorithms.

The ACO algorithm for clustering [7] assigns N objects
(data instances) to K clusters. The ACO construction graph,
which represents the problem’s search space, contains N ×K
decision components; each instance with each possible cluster
assignment. Each ant in the colony starts with an empty
solution of length N elements, then the ant selects a cluster
assignment for each element from the construction graph.
The selection is performed probabilistically, based on the
pheromone amount associated with each instance-cluster de-
cision component. When every instance has been assigned to
a cluster, the ant has a complete candidate clustering solution.
For example, a candidate clustering solution for a dataset with
10 instances and 4 clusters is represented in the following
form:

3 1 3 4 1 2 1 3 4 2

This representation means that in this candidate clustering
solution, for example, the first instance belongs to cluster
number 3, along with third and the eighth instances.

After each ant constructs a candidate solution, the quality
of the solution is evaluated. Then the best l ants perform
pheromone update to influence the solution construction pro-
cess of the ants in the following iterations. The algorithm
stops after a certain number of iterations or when the colony
converges on a clustering solution.

The algorithm’s goal is to minimize the sum of squared
Euclidean distances between each data instance and the center
of the cluster to which the instance belongs [7]. Therefore, a

candidate clustering solution S is evaluated accordingly:

Quality(S) =
K∑

k=1

Nk∑
i=1

Euclidean(xki, cenk), (4)

where Nk is the number of instances in the k-th cluster, xki

is the i-th instance in the k-th cluster, and cenk is the centroid
of the k-th cluster.

For a more detailed discussion on the ACO algorithm for
clustering, the reader is referred to [7].

IV. PROPOSED CONTRIBUTIONS OVERVIEW

In the clustering-based BMN learning, the aim is to build
several local BN classifiers for a given dataset, one for each
data subset, where in each subset the variable dependences
are more consistent. In this context, we use the cluster-then-
learn two-step approach. The approach is to perform a data
clustering process in a separate step to partition the dataset into
several subsets. After the completion of the clustering step,
the local BN classifiers (such as Naı̈ve-Bayes, TAN, BAN,
or GBN), one for each data cluster, are constructed in the
following step.

The Case-Based Bayesian Network Classifier (CBBN) al-
gorithm [18] utilizes such a two-step approach. In CBBN, K-
modes – a variation of the conventional K-means clustering
algorithm adapted to nominal attributes – is used in the
clustering phase, and then a BN classifier is built on each
of the produced clusters. As a first step in our work, we
extend the clustering technique used in the CBBN algorithm
to better cope with the nominal attributes considering the
final classification objective of the algorithm (which was not
the objective of CBBN in [18]). In this extension we use
different proximity measures (specific to the classification
task) to evaluate the similarity between two data instances.
Moreover, we use a different cluster-belongingness notion,
which measures the degree of belongingness of an instance
to a cluster, to better handle nominal attributes. The details
are shown in Section VI.

Second, we introduce a novel algorithm, Ant-Clust-B, which
also utilizes the cluster-then-learn approach. However, Ant-
Clust-B employs an extended ACO algorithm for clustering
(discussed in Section III), instead of the K-modes algorithm,
in the clustering phase. Then, the algorithm builds the BMN by
learning a Naı̈ve-Bayes classifier on each data subset (cluster)
produced by the ACO clustering step. The ACO algorithm,
described in Section VII, is extended via utilizing the new
similarity measure and the cluster-belongingness notion pro-
posed in Section VI.

V. K-MEANS CLUSTERING THEN BMN LEARNING

The key ideas of this approach are using the well-known K-
means algorithm to cluster the dataset into subsets, and then
learning a set of local BN classifiers, one for each subset.
Algorithm 1 shows the outline of K-means.

The K-means clustering algorithm starts by randomly se-
lecting K data instances from the dataset to be the centroids
of the K clusters, where K is the number of clusters specified

Algorithm 1 Pseudocode of K-means.
Begin
K ← input;
Select K data instances as initial centroids;
repeat

Assign each data instance to its nearest centroid;
Recompute the centroid of each cluster;

until Centroids do not change
End

by the user. Then, each instance in the dataset is assigned to
its nearest centroid. Formally, the instance x is assigned to
cluster j according to the following formula:

Cluster(x) = argmin
∀ k∈{1,..,K}

Distance(x, cenk), (5)

where cenk is the centroid of the k-th cluster. The distance
between the centroid of a cluster and a data instance (or
generally, the distance between two instances) is computed
using Euclidean distance, as follows:

Euclidean(x1,x2) =
n∑

v=1

√
(x1v − x2v)

2
, (6)

where n is the number of attributes in the instance x. The
centroid of each cluster is then updated based on the instances
assigned to its cluster, i.e., by taking the mean value of
each attribute across all the instances in the cluster. The
algorithm repeats the instance assignment and the centroid
update steps until the centroids and the clusters converge
to fixed values. This kind of distance measure and centroid
calculation, for assigning instances to clusters, is appropriate
when the instances in the dataset contain continuous (numeric-
valued) attributes. However, when the dataset contains nominal
(categorical) attributes, a different behaviour is expected. And
since most of the work in the field of BN learning, as well as
the current one, focus on data with nominal attributes, some
aspects of the basic K-means need to be modified to cope
with datasets with nominal attributes.

The CBBN algorithm [18] used K-modes, a modified
version of the K-means algorithm. K-modes has the same
overall structure of K-means, but how the distance between
two instances is computed, and how the centroids of the
clusters are updated are different. In K-modes, the difference
between two nominal values of the same attribute in two data
instances is either 1, if the two values are the same, or 0,
if the two values are the different. The Euclidean distance
(Equation 6) is computed between the two instances according
to their attribute value differences. In addition, the centroid
of a cluster is given by the mode value (the value that has
the maximum number of occurrences) of each attribute, taken
across all the instances in the cluster. After the K-modes
algorithm finishes partitioning the dataset into several clusters,
a BMN is constructed by learning a local BN classifier for each
data cluster.

This clustering approach has a number of drawbacks, es-
pecially when the ultimate data mining task being solved is
classification (like learning a BMN classifier), rather than clus-
tering. These drawbacks have led us to extend the algorithm to
better cope with nominal attributes in the context of clustering-
for-classification. The next section discusses the drawbacks as
well as our proposed extensions.

VI. EXTENSIONS TO THE CLUSTERING TECHNIQUE FOR
CLASSIFICATION

The K-modes algorithm, used by CBBN, has two draw-
backs in tackling nominal attributes. First, it considers that
the distance between two values in the domain of an attribute
is equals to 0 if these two values are different, and the same
0 value is assigned to any pair of different values. However,
in some applications a pair of attribute values can be clearly
considered closer to each other than other pairs of values, even
if the individual values are all different. This case can be found
in ordinal nominal attributes, where the attribute values have
a sematic ordering, like {“high”,“medium”,“low”}. In this
example, the distance between “high” and “medium” should
be less than the distance between “high” and “low”.

Moreover, a similar but more subtle issue can be found
even in some applications involving unordered nominal at-
tributes, in the context of the classification task. For example,
consider a dataset about customers who bought a specific
product, where the aim is to build a classifier that can predict
whether a new customer would be interested in buying this
product or not. An attribute that may describe a customer
(data instance) is [Profession], which may contain values like
{“teacher”,“doctor”,“professor”,“engineer”}. In this case the
values are unordered, and at first glance there is no principled
way of saying that a pair of values is closer to each other
than another pair. However, in the context of the classification
task (rather than the clustering task), it is possible to assign
different degrees of similarity (or distance) to two different
pairs of such nominal values. The trick is to measure similarity
not between (the names of) the attribute values themselves,
but rather between the attribute values’ associations with the
classes to be predicted.

In the previous example, it is possible that, say, professors
and teachers have a higher degree of similarity than teachers
and engineers, because professors and teachers could be as-
sociated mainly with the class “buy = yes”, whilst engineers
could be associated mainly with the opposite class, “buy =
no”. In a different dataset, however, teachers and engineers
may be more similar than professors and teachers. Hence, the
degree of similarity between a pair of attribute values should
be computed dynamically by taking into account the class
distribution associated with each of the attribute values being
compared. Hence, the distance measure used by K-modes
(which returns either 1 or 0) neglects a lot of information
in the data, especially when the aim of the clustering phase
is to produce data subsets that are more consistent for the
classification task.

The second drawback of the K-modes algorithm is related
to how an instance is assigned to a cluster. In K-modes, the
distance between the instance (to be assigned to cluster) and
the mode of each cluster is calculated, and the instance is
assigned to the cluster of the nearest mode. However, the
mode omits a lot of information about the attribute values
in the cluster. For example, suppose we have a dataset with
two attributes, and each can take two values A1 = {v11, v12}
and A2 = {v21, v22}. Suppose also that the dataset is clustered
into two subsets, where each has the following attribute value
distributions:

Cluster1 [v11=70%, v12=30% — v21=80% , v22=20%]
Cluster2 [v11=90%, v12=10% — v21=60% , v22=40%]

Note that the mode of both clusters is the same: mode =
(v11, v21). In this case, an instance x = (v11, v22) could be
considered to belong equally to both clusters, since it has the
same level of similarity to each of the clusters’ modes. The
distance between x and each cluster’s mode is 1, according to
Equation 6.

Nevertheless, and according to the attribute value distri-
butions in the clusters, the instance x seems to belong to
Cluster2 more than Cluster1, because the values of the in-
stance x have a higher occurrence in Cluster2 than Cluster1.
The K-modes algorithm neglects such facts, and would assign
the instance to any of the two clusters randomly. Hence, we
need a belongingness measure that would consider such value
distributions to assign x to Cluster2.

Due to the aforementioned drawbacks of K-modes in han-
dling nominal attributes, in order to better achieve the clas-
sification objective of the clustering-then-BMN learning ap-
proach, we propose two extensions to the clustering technique.
First, we use a class-based similarity function. This function
calculates the similarity between two instances according to
their attribute values with respect to the classes; two different
values of the same attribute are considered to be similar if
they share a similar relationship to predicting the classes. The
similarity function is shown in the following formula [26]:

Similarity(x1,x2) = −
n∑

v=1

|C|∑
l=1

|P (x1v|Cl)− P (x2v|Cl)|,

(7)
where n is the number of attributes and P (xv|Cl) is condi-
tional probability of the attribute value xv given the class value
Cl. This conditional probability is the ratio of the number of
instances with attribute value xv and the class value Cl over
the number of instances with class value Cl in the dataset.

According to the previous formula, if two attribute values in
two different instances have similar values of that conditional
probability with respect to a class value, the difference term in
the equation will be small; and if a small difference is observed
in general across all (or the vast majority of) attributes and
class values, the two instances are considered similar to each
other. And vice versa: if two attribute values in two different
instances have very different values of that conditional proba-
bility with respect to a class value, the difference term in the

equation will be large; and if a large difference is observed in
general across all (or the vast majority of) attributes and class
values, the two instances are considered dissimilar to each
other. Hence, the class-based similarity function calculates
the similarity between two instances based on how similar
they are in predicting the various class values, which should
lead to a better clustering-for-classification process than the
conventional Euclidean distance used by K-modes (which is
purely for clustering, ignoring the classification goal).

The second extension to the clustering technique is related
to how an instance is assigned to a cluster in the testing
phase, or how it changes its cluster-belongingness during the
clustering phase. The idea is that, instead of using the mode
of a cluster to measure how near/far an instance is from the
cluster according to the distance/similarity between the mode
and the instance, the degree of belongingness of an instance
to a cluster is the average similarity between that instance
and all other instances in the cluster, and then the instance
is assigned to its most similar cluster, as formalized in the
following equation:

Cluster(x) = argmax
∀ k∈{1,..,K}

∑Nk

i=1 Similarity(x,xi)

Nk
, (8)

where K is the number of clusters and Nk is the number of
the instance in k-th cluster. The rationale behind this technique
is to avoid depending on the mode of the cluster, which (as
discussed earlier) omits a lot of information about the cluster’s
data distribution, and to consider every instance in the cluster
when calculating the degree of belongingness of the instance to
the cluster. Hence, in each iteration of the clustering algorithm,
the degree of belongingness is calculated for each instance in
the dataset and each cluster, and then the instance is assigned
to the cluster to which it belongs the most. The algorithm stops
when no instance changes its cluster.

Note that the CBBN algorithm performs a post-processing
step after clustering, which consists of finding a vector of
attribute values for each cluster, called index, which discrim-
inates one cluster from others by a unique value assign-
ments to its most relevant and descriptive attributes [18].
This is to improve the instance-cluster assignment process
in the classification phase. However, our proposed cluster-
belongingness notion should not need this post-processing
step, since it already directly improves the instance-cluster
assignment process in the clustering phase, to create better
data clusters, as well as in the classification phase, especially
when the class-based similarity function is used.

VII. ACO CLUSTERING THEN BMN LEARNING

We propose Ant-Clust-B, the ant-based clustering algo-
rithm for learning BMN classifiers. The algorithm applies the
clustering-then-learning approach, in which ACO is utilized in
the clustering step to produce data subsets. Then a set of local
BN classifiers, one for each data subset, is constructed. The
reason for applying the ACO meta-heuristic, instead of the
K-means algorithm, in the clustering step, is as follows. The
K-means algorithm is very sensitive to the values of the initial

centroids (or modes in the case of K-modes) randomly chosen
to start the algorithm. And since K-means can be viewed as
a greedy search technique for an optimization problem, which
is to minimize the sum of the Euclidean distances between the
instances and the centroids of the clusters (Equation 4), a bad
initialization of the clusters’ centroids may lead the algorithm
to get trapped into a bad local optima, which in turn affects the
predictive quality of the BN classifiers built on the resultant
data clusters.

On the other hand, ACO is a stochastic meta-heuristic global
search method. ACO’s global search is due to the use of a
population of artificial ants that cooperatively search for the
best solution in parallel, exploring different regions of the
search space at each iteration of the algorithm, and the use
of pheromone to influence the probability of the ants in the
following iterations to visit the “good” regions of the search
space when constructing their solution. As a result of this
global search, ACO is less likely to get trapped into local
optima in the search space, which improves the chances of
finding better clustering solutions. Algorithm 2 shows the
overall process of Ant-Clust-B.

Algorithm 2 Pseudo-code of Ant-Clust-B.
Begin
K = input;
BMN = ϕ;
ClustSolutiongbest = ϕ;
Qgbest = 0;
InitializePheromoneAmounts();
t = 1;
repeat

ClustSolutiontbest = ϕ;
Qtbest = 0;
for i = 1 → colony size do

ClustSolutioni = CreateSolution(anti);
Qi = ComputeQuality(ClustSolutioni);
if Qi > Qtbest then

ClustSolutiontbest = ClustSolutioni;
Qtbest = Qi;

end if
end for
PerformLocalSearch(ClustSolutiontbest);
UpdatePheromone();
if Qtbest > Qgbest then

ClustSolutiongbest = ClustSolutiontbest;
Qgbest = Qtbest;

end if
t = t+ 1;

until t = max iterations or Convergence();
for k = 1 → K do

BNCk = LearnBNClassifier(ClustSolution(k));
append BNCk to BMN ;

end for
return BMN ;
End

The outline of the algorithm is as follows. In essence,
each anti in the colony creates a candidate clustering so-
lution ClustSolutioni, i. e. a full instance-cluster assign-
ment, with K clusters. Then the quality of the constructed
solution is evaluated. The best solution ClustSolutiontbest

produced in the colony at the current iteration t is se-
lected to undergo local search before the ant updates the
pheromone trail according to the quality of its solution Qtbest.
Next, the algorithm compares the current iteration’s best
solution ClustSolutiontbest with the global best solution
ClustSolutiongbest to keep track of the best solution found
along the entire search so far. This set of steps is considered
an iteration of the repeat − until loop and is repeated until
the same solution is generated for a number of consecutive
trials, specified by the conv_iterations parameter (indi-
cating convergence) or until max_iterations is reached.
The values of max_iterations, conv_iterations and
colony_size are user-specified parameters.

An ant constructs a clustering solution in the same manner
as in [7], as discussed in Section III. It starts with an
empty solution of length N elements, where each element
represents an instance in the dataset. Then, the ant selects a
cluster assignment for each element in the clustering solution.
The selection is performed probabilistically according to the
pheromone amount associated with the decision components
in the construction graph, where each decision component
represents a possible instance-cluster assignment.

The quality of a candidate clustering solution is evaluated
according to a cohesiveness measure that uses the extensions
introduced in Section VI, as shown in the following formula:

Q(ClustSolution) =
K∑

k=1

∑Nk

i=1

∑Nk

j=i Similarity((xki,xkj))

Nk
,

(9)
where K is the number of the clusters, and Nk is the
number of the instances in the k-th cluster. The proposed
clustering quality evaluation function measures the degree of
cohesiveness in each cluster by taking the average of the class-
based similarity (Equation 7) between each instance and all the
other instances in its cluster, and sums up the averages over
all the clusters to get the quality of the constructed candidate
clustering solution.

At each iteration, the best clustering solution constructed
amongst the ants in the colony undergoes local search. We
propose running one iteration of the K-means algorithm on
the ClustSolutiontbest, that is, assigning each instance to
its nearest cluster, with respect to the class-based similarity
measure and the cluster-belongingness notion.

We use a new strategy for pheromone update in Ant-
Clust-B. The pheromone amount is deposited according to the
quality of two constructed solutions: the iteration best Qtbest

and the global best Qgbest, in a weighting strategy, as follows:

τik(t+ 1) = τik(t) + ϕ1.Qtbest(t) + ϕ2.Qgbest(t) (10)

where τik is the amount of pheromone associated with the
instance-cluster (i − k) assignment decision compontnet. ϕ1

and ϕ2 represents the intensity of the pheromone to be
deposited in iteration t according to the quality of the iteration
best and global best solutions respectively, as:

ϕ1 =
max iterations− t

max iterations
, ϕ2 =

t

max iterations
(11)

Hence, in the early iterations, more weight is given to the
local best rather than the global best (as max iterations− t
is greater than t). This is applied in order to introduce search
diversity. However, as the iterations go on, the quality of the
global best increases, which gains more weight (as t increases
and max iterations − t decreases) in directing the search,
leading to convergence. Note that ϕ1 + ϕ2 always equals 1 at
any given iteration t.

Pheromone normalization is then applied to all of the
decision components to simulate evaporation as in [13].

VIII. EXPERIMENTS AND RESULTS

The performance of our extended clustering for classifica-
tion algorithm, denoted as K-Clusts-B, as well as the Ant-
Clust-B algorithm were evaluated using 18 public-domain
datasets from the University of California at Irvine (UCI)
dataset repository [27]. Datasets containing continuous at-
tributes were discretized in a pre-possessing step, applying the
C4.5-Disc [14] algorithm to the training-set folds. The main
characteristics of the datasets are found using the URL in [27].
We used Naı̈ve-Bayes to build the local BN classifiers for each
data subset produced in the clustering step.

We compare the predictive accuracy of the extended algo-
rithm and the proposed ant-based algorithm with conventional
Naı̈ve-Bayes (built on the whole dataset without clustering)
and with conventional K-modes (described in Section VI to
cluster the data for building the local Naı̈ve-Bayes, denoted as
K-Modes-B).

We performed 3 experiments for each data set with 3 dif-
ferent numbers of clusters: 2, 4, and 6. The experiments were
carried out using the stratified 10-fold cross validation proce-
dure. In essence, a dataset is divided into 10 mutually exclusive
partitions (folds), with approximately the same number of
instances in each partition. Then each classification algorithm
is run 10 times, where each time a different partition is used as
the test set and the other 9 partitions are used as the training
set. The results (accuracy rate on the test set) are averaged
and reported as the accuracy rate of the classifier. We run
each algorithm (Ant-Clust-B, K-Modes-B, and K-Clust-B) 10
times – using a different random seed each time (to initialize
the search for the ant-based algorithm, and to select the initial
centroids for the K-means-based algorithms) – for each of the
10 iterations of the cross-validation procedure (i.e. 100 runs
in total, for each dataset). The parameter configuration used
in our experiments is shown in Table 1.

TABLE I
PARAMETER SETTINGS USED IN THE EXPERIMENTS

Parameter Value

max_iterations 1000

colony_size 10

conv_ iterations 10

K (number of clusters) 2, 4, 6

Table 2 reports the predictive accuracy (%) results for the
3 used clustering-for-classification algorithm with 3 different
numbers of clusters. The results for Naı̈ve-Bayes are also
reported as a baseline. A value in bold face is the highest
accuracy value for the corresponding dataset among all ac-
curacy values obtained using the same number of clusters in
different algorithms. An underlined value is the best accuracy
value for the dataset.

As shown in Table 2, using 2 clusters, the extended K-
Clust-B algorithm outperforms the K-Modes-B algorithm in
15 out of 18 datasets, while Ant-Clust-B obtains the best
results across all the algorithms in 16 datasets. Using 2 clusters
obtains the best results compared to other numbers of clusters
only in one dataset.

With 4 clusters, the K-Clust-B algorithm outperforms the
conventional K-Modes-B algorithm in 16 datasets, while
the ant-based algorithm for learning clustering-based BMN
classifiers obtains the best results across all algorithms in 16
out of 18 datasets. Using 4 clusters obtains the best results
compared to other numbers of clusters in 4 datasets.

With 6 clusters, K-Cluster-B outperforms K-Modes-B in
building BMN classifiers in 15 datasets, while our proposed
Ant-Clust-B algorithm obtains the best results amongst all
algorithms in 13 out of 18 datasets. Using 6 clusters obtains
the best results compared to other numbers of clusters in 13
datasets.

According to the results, our proposed extensions re-
garding the class-based similarity measure and the cluster-
belongingness notion, used in both K-Clust-B and Ant-Clust-
B, have improved the performance of the algorithms in clus-
tering the dataset for building effective BMN classifiers. On
the other hand, the use of the ACO meta-heuristic for finding
data clusters has improved the performance of the algorithm
and produced the majority of the best results.

IX. CONCLUDING REMARKS

The paper has addressed the clustering approach for build-
ing a set of BN classifiers, one for each data cluster. We
proposed two extensions to the K-modes clustering algorithm
to better cope with nominal attributes in the context of cluster-
ing for classification: the use of a class-based similarity mea-
sure and a cluster-belongingness notion for instance-cluster
assignment. Moreover, we proposed an ACO-based algorithm
for learning clustering-based BMN classifiers, where ACO is
used in the clustering phase. Empirical results showed that
the proposed extensions as well as the use of the ACO-meta
heuristic have produced better predictive accuracy results.

In the future, we would like to extend the ACO algorithm
by performing the clustering phase and the BMN-construction
phase in a synergistic way, where an ant produces a clustering
solution and builds a BMN in a single iteration before the
solution is evaluated for pheromone update. In addition, we
would like to use a different representation for the clustering
solution constructed by an ant, in which a solution might
contain only the modes of the clusters.

TABLE II
PREDICTIVE ACCURACY (%) RESULTS

Dataset Naı̈ve-B K-Modes-B K-Clust-B Ant-Clust-B
k=2 k=4 k=6 k=2 k=4 k=6 k=2 k=4 k=6

balance scale 76.1 76.5 76.8 76.9 76.5 76.9 77.2 76.8 77.4 77.2
car evaluation 86.7 86.9 88.7 92.7 87.3 92.7 92.9 88.8 92.9 93.3
chess (rook vs. pawn) 86.5 87.6 89.4 91.2 88.6 90.1 92.4 86.8 91.9 93.2
contraceptive method choice 50.8 51.7 53.6 53.8 53.4 55.7 57.8 53.9 56.1 57.6

statlog credit (australian) 79.3 80.8 81.7 82.8 81.5 82.7 83.2 81.7 82.7 83.8
dermatology 96.1 97.2 97.6 96.5 97.6 98.0 97.9 97.8 98.4 97.6

glass 61.6 64.2 64.8 65.2 65.7 66.1 66.8 65.5 66.3 67.8
hayes-roth 84.0 84.1 85.0 84.7 84.7 84.1 85.0 84.7 85.6 84.8

heart disease (cleveland) 54.6 61.5 66.4 69.8 64.1 69.8 71.9 65.9 71.0 73.6
ionosphere 91.1 92.8 91.8 90.8 93.8 92.6 90.4 93.9 91.8 92.9
lung cancer 84.6 91.6 92.5 94.6 91.6 95.0 95.7 91.6 94.8 95.8
monks 60.5 58.6 60.6 61.7 58.6 60.9 61.7 59.5 61.7 63.2
nursey 90.1 91.3 92.4 93.0 92.1 93.0 93.2 92.6 94.1 94.4
parkinsons 93.9 94.2 95.1 95.4 95.0 96.1 96.7 95.1 96.5 97.0
post-operative patient 69.5 68.0 72.1 73.1 68.2 72.1 70.8 71.9 75.2 79.9
segmentation 93.7 94.2 94.3 94.6 94.5 95.6 95.8 94.6 95.9 95.7

soybean 47.6 42.7 50.6 52.8 43.6 52.5 61.1 43.8 52.6 59.6

tic-tac-to 68.7 71.3 74.2 79.8 75.2 79.1 87.88 76.3 79.9 88.9

REFERENCES

[1] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.
[2] D. Martens, M. D. Backer, R. Haesen, J. Vanthienen, M. Snoeck,

and B. Baesens, “Classification with ant colony optimization.” IEEE
Transactions on Evolutionary Computation, vol. 11, pp. 651–665, 2007.

[3] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data Mining with an
Ant Colony Optimization Algorithm,” IEEE Transactions on Evolution-
ary Computation, vol. 6, pp. 321–332, 2002.

[4] K. M. Salama, A. Abdelbar, and A. A. Freitas, “Multiple Pheromone
Types and Other Extensions to the Ant-Miner Classification Rule
Discovery Algorithm,” Swarm Intelligence, vol. 5, no. 3-4, pp. 149–182,
2011.

[5] K. M. Salama, A. M. Abdelbar, F. E. Otero, and A. A. Freitas, “Utiliz-
ing Multiple Pheromones in an Ant-based Algorithm for Continuous-
Attribute Classification Rule Discovery.” Applied Soft Computing,
vol. 13, no. 1, 2012.

[6] M. Jafar and R.Sivakumar, “Ant-based Clustering Algorithms: A Brief
Survey,” International Journal of Computer Theory and Engineering,
vol. 2, pp. 787–796, 2010.

[7] P. S. Shelokar, V. K. Jayaraman, and B. D. Kulkarni, “An ant colony
approach for clustering,” Analytica Chimica Acta, vol. 509, no. 2, pp.
187–195, 2004.

[8] X. yong Liu and H. Fu, “An Effective Clustering Algorithm With Ant
Colony,” Journal of Computers, vol. 5, pp. 598–605, 2010.

[9] Y. Wu, J. McCall, and D. Corne, “Two novel Ant Colony Optimiza-
tion approaches for Bayesian network structure learning,” International
Conference on Evolutionary Computation (CEC), pp. 1–7, 2010.

[10] L. M. de Campos, J. M. Fernandez-Luna, J. A. Gamez, and J. M. Puerta,
“Ant colony optimization for learning Bayesian networks,” International
Journal of Approximate Reasoning, vol. 31, no. 3, pp. 291–311, 2002.

[11] R. Daly and Q. Shen, “Learning Bayesian Network Equivalence Classes
with Ant Colony Optimization,” Artificial Intelligence Research, vol. 35,
pp. 391–447, 2009.

[12] P. C. Pinto, A. Nägele, M. Dejori, T. A. Runkler, and Ao, “Using a Local
Discovery Ant Algorithm for Bayesian Network Structure Learning,”
IEEE Transactions on Evolutionary Computation, vol. 13, no. 4, pp.
767–779, 2009.

[13] K. M. Salama and A. A. Freitas, “ABC-Miner: an Ant-based Bayesian

Classification Algorithm,” International Conference on Swarm Intelli-
gence (ANTS), pp. 2677–2694, 2012.

[14] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 3rd ed. Morgan Kaufmann, 2010.

[15] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
2nd ed. John Wiley & Sons Inc, 1995.

[16] J. Cheng and R. Greiner, “Comparing bayesian network classifiers,” 15th
Annual Conference on Uncertainty in Artificial Intelligence, pp. 101–
108, 1999.

[17] N. Friedman, D. Geiger, M. Goldszmidt, G. Provan, P. Langley, and
P. Smyth, “Bayesian Network Classifiers,” Machine Learning, pp. 131–
163, 1997.

[18] E. S. Jr. and A. Hussein, “Case-Based Bayesian Network Classifiers,”
17th International FLAIRS Conference, AAAI, vol. 5, pp. 598–605, 2004.

[19] R. Daly, Q. Shen, and S. Aitken, “Learning bayesian networks: Ap-
proaches and issues,” Knowledge Engineering Reviews, vol. 26, no. 2,
pp. 99–157, 2011.

[20] J. Cheng and R. Greiner, “Learning bayesian belief network classifiers:
Algorithms and system,” 14th Biennial Conference of the Canadian
Society on Computational Studies of Intelligence: Advances in Artificial
Intelligence, pp. 141–151, 2001.

[21] D. Geiger and D. Heckerman, “Knowledge representation and inference
in similarity networks and Bayesian multinets,” Artificial Intelligence,
vol. 82, no. 1-2, pp. 45–74, 1996.

[22] D. Martens, B. Baesens, and T. Fawcett, “Editorial survey: swarm
intelligence for data mining,” Machine Learning, vol. 82, no. 1, pp.
1–42, 2011.

[23] F. E. B. Otero, A. A. Freitas, and C. G. Johnson, “Inducing Decision
Trees with an Ant Colony Optimization Algorithm,” Applied Soft Com-
puting, vol. 12, no. 11, pp. 3615–3626, 2012.

[24] U. Boryczka and J. Kozak, “An Adaptive Discretization in the ACDT Al-
gorithm for Continuous Attributes,” in 3rd International Conference on
Computational Collective Intelligence: Technologies and Applications
(ICCCI’11). Springer-Verlag, 2011, pp. 475–484.

[25] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 3rd ed.
Morgan Kaufmann, 2000.

[26] C. Stanfill and D. Waltz, “Toward memory-based reasoning,” Commu-
nications of the ACM, vol. 29, pp. 1213–1228, 1986.

[27] UCI Repository of Machine Learning Databases. Retrieved Oct 2011
from, URL:www.ics.uci.edu/ mlearn/MLRepository.html.

