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Hierarchical Multi-Label Classification is a complex classification problem where an instance can be as-
signed to more than one class simultaneously, and these classes are hierarchically organized with superclasses
and subclasses, i.e., an instance can be classified as belonging to more than one path in the hierarchical structure.
This article experimentally analyses the behaviour of different decision tree-based hierarchical multi-label clas-
sification methods based on the local and global classification approaches. The approaches are compared using
distinct hierarchy-based and distance-based evaluation measures, when they are applied to a variation of real multi-
label and hierarchical datasets’ characteristics. Also, the different evaluation measures investigated are compared
according to their degrees of consistency, discriminancy and indifferency. As a result of the experimental analysis,
we recommend the use of the global classification approach and suggest the use of the Hierarchical Precision and
Hierarchical Recall evaluation measures.
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1. INTRODUCTION

In most of the classification problems described in the literature, a classifier assigns a single class to a
given instance xi and the classes form a non-hierarchical, flat, structure, with no consideration of superclasses
or subclasses. However, in many real-world classification problems, one or more classes can be divided into
subclasses or grouped into superclasses, and instances can belong to more than one class simultaneously at a
same hierarchical level. In this case, the classes follow a hierarchical structure, usually a tree or a Directed
Acyclic Graph (DAG). These problems are known in the literature of Machine Learning (ML) as Hierarchical
Multi-Label Classification (HMC) problems. They are more complex than conventional classification problems,
which are flat and single-label, since new instances can be classified into the classes associated with two or more
paths in the class hierarchy. These problems are very common, for example, in the classification of genes and
identification of protein functions (Blockeel et al., 2002; Clare and King, 2003; Struyf et al., 2005; Kiritchenko
et al., 2005; Barutcuoglu et al., 2006; Vens et al., 2008; Alves et al., 2008; Obozinski et al., 2008; Valentini,
2009, 2011; Alves et al., 2010; Schietgat et al., 2010; Otero et al., 2010; Cerri et al., 2011; Cerri and Carvalho,
2011; Pugelj and Džeroski, 2011; Bi and Kwok, 2011), and text classification (Sun and Lim, 2001; Kiritchenko
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et al., 2004; Rousu et al., 2006; Cesa-Bianchi et al., 2006; Mayne and Perry, 2009). HMC problems can be
defined as complex classification problems which encompass the characteristics of both hierarchical single-label
problems and non-hierarchical multi-label problems.

In hierarchical single-label classification problems, each instance is assigned to a single path of the hier-
archical structure. The process of classification of new instances may be a mandatory leaf node classification,
when a new instance must be assigned to a leaf node, or a non-mandatory leaf node classification, when the
most specific class assigned to a new instance can be an internal (non-leaf) node of the class hierarchy (Freitas
and Carvalho, 2007). Two approaches have been adopted in the literature to deal with the class hierarchy in
hierarchical problems: top-down or local, and one-shot or global.

The local approach uses local information to consider the hierarchy of classes. During the training phase, the
hierarchy of classes is processed level by level, producing one or more classifiers for each level of the hierarchy.
This process produces a tree of classifiers. The root classifier is induced with all training instances. At each other
level, a classifier is induced using just local instances associated with classes at that level. In the test phase, when
an instance is assigned to a class that is not a leaf node, it is further classified into one subclass of this class.
A deficiency of this approach is the propagation of classification errors in a class node to its descendant nodes
in the class hierarchy. However, it allows the use of any traditional classification algorithm, because each local
classification algorithm is a conventional, flat classification algorithm.

The global approach induces a unique classification model considering the class hierarchy as a whole,
avoiding the error propagation problem of the local approach. After the model induction, the classification
of a new instance occurs in just one step. Hence, traditional classification algorithms cannot be used, unless
adaptations are made to consider the hierarchy of classes.

In non-hierarchical multi-label problems, each instance can be assigned to zero, one or more classes si-
multaneously. Similar to hierarchical single-label problems, where the local and global approaches can be
used to solve the classification task, two main approaches can be used to solve non-hierarchical multi-label
problems, named algorithm dependent and algorithm independent (Carvalho and Freitas, 2009). The algorithm
independent approach transforms the original multi-label problem into a set of single-label problems and, as in
the local approach for hierarchical problems, any traditional classification algorithm can be used. In the algorithm
dependent approach, as the name suggests, new algorithms are developed specifically for multi-label problems,
or traditional algorithms are modified to cope with these problems. The global approach used in hierarchical
problems can be seen as an algorithm dependent approach, as new or modified algorithms are used.

In HMC problems, the characteristics of the hierarchical and multi-label problems are combined, and an
instance can be assigned to two or more subtrees of the class hierarchy. As stated by Vens et al. (2008), the HMC
problem can be formally described as follows:

Given:

• a space of instances X;
• a class hierarchy (C,⩽h), where C is a set of classes and ⩽h is a partial order representing the superclass

relationship (for all c1, c2 ∈ C : c1 ⩽h c2 if and only if c1 is a superclass of c2);
• a set T of tuples (xi,Ci) with xi ∈ X and Ci ⊆ C, such that c ∈ Ci ⇒ ∀c′ ⩽h c : c′ ∈ Ci;
• a quality criterion q that rewards models with high accuracy and low complexity.

Find:

• a function f : X → 2C , where 2C is the powerset of C, such that c ∈ f (x) ⇒ ∀c′ ⩽h c : c′ ∈ f (x) and f
optimizes q.

The quality criterion q can be the mean accuracy of the predicted classes or the distances between the
predicted and true classes in the class hierarchy. It can also consider that misclassifications in levels closer to the
root node are worse than misclassifications in deeper levels. Besides, the complexity of the classifiers and the
induction time can be taken into account as quality criteria.

Although the given HMC definition says that an instance belongs to and has to be classified into proper
hierarchical paths, there are some works that allow inconsistent predictions. Examples are the works of Cesa-
Bianchi et al. (2006), Kiritchenko et al. (2006), Obozinski et al. (2008), Valentini (2011) and Cerri and Carvalho
(2011), where predictions inconsistent with the hierarchy are made, and then an additional step of making the
class assignments consistent with the hierarchy is required.

An example of HMC problem is illustrated in Figure 1, where the class hierarchy is represented by a tree.
In this example, a newspaper report can address subjects related to computer sciences and soccer and, therefore,
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be classified into both sciences/computing and sports/collective/soccer classes. The class prediction for a new
instance generates a subtree. In the figure, the nodes with a rectangle and the nodes with an ellipse represent two
predicted paths in the tree for a new instance, sciences/computing and sports/collective/soccer, respectively.

Sciences Sports

Computer
Science

Medicine IndividualCollective

Basketball Soccer

All Classes

Medicine Individual

Basketball

Sciences

All Classes

Sports

Computer
Science

Collective

Soccer

(a) (b)

Figure 1. HMC problem structured as a tree. (a) Class hierarchy. (b) Predictions generating a subtree.

There are several works proposing HMC methods and using HMC or flat performance measures for specific
datasets (Sun and Lim, 2001; Vens et al., 2008; Alves et al., 2010; Otero et al., 2010; Cerri et al., 2011; Cerri
and Carvalho, 2011; Pugelj and Džeroski, 2011; Bi and Kwok, 2011). The work of Ceci and Malerba (2007)
evaluates hierarchical classifiers using flat (non-hierarchical) evaluation measures. In (Sokolova and Lapalme,
2009) a series of flat, multi-label and hierarchical evaluation measures were analysed according to the type of
changes to a confusion matrix that do not change a measure, but the analyses were only theoretical. In (Brucker
et al., 2011) the authors performed experiments with a series of flat multi-label classifiers. Hierarchies were
then extracted from the flat results obtained, and then hierarchical and flat classification measures were used in
the evaluation. In (Silla and Freitas, 2010), HMC evaluation measures were analysed, but no experiments were
performed comparing the measures.

Although these works compare different methods and measures, we did not find guidelines associating
the characteristics of hierarchical and multi-label datasets to the performance of different methods evaluated by
distinct HMC performance measures. This paper experimentally compares different HMC methods and different
HMC predictive performance measures specific for HMC problems. More precisely, the main contributions of
this work are the following:

• The evaluation and comparison of hierarchy-based and distance-based predictive performance measures,
which are specific for HMC problems, when used in a collection of 12 real datasets with different hierarchical
and multi-label characteristics;

• The analysis of the predictive performance of four different decision tree-based HMC methods, two of them
based on the local approach and two based on the global approach, in these 12 datasets.

In our experimental analysis, we vary four different characteristics of HMC problems, as follows: (i) the
percentage of multi-label instances, (ii) the number of classes assigned to an instance, (iii) the unbalance of the
class hierarchy, and (iv) the maximum number of child nodes per internal node. The experiments were designed
to investigate the effect of different values of those problem characteristics (corresponding to different datasets)
in the results of four decision tree-based HMC methods (two based on the local approach and two based on the
global approach), as evaluated by 10 different performance evaluation measures. More precisely, for each of the
aforementioned four problem (dataset) characteristics being varied, we address the following research questions:

• Q1: Does a specific evaluation measure favour a specific classification approach (global or local) when used
to compare global and local based methods?

• Q2: Which classification approach (global or local) is better overall, considering the four aforementioned
classification scenarios?

• Q3: Are global/local methods better in predicting more specific/general classes?
• Q4: How different hierarchical and multi-label characteristics influence different evaluation measures?
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• Q5: Which evaluation measure is more suitable to use in the classification scenarios investigated?

For the experiments performed in this work, we have chosen methods that induce decision trees, since there
are works that have already shown that decision trees are a good alternative for HMC classification (Clare and
King, 2003; Vens et al., 2008; Alves et al., 2010; Otero et al., 2010), and also because the classifiers produced
are interpretable.

The rest of this article is organized as follows: Section 2 reviews the hierarchical classification performance
measures used in this work. Section 3 presents the HMC methods used in the experiments performed in this work.
The experiments carried out are described in Section 4, together with an analysis of the results obtained. Finally,
Section 5 presents the main conclusions regarding the experimental results and suggestions for future work.

2. REVIEW OF EVALUATION MEASURES

Classification accuracy measures for conventional (flat) classification problems are usually inadequate
for hierarchical multi-label problems. Apart from not considering the problem’s hierarchical class structure,
and the fact that an instance can simultaneously belong to more than one class, conventional classification
accuracy measures ignore that the difficulty of classification usually increases with the depth of the classes
to be predicted. In hierarchical classification, more specific classes are often harder to predict than generic ones,
and conventional measures assume misclassification costs to be independent of the positions of classes in the
hierarchy. Furthermore, in multi-label classification, these measures do not consider that an instance can be
assigned to just a subset of its true classes.

As alternatives to conventional evaluation measures for classification problems, specific measures for hier-
archical, multi-label and hierarchical multi-label classifiers have been proposed. Here we are interested in two
broad groups of hierarchical multi-label evaluation measures, namely: (i) Hierarchy-Based Evaluation Measures,
and (ii) Distance-Based Evaluation Measures. While hierarchy-based measures are based only on the hierarchical
class structure (only subclasses and superclasses), distance-based measures also consider the distance between
the predicted and true classes in the hierarchy structure.

Although many works in the literature evaluate the performance of hierarchical multi-label classifiers, there
is no consensus on which measure is more appropriate to which type of dataset or method. This section reviews
the evaluation measures used in this work and discusses their pros and cons, in order to later contrast some of
them in experiments involving datasets with different characteristics and different HMC methods.

2.1. Hierarchy-Based Evaluation Measures
Hierarchy-based evaluation measures consider both the ancestors and the descendants of the predicted

classes in the hierarchy when evaluating a classifier. In subsection 2.1.1 we discuss two variations of Hierarchical
Precision and Recall, and in subsection 2.1.2 we present the Hierarchical Loss Function, which is based on the
traditional 0/1-loss measure.

2.1.1. Hierarchical Precision and Recall. In (Kiritchenko et al., 2004), two evaluation measures based on
the conventional precision and recall measures were proposed to take into account hierarchical relationships
between classes. These two measures, named Hierarchical Precision and Hierarchical Recall, were formally
defined in (Kiritchenko et al., 2005). These evaluation measures were later used in (Eisner et al., 2005) and
(Kiritchenko et al., 2006).

The Hierarchical Precision and Recall measures consider that an instance belongs not only to its predicted
classes, but also to all its ancestor classes in the hierarchical structure. Hence, given an instance (xi,C′i ), where xi

belongs to the space X of instances, C′i is the set of predicted classes for xi, and Ci is the set of true classes of xi.
The sets Ci and C′i can be extended to contain their corresponding ancestor classes as: Ĉi =

∪
ck∈Ci

Ancestors(ck)
and Ĉ′i =

∪
cl∈C′i

Ancestors(cl), where Ancestors(ck) denotes the set of ancestors of class ck.
Equations (1) and (2) present the Hierarchical Precision and Recall (hP and hR) measures. These measures

count the number of classes correctly predicted, together with the number of ancestor classes correctly predicted
(Kiritchenko et al., 2005). Figure 2 presents an example of how to calculate these measures. In the figure, each set
of two hierarchical structures, one above and one below, represents the true and predicted classes for an instance.
In Figure 2(a), solid circles represent the true classes of an instance, and in Figure 2(b), bold circles represent
the predicted classes of the corresponding above instance, with an arrow showing the deepest predicted class.
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hP =
∑

i |Ĉi ∩ Ĉ′i |∑
i |Ĉ′i |

(1)

hR =
∑

i |Ĉi ∩ Ĉ′i |∑
i |Ĉi|

(2)

hP = 1/2    hR = 1/2 hP = 1/1    hR = 1/2

(a) Real classes

(b) Predicted classes

hP = 2/2    hR = 2/2

Figure 2. Graphical example of the use of the Hierarchical Precision and Recall Measures. Adapted from
(Kiritchenko et al., 2004).

As can be seen, all nodes in the path from the root node to the predicted class node for an instance are bold,
indicating that the ancestor classes of the predicted classes are also assigned to the instance. The edges from the
root node to the node that represents the deepest predicted class of an instance are also shown in bold. The hP
and hR values for the three different predictions are also illustrated in the figure.

Either Hierarchical Precision or Hierarchical Recall used alone is not adequate for the evaluation of hier-
archical classifiers (Sebastiani, 2002). Both measures have to be considered together or combined in a single
F-measure. Thus, the hP and hR measures are combined on a hierarchical extension of the F-measure, named
Hierarchical-Fβ, presented in Equation (3). In Equation (3), β represents the importance assigned to the values
of hP and hR. As the value of β increases, the weight assigned to the value of hR also increases. On the other
hand, when the value of β decreases, the weight assigned to hP increases.

Hierarchical − Fβ =
(β2 + 1) × hP × hR
β2 × hP + hR

(3)

In the same direction as Kiritchenko et al. (2005), Ipeirotis et al. (2001) also measured the Hierarchical
Precision and Recall for an instance through the intersection of the predicted and true classes. However, unlike
the definitions of hierarchical precision and recall previously described, Ipeirotis et al. (2001) expanded the
set of true and predicted classes by including all their subclasses instead of their superclasses. Thus, given the
set of predicted (C′i ) and true (Ci) classes, they are extended to contain their corresponding descendant classes
as: Ĉ′i =

∪
ck∈C′i

Descendants(ck) and Ĉi =
∪

cl∈Ci
Descendants(cl), where Descendants(ck) denotes the set of

descendants of the class ck. This new definition of Ĉ′i and Ĉi can be directly used in the formulas presented
in Equations (1) and (2). Although the authors claimed that this measure captures the nuances of hierarchical
classification, we do not think it is totally correct for the HMC task, because expanding a set of classes to contain
their corresponding subclasses can result in a wrong classification. As an example, if a document is classified in
the class “sports”, it is not necessarily classified in both subclasses “basketball” and “soccer”.



6 Computational Intelligence

2.1.2. Hierarchical Loss Function. The Hierarchical Loss Function (H-Loss), proposed in (Cesa-Bianchi
et al., 2006), is based on the concept that, when a misclassification occurs in a class of the hierarchy, no additional
penalizations should be given to misclassifications in the subtree of this class. That is, if a misclassification
occurs in class c′j, additional errors in the subtree rooted at c′j are not important. As an example, if a classifier
erroneously classifies a document as belonging to the class “sports”, this classifier should not be penalized again
by erroneously classifying it in the subclass “soccer”.

Consider that the set of true classes assigned to a given instance xi is any subset of the set C formed by all
classes, including the empty set. This subset is represented by a vector (c1, . . . , c|C|), where a class c j belongs
to the subset of classes of instance xi if and only if c j = 1. Before defining the H-Loss function, two measures
regarding the discrepancy between a multi-label prediction for xi (C′ = (c′1, . . . , c

′
|C|)), and the true set of classes

of xi (C = (c1, . . . , c|C|)), for each instance, need to be introduced. The first is the zero-one loss (l0/1(C,C′)),
presented in Equation (4). The second is the symmetric difference loss (l∆(C,C′)), defined in Equation (5). Note
that these equations do not consider the hierarchical structure of the problem, only multiple labels. Based on these
two measures, Cesa-Bianchi et al. (2006) proposed the H-Loss function (lH(C,C′)), defined in Equation (6). In
the equations, 1{·} is an indicator function that yields 1 if the provided equation is true and 0 otherwise.

l0/1(C,C′) = 1, if ∃ j ∈ {1, . . . , |C|} : c j , c′j (4)

l∆(C,C′) =
|C|∑
j=1

1{c j , c′j} (5)

lH(C,C′) =
|C|∑
j=1

1{c j , c′j ∧ Ancestors(c j) = Ancestors(c′j)} (6)

This measure is based on the fact that, given a hierarchical structure G, this structure can be considered a
forest composed by trees defined on the set of classes of the problem. A multi-label classification C′ ∈ {0, 1}|C|
respects the structure G if and only if C′ is the union of one or more paths of G, where each path starts in a
root class and not necessarily ends up in a leaf class. Hence, all paths of G, from a root class to a leaf class, are
examined. When a class c′j is found and c′j , c j, the value 1 is added to the H-Loss function, and all predictions
in the subtrees rooted in the class c′j are discarded. Given this definition, we can say that l0/1 ⩽ lH ⩽ l∆.

Figure 3 shows the concepts and use of the H-Loss function. In the four class hierarchies illustrated, round
gray nodes represent the classes being predicted for an instance, while squared gray nodes represent the true
classes of the instance. Note that in Figure 3(a) the classes predicted do not respect the hierarchical structure of
G (parents of predicted leaf nodes are not predicted), whereas in Figure 3(b) the structure is respected. Figure
3(c) shows the true classes of the instance classified in Figure 3(b), and Figure 3(d) shows the application of
the H-Loss function considering the multi-label classifications illustrated in (b) and (c). Only the nodes marked
with an “X” are considered when calculating the H-Loss. As can be seen, the values of the zero-one loss and
symmetric difference loss functions are 1 and 6, respectively. The H-Loss function returns the value 4. Recall
that the lower the value of the function H-Loss, the better the performance of the classifier.

(b) (c) (d)(a)

Figure 3. Graphical representation of the H-Loss function. Adapted from (Cesa-Bianchi et al., 2006).

As the Hierarchical Loss Function measure ignores errors in subtrees of classes erroneously assigned to
instances, the error propagation problem present in hierarchical classification is not taken into account. Hence,
although some authors work with this measure, it cannot be easily compared to others in the literature.
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2.2. Distance-Based Evaluation Measures
This class of measures is based on the assumption that closer classes in the hierarchy tend to be more similar

to each other (representing a smaller classification error) than distant classes. Hence, these measures consider
the distance between the true and predicted classes during evaluation. Section 2.2.1 reviews the Micro/Macro
Distance-Based Hierarchical Precision and Micro/Macro Distance-Based Hierarchical Recall, and Section 2.2.2
discusses the most common ways of calculating distances between hierarchy nodes.

2.2.1. Micro/Macro Distance-Based Hierarchical Precision and Recall. The Micro/Macro Hierarchical
Precision and Micro/Macro Hierarchical Recall measures, proposed by Sun and Lim (2001), are based on the
distance between predicted and true classes. The Macro Hierarchical Precision and Recall initially calculate the
performance obtained in each class separately, and return the average of these values for each measure. The Micro
Hierarchical Precision and Recall measures, on the other hand, calculate the average of the performance obtained
in each instance of a dataset. Hence, while the macro measures are considered a per class mean performance
measure, the micro measures are considered a per instance mean performance measure (Yang, 1999).

For each of these measures, it is necessary to first define, for each class, the contribution of the instances
erroneously assigned to that class. This contribution is defined according to an acceptable distance (number of
edges (Disθ)) between a predicted and a true class, which must be higher than zero. As an example, when using
the value Disθ = 2, the instances which are “slightly” misclassified (with just 2 edges between the predicted and
true class in the class hierarchy) give zero contribution in the calculation of the measures, while the instances
that are more seriously misclassified (with more than 2 edges between the predicted and true class) contribute
negatively to the values of the measures. Equations (7) and (8) specify the contribution of an instance xi to a
class c j, where xi.agd and xi.lbd are, respectively, the predicted and true classes of xi. Dis(c, c′j) is the distance
between a true class c and a predicted class c′j, and can be calculated using any of the approaches described in
Section 2.2.2.

• If xi is a False Positive:

Con(xi, c′j) =
∑

c∈xi .lbd

(
1.0 −

Dis(c, c′j)

Disθ

)
(7)

• If xi is a False Negative:

Con(xi, c′j) =
∑

c∈xi .agd

(
1.0 −

Dis(c, c′j)

Disθ

)
(8)

The contribution of an instance xi is then restricted to the values [−1, 1]. This refinement, denoted by
RCon(xi, c′j), is defined in Equation (9).

RCon(xi, c′j) = min(1,max(−1,Con(xi, c′j))) (9)

The total contribution of False Positives (FP) (F pCon j) and False Negatives (FN) (FnCon j), for all in-
stances, is defined in Equations (10) and (11).

F pCon j =
∑

xi∈FP j

RCon(xi, c′j) (10)

FnCon j =
∑

xi∈FN j

RCon(xi, c′j) (11)

After the calculation of the contributions of each instance, the values of the Hierarchical Precision and
Recall for each class are calculated as defined in Equations (12) and (13).

PrCD
j =

max(0, |T P j| + F pCon j + FnCon j)
|T P j| + |FP j| + FnCon j

(12)
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ReCD
j =

max(0, |T P j| + F pCon j + FnCon j)
|T P j| + |FN j| + F pCon j

(13)

Finally, the extended values of Hierarchical Precision and Recall (Hierarchical Micro Precision and Recall)
are presented in Equations (14) and (15), where m represents the number of classes. According to the value of
Disθ, the values of F pCon j and FnCon j can be negative. Therefore, a max function is applied to the numerators
of the Equations (14) and (15) to make their values not lower than zero. As F pCon j ⩽ |FP j|, when |T P j| +
|FP j| + FnCon j ⩽ 0, the numerator max(0, |T P j| + F pCon j + FnCon j) = 0. The P̂r

µCD
value can be considered

zero in this case. The same rule is applied to the calculation of R̂e
µCD

(Sun and Lim, 2001).

P̂r
µCD
=

∑m
j=1(max(0, |T P j| + F pCon j + FnCon j))∑m

j=1(|T P j| + |FP j| + FnCon j)
(14)

R̂e
µCD
=

∑m
j=1(max(0, |T P j| + F pCon j + FnCon j))∑m

j=1(|T P j| + |FN j| + F pCon j)
(15)

The Hierarchical Macro Precision and the Hierarchical Macro Recall measures can also be obtained using
Equations (16) and (17), where m represents the number of classes.

P̂r
MCD
=

∑m
j=1 PrCD

j

m
(16)

R̂e
MCD
=

∑m
j=1 ReCD

j

m
(17)

Just like the hP and hR measures, used in (Kiritchenko et al., 2005), the Hierarchical Micro/Macro Precision
and Recall measures can also be combined into the Hierarchical-Fβ measure (Equation (3)).

2.2.2. Methods for Calculating Distances Between Classes. The Micro/Macro Hierarchical Precision and
Recall use the distance between two classes in the hierarchy to evaluate the predictions made by a classifier. This
section describes a few methods that can be employed to calculate these distances, which are usually defined as
a function of two components: (i) the number of edges between the predicted class and the true class, and (ii) the
depth of the predicted and true classes in the hierarchy.

The most common method, used in the standard version of measures, is to consider the distance as the
number of edges that separate the true and predicted classes. Additionally, weights can be assigned to each edge
of the class hierarchy, so that the misclassification between the predicted and true classes is given by the sum of
the weights of the edges in the path between the two classes.

There are different ways of calculating the paths between classes depending on the hierarchy structured
being considered. If the structure is a tree, there can be only one path between two classes, but if the hierarchy
is a DAG, there can be more than one path between two classes, based on the number of superclasses of a class.
In the final classification, one can consider two interpretations of the class hierarchy: if an instance belongs to a
class c j, it belongs to all superclasses of c j, or it belongs to at least one superclass of c j. Although in theory an
evaluation measure could indeed use any of the previous two types of interpretation, in practice only the former
(a class belongs to all its superclasses) is used, and corresponds to the HMC definition we use in this paper.

Moreover, in the experiments performed , we consider only hierarchies structured as trees, as done in (Wang
et al., 1999; Dekel et al., 2004). When using hierarchies structured as trees, Wang et al. (1999) considered
the distances between the true and predicted classes in a hierarchical structure in order to rank hierarchical
classification rules. They defined the distance between two classes as the shortest path (number of edges) between
the classes. Dekel et al. (2004) also used the distances between true and predicted classes in a tree hierarchy to
evaluate a final classification. However, in the latter, the authors defined a distance function γ(c j, c′j) as the
number of edges in the unique path between a true class c j and a predicted class c′j.

In order to consider the importance of the classes according to the levels they belong to, there are many
ways of choosing weights for edges. One of the most common is to consider that weights of edges at deeper
levels should be lower than weights of edges in higher levels. Holden and Freitas (2006), for example, assigned
weights that were exponentially decremented as the depth of the edges in a tree hierarchy increased. In (Vens
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et al., 2008), the authors proposed a weighting technique that can be applied to DAG and tree hierarchies. The
authors defined the weight of a class c j as the recurrence relation w(c j) = w0 · w(par(c j)), with par(c j) being
the parent class of c j, and the weights assigned to the first level classes equal to w0. The generalization for DAG
hierarchies can be obtained replacing w(par(c j)) by an aggregation function (sum, min, max, average) computed
over the weights assigned to the parents of class c j (Vens et al., 2008). Assigning weights to the edges of the
hierarchy, however, presents some problems, specially when the hierarchy is very unbalanced, and its depth
varies significantly by different leaf nodes. In this case, a misclassification involving predicted and true classes
near the root node receives a lower penalization than a misclassification involving classes at levels more distant
from the root node.

In this direction, Lord et al. (2003) showed that when two classes are located in different subtrees of the
hierarchy, and the route between them has to go through the root node, the fact that one class is in a deeper level
than the other does not necessarily means that the class located in the deeper level provides more significant
information than the class located in the higher level. Therefore, considering depth without considering the
information associated with the classes may be a problem.

Figure 4 illustrates the problem of assigning weights to edges of a hierarchy. Here the filled ellipses
represent the true classes of an instance and the bold ellipses represent the predicted classes. Consider an
instance which belongs to class “11.04.03.01” (True), and two predicted classes “11.02.03.04” (Predicted 1)
and “11.06.01” (Predicted 2). In the latter case, Predicted 2 would receive a lower penalization because the path
between the predicted and true classes is shorter. This penalization is unfair, as the only reason the prediction
was made in a class closer to the root was because the corresponding subtree does not have leaf nodes.

11

11.02

11.02.01 11.02.02 11.02.03

11.02.03.01 11.02.03.04

11.04.01 11.04.02

11.04.03.11 11.04.03.03 11.04.03.05

11.06

11.06.01 11.06.02 11.06.03

Predicted 1

Predicted 2

True

Figure 4. Example of class hierarchy.

3. HIERARCHICAL MULTI-LABEL METHODS

This section presents the HMC methods to be used in the experiments reported in this work, namely HMC-
Binary-Relevance, HMC-Label-Powerset, HMC4.5 and Clus-HMC. First, the methods are categorized according
to the hierarchical classification algorithm’s taxonomy proposed by Silla and Freitas (2010). In this taxonomy, a
hierarchical classification algorithm is described by a 4-tuple < ∆,Ξ,Ω,Θ >, where:
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• ∆: indicates if the algorithm is Hierarchical Single-Label (SPP - Single Path Prediction) or Hierarchical Multi-
Label (MPP - Multiple Path Prediction);

• Ξ: indicates the prediction depth of the algorithm - MLNP (Mandatory Leaf-Node Prediction) or NMLNP
(Non-Mandatory Leaf-Node Prediction);

• Ω: indicates the taxonomy structure the algorithm can handle - T (Tree structure) or D (DAG structure);
• Θ: indicates the categorization of the algorithm under the proposed taxonomy - LCN (Local Classifier per

Node), LCL (Local Classifier per Level), LCPN (Local Classifier per Parent Node) or GC (Global Classifier).

Table 1 briefly presents the selected methods, which are explained in more details in the next subsections.
Note that the first two methods can be applied exclusively in trees (T). The HMC-BR method works with non-
mandatory leaf-node prediction (NMLNP) and is based on the LCN approach, and the HMC-LP method works
with mandatory leaf-node prediction (MLNP) and uses a LCPN approach. The last two, in contrast, work with
non-mandatory leaf-node prediction (NMLNP) and are global (GC) methods. While HMC4.5 works with trees
only, Clus-HMC can also deal with graphs.

It is important to recall the main differences between local and global methods. Local methods build
classification models for a single node or level in the tree, generating a set of models. Global methods, in contrast,
create a single model for the whole hierarchy, considering dependencies among classes.

Table 1. Main Characteristics of the Methods used in the Experiments.

Method Categorization Description

HMC-Binary-Relevance
(Tsoumakas et al., 2010) < MPP,NMLNP, T, LCN >

Local method based on the popular
Binary-Relevance classification method
(Tsoumakas et al., 2010), where a clas-
sifier is associated with each class and
trained to solve a binary classifica-
tion task.

HMC-Label-Powerset
(Cerri and Carvalho, 2010) < MPP,MLNP, T, LCPN >

Based on local label combination
(Tsoumakas and Vlahavas, 2007),
where the set of labels assigned to an
instance, in each level, is combined into
a new class.

HMC4.5
(Clare and King, 2003) < MPP,NMLNP, T,GC >

Global hierarchical multi-label varia-
tion of the C4.5 algorithm (Quinlan,
1993), where the entropy formula is
modified to cope with HMC problems.

Clus-HMC
(Vens et al., 2008) < MPP,NMLNP,D,GC >

Global method based on the concept
of Predictive Clustering Trees (PCTs)
(Blockeel et al., 1998), where a deci-
sion tree is structured as a cluster hier-
archy.

3.1. HMC-Binary-Relevance (HMC-BR)
The HMC-BR method follows the local classification approach, and uses binary classifiers as base classifiers

for each class in the hierarchy. It has the advantage of using any classifier to induce the models, and is a
hierarchical variation of the popular Binary-Relevance classification method (Tsoumakas et al., 2010). The
method works with |C| classifiers, where |C| is the total number of classes present in the class hierarchy. To
show how it works, suppose we have a HMC problem with three hierarchical levels, being 2/3/4 the number of
classes in each hierarchical level, respectively. As each base classifier is associated with a class in the hierarchy,
two classifiers are trained for the classes in the first level, three for the second level, and four for the third level.
To choose the set of positive and negative instances for the training process, the sibling policy, as described in
(Silla and Freitas, 2010) was chosen. As an example, the set of positive instances of the class “11.04” in Figure
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4 consists of the instances assigned to the class “11.04” and all its subclasses, and the set of negative instances
consists of the instances assigned to the classes “11.02” and “11.06” and all their subclasses.

The training process of the classifiers at the first level occurs in the same way as a non hierarchical multi-
label classification problem, using the one-against-all strategy, i.e., instances assigned to the class node are
considered as positive, and instances belonging to any other class are considered as negative. From the second
level onwards, when a classifier is trained for a given class c j, the training process is carried out considering only
the instances that belong to the parent class of c j. This procedure is repeated until a leaf class is reached or all
binary classifiers’ outputs are false.

When the training process is finished, a hierarchy of classifiers is obtained, and the classification of new
instances is performed following a top-down strategy. Beginning with the first class of the first level and going
until the last, when an instance is assigned to a class c j in level l, the classification algorithm recursively calls
all classifiers representing the children of class c j in level l + 1, until a leaf class is reached or the outputs of all
binary classifiers are negative. Algorithm 1 presents the classification process of HMC-BR. In the algorithm, C
is initially the set of the first level classes of the hierarchy.

Algorithm 1: Classification process of the HMC-BR method.
Procedure HMC-BR(xi,C)
Input: instance xi, set of classes C
Output: Classes
Classes← ∅
foreach class c j in C do

if instance xi predicted as being from class c j then
if c j not leaf node then

Children← child classes of c j in C
Classes← Classes ∪ {c j}∪HMC-BR(xi,Children)

else
Classes← Classes ∪ {c j}

return Classes
The HMC-BR is a simple method, but presents some disadvantages. First, it assumes that all classes are

independent from each other, which is not always true. By ignoring possible correlations between classes, a
classifier with poor generalization ability can be obtained. Another disadvantage is that, as many classification
models are generated, the set of all classifiers become complex. Hence, if the base algorithm used is, for example,
a rule generator, such as C4.5 (Quinlan, 1993) or Ripper (Cohen, 1995), the interpretability of the models is much
more difficult than interpreting a tree from HMC4.5 or Clus-HMC.

Finally, the induction time of the model is high, as many classifiers are involved. On the other hand,
the classification process happens in a more natural manner, since discriminating classes level by level is a
classification process more similar to the classification performed by a human being. Additionally, the fact that
each classifier deals with fewer classes may result in a simpler classification process.

3.2. HMC-Label-Powerset (HMC-LP)
HMC-LP uses a label combination process that transforms the original HMC problem into a hierarchical

single-label problem. This label combination process considers the correlations between the sibling classes in
order to overcome the previously mentioned disadvantage of HMC-BR (i.e., considering all classes as indepen-
dent).

The HMC-LP method was proposed by Cerri and Carvalho (2010), and is a hierarchical adaptation of a
non-hierarchical multi-label classification method named Label-Powerset, used in the works of Tsoumakas and
Vlahavas (2007) and Boutell et al. (2004). For each instance, the method combines all the classes assigned to it,
at a specific level, into a new and unique class.

Given an instance belonging to classes A.D and A.F, and a second instance belonging to classes E.G, E.H,
I.J and I.K, where A.D, A.F, E.G, E.H, I.J and I.K are hierarchical structures such that A ⩽h D, A ⩽h F,
E ⩽h G, E ⩽h H, I ⩽h J and I ⩽h K with A, E and I belonging to the first level and D, F, G, H, J and
K belonging to the second level, the resulting combination of classes for the two instances would be a new
hierarchical structure CA.CDF and CEI .CGHJK , respectively. In this example, CDF is a new label formed by the
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combination of the labels D and F, and CGHJK is a new label formed by the combination of the labels G, H, J
and K. Figure 5 illustrates this process of label combination.

Figure 5. Label combination process of the HMC-LP method.

After the combination of classes, the original HMC problem is transformed into a hierarchical single-label
problem, and a top-down approach is employed, using one or more multiclass classifiers per level. At the end
of the classification, the original multi-label classes are recovered. Algorithm 2 shows the label combination
procedure of the HMC-LP method.

Algorithm 2: Label combination procedure of the HMC-LP method.
Procedure LabelCombination(X,C)
Input: set of instances X, set of classes C
Output: NewClasses
foreach instance xi of the set of instances X do

foreach level l of the class hierarchy do
Ci ← subset of classes from C, assigned to an instance xi in level l
Get a new class ci,l for the instance xi from Ci

NewClassesi,l ← ci,l

return NewClasses
This procedure can considerably increase the number of classes involved in the problem. This happens

when there are many possible multi-label combinations in the dataset, so that after the label combination,
the new formed classes have few positive instances, resulting in a sparse dataset. Despite this disadvantage,
if multiclass classifiers are used at each internal node instead of binary classifiers, the induction time might
decrease considerably when compared with the HMC-Binary-Relevance method.

3.3. HMC4.5
The HMC4.5 method was proposed by Clare and King (2003), and is a variation of the C4.5 algorithm.

The main modification introduced was the reformulation of the original entropy formula, to use the sum of the
number of bits needed to describe membership and non-membership of each class instead of just the probability
(relative frequency) of each class. The new entropy also uses information of the descendant classes of a given
class in the hierarchy, incorporating the tree size in the entropy formula. The entropy can be defined as the
amount of information necessary to describe an instance of the dataset, which is equivalent to the amount of bits
necessary to describe all the classes of an instance.

Different from a standard C4.5 decision tree, the new formulation of the entropy allows leaf nodes of the
HMC4.5 tree to represent a set of class labels. Thus, the classification output for a new instance xi can be a set
of classes, represented by a vector. The new entropy formula is presented in Equation (18) (Clare, 2003):

entropy = −
N∑

j=1

((p(c j) log2 p(c j)) + (q(c j) log2 q(c j)) − α(c j) log2 treesize(c j)) (18)

where

• N = number of classes of the problem;
• p(c j) = probability (relative frequency) of class c j;
• q(c j) = 1 - p(c j) = probability of not belong to class c j;
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• treesize(c j) = 1 + number of descendant classes of class c j (1 is added to represent c j itself);
• α(c j) = 0, if p(c j) = 0 or a user-defined constant (default = 1), otherwise.

This new entropy formula is now composed of three parts: the uncertainty in the choice of the classes
((p(c j) log2 p(c j))+ (q(c j) log2 q(c j)) and the uncertainty in the specificity of the classes (log2 treesize(c j)), which
means transmitting the size of the class hierarchy under the class in question (Clare, 2003). The final output of
HMC4.5, for a given instance xi, is a vector of true values vi. If the value of vi, j is above a given threshold θ, the
instance is assigned to the class c j.

The HMC4.5 method used can be freely obtained at http://www.aber.ac.uk/en/cs/research/cb/
dss/c45modifications/.

3.4. Clus-HMC
This global HMC method builds decision trees using a framework named Predictive Clustering Trees

(PCTs) (Blockeel et al., 1998), where decision trees are constructed as a cluster hierarchy. The root node contains
all the training instances, and is recursively partitioned in small clusters as the decision tree is traversed towards
the leaves. The PCTs can be applied both to clustering and classification tasks, and they are built using an
algorithm similar to others used for decision tree induction, such as CART (Classification and Regression Trees)
(Breiman et al., 1984) or C4.5.

The method works as follows. Initially, the labels of the instances are represented as boolean vectors v,
where the jth position of a class vector of an instance receives the value 1 if the instance belongs to class c j,
and 0 otherwise. The vector that contains the arithmetic mean, or prototype, of a set of vectors V , denoted by v,
has, as its jth element, the proportion of instances of the set that belongs to the class c j. The variance of a set of
instances X, shown in Equation (19), is given by the mean square distance between each class vector vi of each
instance xi and the prototype class vector v. The prototype of V is presented in Equation (20).

Var(X) =
∑

i d(vi, v)2

|X| (19)

v =
∑

vi∈V vi

|V | (20)

As classes at deeper levels represent more specific information than classes at higher levels, the weighted
Euclidean distance between the classes is used to consider the depth of the classes in the hierarchy. Equation
(21) shows the calculation of this distance, where vi, j is the jth element of the class vector vi of a given instance
xi, and the weights w(c) decrease as the depth of the classes in the hierarchy increases (w(c) = wdepth(c)

0 , with
0 < w0 < 1). The heuristic used to choose the best test to be placed in a tree node is the maximization of the
variance reduction of a set of instances (Vens et al., 2008).

d(v1, v2) =
√∑

j

w(c j) × (v1, j − v2, j)2 (21)

Different from a common decision tree, in a PCT the leaf nodes store the mean of the instances’ class
vector covered by that leaf, i.e., the prototype of a group of instances (v). The proportion of instances in a leaf
that belongs to a class c j is denoted by v j, and can be interpreted as the probability of an instance being assigned
to class c j. When an instance reaches a leaf node, if the value of v j is above a given threshold θ j, the instance is
assigned to class c j. In order to ensure the integrity of the hierarchical structure, i.e., to ensure that when a class
is predicted its superclasses are also predicted, the threshold values must be chosen in a way that θ j ⩽ tk always
that c j ⩽h ck, i.e., always that c j is a superclass of ck (Vens et al., 2008).

The Clus-HMC program used was implemented in the work of Vens et al. (2008), and is freely available at
http://www.cs.kuleuven.be/˜dtai/clus/.

4. EXPERIMENTS AND DISCUSSION

We have previously presented a set of measures used to evaluate hierarchical multi-label classification
problems, and four methods used to perform the HMC task. This section evaluates these four methods, namely

http://www.aber.ac.uk/en/cs/research/cb/dss/c45modifications/
http://www.aber.ac.uk/en/cs/research/cb/dss/c45modifications/
http://www.cs.kuleuven.be/~dtai/clus/
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HMC-BR, HMC-LP, HMC4.5 and Clus-HMC, using a set of ten hierarchy-based and distance-based evalua-
tion measures.

In the HMC-BR and HMC-LP methods, the decision tree induction algorithm C4.5 was used as the base
classifier. Besides being the most used decision tree induction algorithm, it is also the base algorithm modified
to generate the HMC4.5 method. The methods were implemented using the R language (R Development Core
Team, 2008), and the C4.5 algorithm used was the implementation of the RWeka package (Hornik et al., 2009)
with its default parameter values. The HMC4.5 and Clus-HMC methods were used with their default parameter
values for all datasets. As the final classification of the global methods are vectors with real values indicating the
probability of the instances to belong to each of the classes, a threshold value equal to 0.4 was used to define the
membership to the classes, so that only those classes with a probability higher than or equal to 0.4 are assigned
to an instance. The threshold value 0.4 was chosen based on previous experiments with different thresholds,
showing the best results in the majority of the datasets. When applying the thresholds, we made sure not to
generate predictions inconsistent with the class hierarchy. Unlike the global methods, the vectors of predicted
classes of the local methods contain only binary values: 1, if an instance belongs to a given class, and 0 if it does
not belong.

In the experiments, the value Disθ = 2 was chosen as the acceptable distance between two nodes for the
evaluation of the distance-based measures. Thus, if the number of edges (in the class hierarchy) between a
predicted class and a true class for a given instance is equal to 2, that prediction will not be counted as a false
positive or false negative. On the other hand, if the number of edges between a predicted class and a true class is
larger than 2, this distance is counted as either a false positive or a false negative. The value Disθ = 2 was also
used in the experiments reported by Sun and Lim (2001).

As the basic idea of the evaluation measure is to consider that closer classes in the hierarchy are more similar
to each other, the use of Disθ = 2 defines that when the distance between a predicted class and a true class is equal
to 2 edges, this error should not contribute negatively to the measure value, because it will consider that these
two classes are similar. When the distance is larger than 2, the error should contribute negatively to the value of
the measure. Also, in our evaluations, we did not use weights associated to the edges of the class hierarchies.

Table 2 lists the selected evaluation measures. We show values of precision and recall separately, as they give
a better idea of how each method/measure performs in the different scenarios. We then provide the corresponding
F-Measure values and analyse the performances of the methods based on their values.

Table 2. Hierarchical Multi-Label Classification measures used in the experiments.

Hierarchy-based Measures Distance-based Measures

• Hierarchical Loss Function • Hierarchical Micro Precision
• Hierarchical Precision • Hierarchical Micro Recall
• Hierarchical Recall • Hierarchical Macro Precision
• Hierarchical F-Measure • Hierarchical Macro Recall

• Hierarchical Micro F-Measure
• Hierarchical Macro F-Measure

These methods and measures were evaluated considering datasets with different hierarchical and multi-label
characteristics. For such, we generated 12 variations of a real-world bioinformatics dataset, varying hierarchical
and multi-label characteristics of the original dataset, as described in the next subsection.

4.1. Datasets
For the generation of the datasets, an R program was implemented using the HCGene R package (Valentini

and Cesa-Bianchi, 2008). The HCGene package implements methods to process and analyse the Gene Ontology
(Ashburner et al., 2000) and the FunCat (Ruepp et al., 2004) hierarchical taxonomies in order to support the
functional classification of genes. All generated datasets are real subsets of the original data from (Spellman
et al., 1998) yeast cell cycle microarray experiment. The datasets generated have 77 attributes and at most 4
hierarchical levels.

The original yeast dataset is hierarchically structured as a tree according to the FunCat schema. It has 506
classes structured in a hierarchy up to six levels deep, with 5645/3893/3653/2116/676/28 instances in each level,
and with each instance having until 21 classes assigned to it. Other characteristics are shown in Table 3.
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Table 3. Characteristics of the original yeast dataset.

N. Attrib. N. Classes
N. Instances Avg. N. Instances per Class for each level Avg. N. Classes per Instance for each level

Total Multi-Label L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

77 506 5645 3541 313.61 48.66 20.29 14.49 8.66 7 2.07 2.20 1.66 0.83 0.18 0.03

When varying a multi-label or a hierarchical characteristic of a dataset, we try to keep the others unchanged
as much as possible, to isolate the effects of that change. However, this is a rather difficult task, since we are
working with a real dataset. As an example, suppose we want to vary the number of classes assigned to an
instance while keeping a minimum label cardinality, so that we have enough instances for training. It is difficult
to extract a subset of a real dataset, keeping the majority of instances assigned to more than four or five classes
and still keeping a sufficient number of instances with the same label cardinalities for training.

As another example of the difficulty in generating many datasets from a specific real-world one, consider
the task of generating a dataset with 10% of its instances assigned to a class A, 20% of its instances assigned to a
class B, 30% of its instances assigned to a class C, and 40% of its instances assigned to a class D. Let us consider
also that we need to: (i) keep the label cardinality of the instances unchanged, (ii) ensure that all instances are
classified in the last hierarchy level in order to obtain a complete level balance, and (iii) ensure that all internal
nodes have a specific number of child nodes. Hence, although we preserve as much as possible the original
characteristics of the dataset, sometimes varying one characteristic inevitably changes another. Despite this
difficulty, overall, the generated datasets are useful to show how different hierarchical and multi-label variations
influence the different classification methods and evaluation measures.

Table 4 shows the variations investigated and the datasets generated. The first two characteristics varied
(shown in the first column of the table) are multi-label characteristics, whilst the last two are hierarchical
characteristics. The first dataset variation was the percentage of multi-label instances in the dataset. It is important
to study the effect of this variation because, in general, the larger the number of instances having more than one
class labels, the more difficult the multi-label classification problem is. Four values were considered for this
characteristic: 20%, 40%, 60% and 80% of multi-label instances.

Table 4. Variations performed in the datasets generated.

Characteristic varied Dataset Variation values Number of instances per level Equal characteristics in all datasets

Percentage of
multi-label instances

•Maximum of 4 hierarchical levels
•Minimum cardinality of leaf nodes equals to 30
• Number of child nodes per parent between 1 and 7

Data1 20% 858 / 818 / 572 / 376
Data2 40% 909 / 874 / 654 / 453
Data3 60% 940 / 919 / 719 / 524
Data4 80% 960 / 945 / 784 / 578

Number of classes assigned
to the majority of the instances

•Maximum of 4 hierarchical levels
•Minimum cardinality of leaf nodes equals to 10
• Number of child nodes per parent between 1 and 10

Data5 1 to 2 3422 / 2302 / 2031 / 1096
Data6 2 to 4 2291 / 2291 / 2249 / 1540
Data7 4 to 6 692 / 692 / 686 / 545

Unbalance of the hierarchy
•Maximum of 4 hierarchical levels
•Minimum cardinality of leaf nodes equals to 30
• Number of child nodes per parent between 1 and 8

Data8 1 level 2869 / 2869 / 2869 / 1559
Data9 2 levels 3261 / 3261 / 1559 / 1559
Data10 3 levels 4405 / 1559 / 1559 / 1559

Maximum number of child
nodes of each internal node

•Maximum of 4 hierarchical levels
•Minimum cardinality of leaf nodes equals to 30
• Percentage of multi-label instances around 50% and 60%

Data11 5 3403 / 3403 / 1979 / 1035
Data12 8 3391 / 3391 / 3108 / 1334

To generate the datasets Data1, Data2, Data3 and Data4, all instances from the original dataset, which
respected the constraints shown in Table 4 were selected. Table 5 shows, for each of the datasets, the distribution
of the classes over the instances.
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Table 5. Distribution of classes over the instances when varying the percentage of multi-label instances.
For each dataset, the first row shows the number of instances assigned to the number of classes shown in the
second row.

Data1
661 129 53 11 2 1 1

1 2 3 4 5 6 7

Data2
521 241 106 28 9 2 1 1

1 2 3 4 5 6 7 8

Data3
355 360 161 45 15 2 1 1

1 2 3 4 5 6 7 8

Data4
178 485 209 64 18 4 1 1

1 2 3 4 5 6 7 8

The second characteristic varied was the number of classes assigned to the majority of the instances. Three
alternative values were considered: datasets with the majority of their instances assigned to 1 to 2, 2 to 4, and 4 to
6 classes. Varying the values of this characteristic is important because, in principle, different numbers of classes
per instance will result in different values of predictive performance measures, such as hierarchical precision and
hierarchical recall. More precisely, as the number of classes per instance increases, one would expect precision
to increase (there is a higher chance that a predicted class is really a true class simply because the instance has
more true classes) and recall to decrease (there is a higher chance that a true class is not predicted only because
there are more true classes).

To generate the Data5 dataset, all instances with 1 or 2 labels, respecting the constraints described in Table
4, were selected from the original dataset (2521 instances with 1 class and 901 instances with 2 classes). Due
to the difficulties previously described for the generation of the datasets, it was not possible to generate datasets
with all instances assigned to 2 to 4 classes and to 4 to 6 classes respecting all constraints described in Table 4. All
the instances were randomly selected from the original dataset. Table 6 shows, for each dataset, the distribution
of the classes over the instances. It is possible to see that, as desired, we varied the multi-label characteristic for
all datasets.

Table 6. Distribution of classes over the instances when varying the number of classes assigned to the
majority of the instances. For each dataset, the first row shows the number of instances assigned to the number
of classes shown in the second row.

Data5
2521 901

1 2

Data6
91 1155 727 218
1 2 3 4

Data7
18 34 132 287 141 80
1 2 3 4 5 6

Different levels of hierarchy unbalance were also tested, using 1, 2 and 3 levels of unbalance. This char-
acteristic was varied because it can have a large influence on the performances of the classification methods.
It is expected that as the hierarchy becomes more unbalanced, the divide and conquer mechanism of the local
methods is affected. As the global methods deal with all classes at the same time, it is also interesting to see how
unbalanced hierarchies influence their predictive performance.

To vary the unbalance of the hierarchies, complete trees were generated, where each instance is classified
into a leaf node. As can be seen in the fourth column of Table 4, as Data8 is one level unbalanced, all the
instances reach the third level, and just some instances reach the fourth hierarchical level. The same happens for
the Data9 and Data10 datasets. Again, all instances from the original dataset respecting the constraints shown
in Table 4 were selected. Table 7 shows, for each dataset, the distribution of the classes over the instances.
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Table 7. Distribution of classes over the instances when varying the unbalance of the hierarchy. For each
dataset, the first row shows the number of instances assigned to the number of classes shown in the second row.

Data8
1421 786 420 146 77 14 4 1

1 2 4 4 5 6 7 10

Data9
1496 873 507 231 93 43 13 3 1 1

1 2 3 4 5 6 7 8 9 11

Data10
2803 905 393 181 89 27 5 2

1 2 3 4 5 6 7 8

Finally, datasets with a variation in the maximum number of children per internal node were generated,
to have the majority of their nodes with 5 and 8 children. The increase in the number of children per internal
node has a large influence on the number of leaf classes and on the number of multi-label instances, affecting the
performance of the methods. It is expected that the classification task becomes more difficult as the number of
children is increased, harming the performance of the classification methods. The Data11 and Data12 datasets
were generated similarly to the other datasets, by selecting all instances from the original dataset respecting the
constraints presented in Table 4. Table 8 shows, for each dataset, the distribution of the classes over the instances,
and Table 9 shows other characteristics of all the datasets generated.

Table 8. Distribution of classes over the instances when varying the maximum number of child nodes per
internal node. For each dataset, the first row shows the number of instances assigned to the number of classes
shown in the second row.

Data11
1675 953 472 196 69 29 5 3 1

1 2 3 4 5 6 7 8 9

Data12
1612 1236 620 297 97 38 26 2 2 1

1 2 3 4 5 6 7 8 9 10

Table 9. Characteristics of the generated datasets, varying the number of multi-label instances and the
characteristics of the hierarchy.

Dataset N. Attrib. N. Classes
N. Instances Avg. N. Instances per Class Avg. N. Classes per Instance

Total Multi-Label L1 L2 L3 L4 L1 L2 L3 L4

Datasets varying the percentages of multi-label instances

Data1 77 135 858 197 57.20 20.97 13.61 9.64 1.20 1.21 0.90 0.72
Data2 77 139 909 388 60.60 22.41 14.53 11.32 1.43 1.49 1.13 0.92
Data3 77 139 940 585 62.66 23.56 15.97 13.10 1.65 1.76 1.29 1.02
Data4 77 139 960 782 64.00 24.23 17.42 14.45 1.85 2.01 1.45 1.02

Datasets varying the numbers of classes assigned per instance

Data5 77 163 3422 901 228.13 50.04 29.86 32.23 1.21 1.34 1.15 0.77
Data6 77 235 2291 2200 134.76 40.19 22.04 26.10 2.14 2.32 2.01 1.16
Data7 77 236 692 674 40.70 12.14 6.66 9.23 3.22 3.68 3.10 1.65

Datasets varying the levels of unbalance in the hierarchies

Data8 77 181 2869 1448 204.92 89.65 45.53 21.65 1.53 1.66 1.78 1.41
Data9 77 159 3261 1765 232.92 101.90 38.02 21.65 1.70 1.91 1.26 1.41
Data10 77 147 4405 1602 314.64 77.95 38.02 21.65 1.54 1.20 1.26 1.41

Datasets varying the maximum numbers of children per internal node

Data11 77 198 3403 1728 226.86 83.00 28.27 14.37 1.49 1.71 1.23 1.02
Data12 77 206 3931 2319 262.06 89.34 41.44 18.52 1.59 1.85 1.47 0.60



18 Computational Intelligence

Observing the statistics for the datasets, it is possible to see that there are some redundancies between them.
It is possible to see that as the number of classes assigned to the majority of the instances is increased, the
percentage of multi-label instances is also increased. As the number of classes in datasets Data5, Data6 and
Data7 is increased from 1 to 2 until 4 to 6 classes per instance, the multi-label percentages of these datasets
are 26.32%(1 to 2), 96.02% (2 to 4) and 97.39% (4 to 6). These redundancies occur only when the percentage
of multi-label instances is either small (26.32%) or too large (96.02% and 97.39%). The percentage variations
adopted in the Data1, Data2, Data3 and Data4 datasets range from 20%, 40%, 60% and 80%, allowing better
insights regarding the performances of the methods and measures with more variations.

It is also possible to see a redundancy between the variations concerning the unbalance of the hierarchies
and the maximum number of child nodes for each internal node. The multi-label percentages in the Data8,
Data9 and Data10 datasets are 50.47%, 54.12% and 36.36%, respectively, while the multi-label percentages in
the Data11 and Data12 datasets are, respectively, 50.77% and 58.99%. Despite these redundancies, the number
of child nodes for each node in the Data8, Data9 and Data10 datasets did not suffer much variation, while in the
Data11 and Data12 datasets this variation was higher.

The next sections present the results for all dataset variations considering different measures and methods.
There are a few observations that hold for all graphs plotted from now on. In Figures 6, 7, 8 and 9, the values
of the predictive performance evaluation measures are divided into two types of graphs: on the left column
we always report precision-related measures plus the hierarchical loss, and on the right column are reported
the recall-related measures. These figures are also divided into four parts – denoted (a),(b),(c),(d) – each of them
representing results for one specific method. The reader may also note that the values reported may be considered
considerably low for standard classification applications. However, in hierarchical multi-label datasets, this is
quite common, given the difficulty of the tasks being solved.

Figures 10, 11, 12 and 13 present the values considering the F-Measure variations. Each figure is divided in
four parts – (a),(b),(c),(d) – each of them representing the F-Measure results for a specific method.

It is important to point out that these graphs can be read in many different ways. Here, we focus on analysing
the behaviour of the evaluation measures when used with different datasets’ characteristics and different HMC
methods. We analyse how the performance of different HMC methods is affected by the use of different evalua-
tion measures or dataset characteristics, and we compare the performances of the global and local classification
approaches based on the measures investigated.

We also compared the evaluation measures considering their degrees of consistency, discriminancy and
indifferency, as suggested by Huang and Ling (2005). The results of these comparisons are shown in Tables 10,
11 and 12. Due to space restrictions, in the tables we represented the methods Clus-HMC, HMC4.5, HMC-BR
and HMC-LP as, respectively, Clus, HC4.5, BR and LP.

4.2. Results varying the percentage of multi-label instances
Figure 6 presents the results obtained when varying the percentage of multi-label instances. It is suggested

that, as the percentage of multi-label instances grows, there is a tendency to have a larger number of instances per
class at each level, which can increase the confidence of the predictions made. On the other hand, the number of
classes per instance also grows, and this might affect precision and recall, depending on how the methods being
evaluated work.

Let us now analyse the behaviour of the precision measures as the number of multi-label instances grows.
The first observation is that the H-Macro Precision presents almost no variation for all HMC methods, being
stable to changes in the number of multi-label instances. Remember that the H-Macro Precision refers to the
predictive performance per class. As the distribution of instances per class did not change significantly, so did
not the values for the H-Macro Precision (see Table 9).

Regarding the other two measures directly related with precision, the values of H-Micro Precision do not
vary substantially as the number of multi-label instances grows, being even constant for the Clus-HMC. Although
Hierarchical Micro Precision and Hierarchical Precision present the same behaviour in most cases (see the graphs
in Figure 6), it is interesting to notice that the values of H-Precision are always superior to those of H-Macro
and H-Micro Precision. This is due to the differences between these evaluation measures. While the Hierarchical
Precision measure just counts the number of correct and incorrect predicted classes, the Hierarchical Micro
Precision takes into account the distance between the true and the predicted classes. If this distance is higher
than 2, the misclassification gives a negative contribution to the measure, which causes its value to decrease.

The only measure presented here that is not based on standard precision or recall is the Hierarchical Loss
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Function (it is also the only measure that, the lower its value, the better its result). According to this measure,
HMC-BR obtained less errors than the other methods, except in the dataset with 60% of multi-label instances,
where HMC-LP has the best performance. These best results of the local methods, however, have to be considered
together with the characteristics of the evaluation measure used. The Hierarchical Loss Function does not take
into account error propagations, i.e., if a misclassification occurs in a node of the class hierarchy, no additional
penalization should be given to misclassifications in the subtree of this node. This kind of evaluation may favour
methods based on the local approach, as they can make more mistakes in the first hierarchical levels, while the
global methods make their predictions directly on the more specific nodes.

Concerning the values of recall, which appear in the graphs on the right column of Figure 6, the measures
are more consistent, frequently following the same pattern, although one of the measures may vary slightly
more than another. In addition, they also show that the methods cope well with the increasing in the number of
multi-label instances, once the values of recall do not abruptly decrease as the number of multi-label instances
grows, with exception of the HMC-BR method. For Clus-HMC, the recall increases together with the number of
multi-label instances, which seems to indicate that the method has a better coverage for datasets with a higher
label cardinality.

Regarding the four methods tested, HMC-LP was the best method according to the Hierarchical Micro
Precision, but presented lower recall than the global methods. Hierarchical Precision considered HMC-LP the
best method for the datasets with 20% and 80% of multi-label instances, being HMC-BR the best method in the
other two cases.

Considering the analysis with the F-Measure variations (Figure 10), we can see that the global methods
obtained better results compared with the local methods. The performance of HMC-BR indicates that one binary
classifier per node is not a good strategy when dealing with datasets with a great number of multi-label instances.
The fact that HMC-BR does not consider label correlations may have contributed to decrease its predictive
power. The analysis of the F-Measure curves for HMC-LP, however, shows that this method could deal well
with a great number of multi-label instances. Although the label-powerset procedure creates a high number of
classes, it seems that the label correlations could be maintained, and together with the high number of examples
for training, led to good results if compared to the global methods. This suggests that label-powerset can be a
good classification alternative.

4.3. Results varying the number of classes assigned to the majority of the instances
Figure 7 shows the results after varying the number of classes per instance in the dataset. Again, as the

number of classes grows, we might have more instances per class to learn from. However, for this variation,
notice that the number of total instances presented a high variation from one experiment to another. While the
dataset where the number of classes varies from 1 to 2 has 3422 examples, when assigning 4 to 6 classes per
example, we end up with 692 examples.

Once more, in these experiments, the behaviour of H-Macro Precision did not suffer a large variation. The
results also suggest the H-Loss seems to favour local methods when they are compared with global methods.
According to H-Loss, global methods are less appropriate to datasets with the characteristics presented in this
study (see Table 9), as its values for HMC4.5 and Clus-HMC are always worse than those obtained by HMC-
BR and HMC-LP. As previously explained, this happens because local methods usually make more mistakes in
the first levels of the hierarchy. As H-Loss does not count errors in the subclasses of these erroneously predicted
classes, and the first levels have fewer classes, the H-Loss value can be lower for these methods. Global methods,
on the other hand, classify examples directly on their more specific nodes, and hence their errors are more
concentrated in the deeper levels of the hierarchy. As the number of classes increases with the depth of the
hierarchy, H-Loss will count more errors for the global methods, since the number of classification errors made
by these methods in the last levels is higher than in the first levels.

For all other measures based on precision, the performances of global methods tend to improve as the
number of classes assigned to an instance increases, which is not always true for local methods. It is possible
to say that the higher number of classes may have favoured the global methods, and harmed the performance of
local methods. The latter occurred because, as the top-down strategy used by local methods propagates errors to
the hierarchy, the more classes are assigned to each example, the more errors are propagated.

Although the performances of global methods improve with the number of classes, in general, according to
the Hierarchical Micro Precision and Hierarchical Precision, the local methods are still better overall. The HMC-
BR method is better than all methods regarding Hierarchical Precision, and only loses to HMC-LP, according to
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Hierarchical Micro Precision, when 2 to 4 classes are assigned to the majority of instances. In contrast, all the
recall measures (right column of Figure 7) always grow as the number of classes increases. Additionally, global
methods always get better recall values than local methods as the number of classes is increased to 4 to 6 classes
per instance. Again, we believe this is a consequence of a what seems to be characteristic of the global methods,
which are better in classifying the classes in the last hierarchical levels, getting a better coverage of the instances.
The local methods, on contrary, seem to give preference to predictions in the first levels, not covering as many
instances but being more precise.

Different from what we thought when we generated these datasets, the recall values did not decrease as
the number of classes assigned to the majority of instances increased. One would expect a decrease in the
recall values, once, with more true classes, there is a higher chance that a true class is not predicted. However,
as already said, we can see that all recall values increased with the number of classes, which shows that the
methods can deal well with a higher number of classes. Additionally, if we compare the increases of the recall
values regarding the global and local methods, we can see that the increase of the recall values for the global
methods is more accentuated, which again suggests that global methods are better in predicting classes at deeper
hierarchical levels.

Although the local methods achieved the best performances considering the Precision measures, if we
analyse the performances of the methods considering the F-Measure variations, it is possible to see that the
global methods have better performances than the local methods as the number of classes increases. According
to the graphs shown in Figure 11, the best performances of the global methods are more evident when the dataset
has 4 to 6 classes assigned to each instance, whilst local methods achieved better performances when the dataset
has 1 to 2 classes assigned to each instance. These results suggest that global methods are more suitable for
datasets where instances have a larger number of labels.

4.4. Results varying the balance of the hierarchy
Figure 8 shows the results when the hierarchy balance of the dataset is varied. Let us start with the H-

Precision. For global methods, it presents the same behaviour, not varying much from one to two levels, but
decreasing when we get to three levels of unbalance. These results may be due to a peculiarity of the FunCat
taxonomy, which has one specific class (Unclassified proteins) in the first level that has no subclasses. In the
datasets generated with one and two levels of unbalance, this specific class does not appear in the hierarchy,
since it does not have any subclasses. When the hierarchy is three levels unbalanced, this class comes back to
the hierarchy, and as a consequence the classifiers make more mistakes in this specific class. As the HMC-BR
method creates a specific binary classifier for this class, this may have helped its performance in this specific
case. This behaviour of the classifiers suggests that, even if the hierarchy is unbalanced, having fewer classes, the
classification performance can be worse than when the hierarchy is completely balanced, having more classes.
We can observe this behaviour when the classes of the first level have many instances assigned to them, which
can be very frequent in real datasets, as the one we are working with here.

Analyzing the results obtained by the Hierarchical Micro Precision measure, it is possible to observe that
the performances of the local methods tend to increase as the level of unbalance of the hierarchy increases.
This happens because the classification process of the local methods starts at the root node, and as the hierarchy
becomes more unbalanced, less errors are propagated to deeper levels. The same behaviour cannot be always
observed in the global methods, because their predictions are made directly in the more specific nodes. As the
parent classes of predicted classes are also considered as predicted classes, the misclassifications of the global
methods are more uniformly distributed across all levels of the classification hierarchy. When the evaluation
considers the Hierarchical Macro Precision, it is possible to observe that the performance of both local and
global methods tend to increase as the level of unbalance of the hierarchy increases, and the best results were
obtained by the HMC4.5 and Clus-HMC methods.

The behaviours of the H-Precision and the Hierarchical Micro and Macro Precision are different because
the latter measures consider the distances between the predicted and true classes in the hierarchy. It seems natural
that, as the hierarchy becomes more unbalanced, the distances between the true and predicted classes decrease,
specially considering that when the hierarchy is three levels unbalanced, the classifiers made more mistakes in
the specific FunCat class mentioned above. As the Macro measures are considered per class mean performance
measures, the decrease in the number of classes in the hierarchy (as it becomes more unbalanced) may explain
why the value of this measure tends to increase. The only exception can be observed in the Clus-HMC method,
in which the value of the H-Micro Precision decreased in the hierarchy with three levels unbalanced. This may
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be explained by the fact that the Clus-HMC method was the method that made fewer mistakes in the specific
class Unclassified proteins. So, the distances between the predicted and true classes, in this case, were higher,
contributing to the decrease in the value of the measure.

Another factor that contributed to the increase of the values obtained with the distance based measures, as
the hierarchy becomes more unbalanced, was the choice of Disθ = 2. It seems that this setting can artificially
increase a little the precision/recall values, due to the fact that misclassifications involving similar true and
predicted classes are not counted as errors.

Observing the Hierarchical Loss, is possible to see that it is well-behaved, and improves as the level of
unbalance increases. The behaviour of the H-Loss seems natural because, as the hierarchy becomes more un-
balanced, there are fewer classes to be predicted and less misclassifications are made according to this measure.
Additionally, if a correct prediction is made to a class without child classes, the prediction process stops. In
contrast, if the predicted class has child classes, the prediction process would continue and the classifier could
make more mistakes at the deeper levels, contributing to the value of the H-Loss.

The comparison of the results of H-Loss with H-Precision presents interesting insights. The values of both
measures decrease as the hierarchies become more unbalanced. It was already mentioned that H-Loss does
not count mistakes made in subclasses of wrongly predicted classes. The classifiers increased the number of
mistakes in the first hierarchical levels as the hierarchies became more unbalanced. While more mistakes in the
first hierarchical levels contribute to decrease the value of H-Loss, the propagation of these mistakes to deeper
levels lead to a reduction of the H-Precision value.

The recall measure values show variations regarding local and global methods. While H-Recall has a small
decrease for local methods, for the global methods, it first increases with the difference of two levels, decreasing
for three levels. The H-Micro Recall increases as the level of unbalance increases for local methods, while in
global methods, it first increases and later decreases. The H-Macro Recall is the only measure with a consistent
behaviour across all HMC methods. Note that, even with their recall values decreasing in the hierarchy with
three levels of unbalance, the global methods still have better recall values than the local methods.

The more accentuated decrease of the values of the Hierarchical Precision and Recall, and Hierarchical
Micro Precision and Recall, observed in the Clus-HMC method, again may be explained by the fact that this
method committed less errors in the specific class Unclassified proteins, being its errors more concentrated in
the balanced size of the hierarchy. In this case, if a class in the first level is misclassified, it means that its leaf
classes in the last level were misclassified, increasing the distance between the predicted and true classes, and
decreasing the values of the distance based measures. The values of H-Precision and H-Recall, of course, also
tend to decrease as more mistakes are committed.

Figure 12 shows the comparison of global and local methods considering the F-Measure variations. Note
that the increase in the unbalance of the hierarchy contributed to harm the performances of the global methods,
specially Clus-HMC, considering the F-Measure and Micro F-Measure. The Macro F-Measure shows that the
global methods have a better per class performance as the unbalance of the hierarchy increases, while for local
methods, the Macro F-Measure performance remains almost the same. The best results in the more unbalanced
hierarchy were obtained by HMC-BR and HMC4.5. Considering Micro F-Measure, it seems that the increase
of the H-Micro Precision compensated the decrease of the H-Micro Recall observed for HMC4.5 (Figure 8(c)),
resulting in a better F-Measure.

4.5. Results varying the maximum number of child nodes per internal node
Figure 9 shows the results when the number of child nodes per internal node was increased. It is expected

that this should affect all methods, because increasing the number of child nodes per internal node increases a lot
the number of multi-label instances. As can be seen in Table 9, increasing the number of child nodes increased
the number of multi-label instances from 1728 to 2319. Additionally, both methods will have to build more
decision boundaries between classes since, for each internal class, there are more classes to decide regarding
the classification of an instance. Hence, the values of the measures are expected to decrease, which is confirmed
by the graphs of Figure 9. Although the performances of all methods become worse in the dataset with more
children per internal node, it is possible to note that the global methods are those that present the best general
results according to all measures, except Hierarchical Loss and Hierarchical Precision.

Considering the Hierarchical Macro Precision and Recall measures, the performance of the local methods
remains almost the same as the maximum number of children per internal node increases. Looking at the results
obtained by the global methods, it is possible to observe that their performances tend to decrease with the
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increase of the maximum number of child nodes according to these two evaluation measures. These results show
that the global methods are better than the local methods for hierarchies with a high number of child nodes per
each internal node. As shown in Figure 9, the performances of the local methods considering these measures are
always very poor for both variations (five and eight children). The global methods perform better than the local
methods when the hierarchy has five child nodes per each internal node.

The results with the Hierarchical Micro Precision show that the best results were obtained by the Clus-
HMC method in the dataset with a maximum of five children per node. It can also be observed that while the
performance of HMC-LP was slightly increased when the maximum number of child nodes increased from five
to eight, all other methods had a slightly decreasing performance. This is clearer for the global methods. As the
maximum number of children per internal node increases, the number of leaf classes is also increased.

Just like could be observed in the datasets with different levels of unbalance in the hierarchies, the best
results when the evaluation was carried out using Hierarchical Macro Precision and all the Hierarchical Recall
measures were obtained by the global methods. Again, the errors made by these methods were more distributed
over all classes of the hierarchy, which may have increased the values of the macro measures. It seems that the
variations in the number of child nodes had a larger impact on the local methods, which performed worst in
the majority of cases. This larger influence can be due to the divide-and-conquer mechanism used by the local
methods during their classification process.

The comparison of the methods considering the F-Measure variations (Figure 13) shows that the best
performances, for the majority of the measures, were obtained by the global methods. Although all methods
had a decrease in the classification performance, the global methods in general still present better results.
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(b) HMC-LP method
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(c) HMC4.5 method
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Figure 6. Results for different evaluation measures varying the percentage of multi-label instances
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(c) HMC4.5 method
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(d) Clus-HMC method

Figure 7. Results for different evaluation measures varying the number of classes assigned to the majority of
the instances
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(b) HMC-LP method
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Figure 8. Results for different evaluation measures varying the unbalance of the hierarchy
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Figure 9. Results for different evaluation measures varying the maximum number of child nodes of each
internal node
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Figure 10. Results for different Hierarchical F-Measures varying the percentage of multi-label instances
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Figure 11. Results for different Hierarchical F-Measures varying the number of classes assigned to the majority
of the instances
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Figure 12. Results for different Hierarchical F-Measures varying the unbalance of the hierarchy
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Figure 13. Results for different Hierarchical F-Measures varying the maximum number of child nodes of each
internal node



HierarchicalMulti-Label Classification 29

4.6. Comparison of Measures
Tables 10, 11 and 12 show the results obtained when comparing the evaluation measures according to their

degrees of consistency, discriminancy and indifferency.
Considering that Ψ is a domain of two evaluation measures f and g. The degrees of consistency, discrimi-

nancy and indifferency can be defined as (Huang and Ling, 2005):

• Degree of consistency: if R = {(a, b)|a, b ∈ Ψ, f (a) > f (b), g(a) > g(b)} and S = {(a, b)|a, b ∈ Ψ, f (a) >
f (b), g(a) < g(b)}, the degree of consistency of f and g is represented by C(0 ⩽ C ⩽ 1), where C = |R|

|R|+|S | ;
• Degree of discriminancy: if P = {(a, b)|a, b ∈ Ψ, f (a) > f (b), g(a) = g(b)} and Q = {(a, b)|a, b ∈ Ψ, g(a) >

g(b), f (a) = f (b)}, the degree of discriminancy for f over g is given by D = |P|
|Q| ;

• Degree of indifferency: if V = {(a, b)|a, b ∈ Ψ, a , b, f (a) = f (b), g(a) = g(b)} and U = {(a, b)|a, b ∈ Ψ, a ,
b}, the degree of indifferency for f and g is given by E = |V |

|U | .

We can say that if two measures f and g are consistent to degree C when evaluating two algorithms A and
B, then when the measure f stipulates that A is better than B, there is a probability C that the measure g will
agree. If a measure f is D times more discriminating than a measure g, then we can say that it is D times more
likely that f can says that A and B are different but g cannot, than vice-versa. So, we can say that a measure f
is better than a measure g ( f is statistically consistent and more discriminant than g) if and only if C > 0.5 and
D > 1 (Huang and Ling, 2005).

In the first column of Tables 10, 11 and 12, g is represented by the measures that are positioned in the left of
the / symbol, while f is represented by the measures that are positioned in the right of the / symbol. Hence, we
are always trying to see if measure f is better than measure g. As in (Huang and Ling, 2005), we compared the
performances of the methods in each cross-validation test set. As we did a 5-fold cross-validation in each dataset,
and we have 12 datasets, we performed 12 × 5 = 60 comparisons. In the tables, f+ means that when comparing
algorithm A with algorithm B, A is better than B according to measure f , − means A is worse than B, = means
A is the same as B and , means that A is not the same as B. As an example, in the first row, second column
of Table 10, when comparing the methods Clus-HMC and HMC4.5, there were 15 times where Clus-HMC was
better than HMC4.5 both in hP and H-Loss or Clus-HMC was worse than HMC4.5 both in hP and H-Loss,
which means that the measures were consistent in 15 of 60 comparisons. Recall that in some comparisons, when
calculating the degree of discriminancy, the value of |Q| is equal to 0 resulting in a division by 0 (D = |P|

|Q| ). In
this case we considered that one measure was |P| times more discriminant than the other.

Let’s start our analysis comparing all precision related measures and H-Loss. Analysing the results ob-
tained, we observe that Hierarchical Precision can be considered a better measure than H-Loss. The degrees
of consistency between the two measures is above 0.5 in the majority of the comparisons, while their degrees
of discriminancy is never higher than 1. Also, if we now consider H-Loss function as g and hP as f (now we
verify if hP is better than H-Loss), we see that the degrees of discriminancy between the two measures is now
above 1 in all comparisons, which means that hP is statistically consistent and more discriminant than H-Loss
in the majority of the comparisons. Recall that the degrees of consistency of two measures are symmetric, which
means that the degree of consistency of f and g is the same as the degree of consistency of g and f (Huang and
Ling, 2005). It is also interesting to see that we cannot say that there are differences between these two measures
when comparing the local methods with each other and the global methods with each other. We can say that hP
is better than H-Loss in the comparisons of global vs. local methods.

When comparing H-Loss with Hierarchical Micro Precision and Macro Precision, we can see that P̂r
µCD

is
better than H-Loss in all comparisons involving global methods vs. local methods. When comparing HMC-BR
with HMC-LP, there are no differences between the two measures. In the comparison of Clus-HMC vs. HMC4,5,
however, we can say that H-Loss is consistent and more discriminant than P̂r

µCD
. Although nothing can be said

about which measure is better, H-Loss or P̂r
MCD , we can see that P̂r

MCD is much more discriminant than H-Loss
in the majority of the comparisons.

Comparing the Hierarchical Precision and Hierarchical Micro and Macro Precisions, we can say that hP
is a better measure than P̂r

µCD
, as it is consistent and more discriminant than P̂r

µCD
in the majority of the

comparisons. Remember again that, according to the tables, P̂r
µCD

is better than hP, but it can be easily shown
that hP is more discriminant than P̂r

µCD
. So, if we want to see if hP is better than P̂r

µCD
, the discriminancy

values of the comparisons will be higher than 1 in the majority of the cases. When comparing hP with P̂r
MCD , we

cannot conclude which measures is the best. The hP measure is better than P̂r
MCD when comparing HMC-BR vs.

HMC-LP and worse than P̂r
MCD when comparing HMC4.5 vs. HMC-LP. For the other comparisons involving
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these two measures, nothing can be said about what is the best measure. We can only say that P̂r
MCD was more

discriminant in the majority of the cases.
Analysing the results of the comparisons between P̂r

µCD
and P̂r

MCD , we can see that the Hierarchical Macro
Precision, as well as the Hierarchical Precision, is better than Hierarchical Micro Precision. The P̂r

MCD measure
is consistent and more discriminant than P̂r

µCD
in the majority of the datasets.

Considering the comparisons involving all the recall measures (Table 11), we can see that R̂e
µCD

and
R̂e

MCD are better than hR in the majority of the comparisons. There are, however, some exceptions. When
comparing Clus-HMC vs. HMC4.5, we cannot say which measure is better, if hR or R̂e

µCD
, because the degree

of discriminancy over them is 1. Also, hR is a better measure than R̂e
MCD when comparing HMC-BR vs. HMC-

LP. It is interesting to note the degrees of discriminancy of the micro and macro measures in the Clus-HMC
vs. HMC4.5 and HMC-BR vs. HMC-LP comparisons. While R̂e

MCD is more discriminant than hR in the Clus-
HMC vs. HMC4.5 comparison, R̂e

µCD
is more discriminant than hR in the HMC-BR vs. HMC-LP comparison.

Also, R̂e
MCD is better than R̂e

µCD
in the Clus-HMC vs. HMC4.5 comparison, while R̂e

µCD
is better than R̂e

MCD

in the HMC-BR vs. HMC-LP comparison. As global methods are more similar, and macro measures give equal
importance to each label, these results may suggest that R̂e

MCD can be a more discriminant measure if we want
to compare global methods.

Table 12 shows the results of the comparisons involving all the F-Measure variations. It is interesting to
see that both Hierarchical Micro and Macro F-Measures are consistent and more discriminant than Hierarchical
F-Measure only in the comparisons involving methods from different classification approaches. In the Clus-
HMC vs HMC4.5 comparison, we can see that hF is better than ˆhF

µCD
. Also, in the HMC-BR vs. HMC-LP

comparison, we can say that hF is better than both ˆhF
µCD

and ˆhF
MCD . When comparing ˆhF

µCD
and ˆhF

MCD we
can see that Hierarchical Macro F-Measure is better than Hierarchical Micro F-Measure in the majority of the
datasets. Again the micro measure is better than the macro measure when comparing the local methods within
themselves (HMC-BR vs. HMC-LP).

Looking at the degrees of indifferency obtained in all comparisons involving all the measures investigated,
Clus-HMC and HMC4.5 methods are the ones that obtained more similar results. This seems natural as the
global methods share more similar characteristics, since they build one decision tree to handle all classes and
both work with non-mandatory leaf node classification. The local methods, however, present more differences.
The HMC-BR method uses one binary classifier for each node while HMC-LP transforms the original problem
into a hierarchical single-label one. Additionally, HMC-BR works with non-mandatory leaf node classification
while HMC-LP works with mandatory leaf node classification.
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Table 10. Comparison of precision measures considering degrees of consistency, discriminancy and
indifferency.

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hP+/HLoss+ or hP-/HLoss- 15 27 28 27 28 12
hP+/HLoss- or hP-/HLoss+ 28 17 20 21 21 32
Degree of consistency (C) 0.349 0.614 0.583 0.562 0.571 0.273

hP+/P̂rµCD
+ or hP-/P̂rµCD- 33 40 41 44 37 25

hP+/P̂rµCD- or hP-/P̂rµCD
+ 9 10 9 9 13 20

Degree of consistency (C) 0.786 0.8 0.82 0.83 0.74 0.556

hP+/P̂rMCD - or hP-/P̂rMCD - 23 21 25 26 28 43
hP+/P̂rMCD - or hP-/P̂rMCD+ 22 32 29 32 27 10
Degree of consistency (C) 0.511 0.396 0.463 0.449 0.51 0.811

HLoss+/P̂rµCD
+ or HLoss-/P̂rµCD- 24 27 36 27 36 14

HLoss+/P̂rµCD- or HLoss-/P̂rµCD
+ 15 18 11 18 11 23

Degree of consistency (C) 0.615 0.6 0.766 0.6 0.766 0.378

HLoss+/P̂rMCD - or HLoss-/P̂rMCD - 19 18 19 21 14 12
HLoss+/P̂rMCD - or HLoss-/P̂rMCD+ 25 30 34 29 28 31
Degree of consistency (C) 0.432 0.375 0.358 0.42 0.270 0.279

P̂rµCD
+/P̂rMCD - or P̂rµCD-/P̂rMCD - 23 31 25 30 28 26

P̂rµCD
+/P̂rMCD - or P̂rµCD-/P̂rMCD+ 19 22 28 25 25 17

Degree of consistency (C) 0.548 0.585 0.472 0.545 0.528 0.605

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hP =/HLoss , 7 5 5 2 3 3
hP ,/HLoss = 9 11 7 10 7 13
Degree of discriminancy (D) 0.778 0.454 0.714 0.2 0.429 0.231

hP =/P̂rµCD , 6 5 4 2 4 3
hP ,/P̂rµCD

= 10 5 5 5 6 12
Degree of discriminancy (D) 0.6 1 0.8 0.4 0.667 0.25

hP =/P̂rMCD , 7 5 5 2 4 2
hP ,/P̂rMCD = 7 2 1 0 1 4
Degree of discriminancy (D) 1 2.5 5 2 4 0.5

HLoss =/P̂rµCD , 9 10 7 10 7 11
HLoss ,/P̂rµCD

= 11 4 6 5 5 10
Degree of discriminancy (D) 0.818 2.5 1.167 2 1.4 1.1

HLoss =/P̂rMCD , 8 10 6 10 7 12
HLoss ,/P̂rMCD = 6 1 0 0 0 4
Degree of discriminancy (D) 1.333 10 6 10 7 3

P̂rµCD
=/P̂rMCD , 10 5 6 5 6 12

P̂rµCD ,/P̂rMCD = 6 2 1 0 1 5
Degree of discriminancy (D) 1.667 2.5 6 5 6 2.4

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hP =/HLoss = 1 0 0 0 1 0
Degree of indifferency (E) 0.0167 0 0 0 0.1667 0

hP =/P̂rµCD
= 2 0 1 0 0 0

Degree of indifferency (E) 0.033 0 0.017 0 0 0

hP =/P̂rMCD = 1 0 0 0 0 1
Degree of indifferency (E) 0.0167 0 0 0 0 0.0167

HLoss =/P̂rµCD
= 1 1 0 0 1 2

Degree of indifferency (E) 0.0167 0.0167 0 0 0.0167 0.033

HLoss =/P̂rMCD = 2 1 1 0 1 1
Degree of indifferency (E) 0.033 0.0167 0.0167 0 0.0167 0.0167

P̂rµCD
=/P̂rMCD = 2 0 0 0 0 0

Degree of indifferency (E) 0.033 0 0 0 0 0
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Table 11. Comparison of recall measures considering degrees of consistency, discriminancy and indiffer-
ency.

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hR+/R̂eµCD
+ or hR-/R̂eµCD- 33 51 48 53 55 36

hR+/R̂eµCD- or hR-/R̂eµCD
+ 9 3 5 3 2 14

Degree of consistency (C) 0.786 0.944 0.906 0.946 0.965 0.72

hR+/R̂eMCD - or hR-/R̂eMCD - 28 48 42 51 49 39
hR+/R̂eMCD - or hR-/R̂eMCD+ 19 6 13 3 6 6
Degree of consistency (C) 0.596 0.889 0.764 0.944 0.891 0.867

R̂eµCD
+/R̂eMCD - or R̂eµCD-/R̂eMCD - 30 53 45 51 48 37

R̂eµCD
+/R̂eMCD - or R̂eµCD-/R̂eMCD+ 16 6 8 7 9 12

Degree of consistency (C) 0.652 0.898 0.849 0.879 0.842 0.755

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hR =/R̂eµCD , 8 6 2 4 3 6
hR ,/R̂eµCD

= 8 0 4 0 0 3
Degree of discriminancy (D) 1 6 0.5 4 3 2

hR =/R̂eMCD , 8 5 3 4 2 7
hR ,/R̂eMCD = 3 0 2 2 2 8
Degree of discriminancy (D) 2.67 5 1.5 2 1 0.875

R̂eµCD
=/R̂eMCD , 9 0 5 0 0 3

R̂eµCD ,/R̂eMCD = 4 1 2 2 3 7
Degree of discriminancy (D) 2.25 0 2.5 0 0 0.428

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hR =/R̂eµCD
= 2 0 1 0 0 1

Degree of indifferency (E) 0.033 0 0.0167 0 0 0.0167

hR =/R̂eMCD = 2 1 0 0 1 0
Degree of indifferency (E) 0.033 0.0167 0 0 0.0167 0

R̂eµCD
=/R̂eMCD = 1 0 0 0 0 1

Degree of indifferency (E) 0.0167 0 0 0 0 0.0167
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Table 12. Comparison of F-Measures considering degrees of consistency, discriminancy and indifferency.

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hF+/ ˆhFµCD
+ or hF-/ ˆhFµCD- 34 29 38 23 37 28

hF+/ ˆhFµCD- or hF-/ ˆhFµCD
+ 4 18 4 22 6 18

Degree of consistency (C) 0.895 0.617 0.905 0.511 0.860 0.609

hF+/ ˆhFMCD - or hF-/ ˆhFMCD - 21 24 32 27 32 36

hF+/ ˆhFMCD - or hF-/ ˆhFMCD+ 23 24 11 22 12 4
Degree of consistency (C) 0.477 0.5 0.744 0.551 0.727 0.9

ˆhFµCD
+/ ˆhFMCD - or ˆhFµCD-/ ˆhFMCD - 26 43 47 46 49 25

ˆhFµCD
+/ ˆhFMCD - or ˆhFµCD-/ ˆhFMCD+ 16 12 9 8 4 12

Degree of consistency (C) 0.619 0.782 0.839 0.852 0.924 0.676

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hF =/ ˆhFµCD , 8 11 15 10 12 6

hF ,/ ˆhFµCD
= 11 2 2 4 3 8

Degree of discriminancy (D) 0.727 5.5 7.5 2.5 4 0.75

hF =/ ˆhFMCD , 8 9 16 10 14 5

hF ,/ ˆhFMCD = 5 1 1 0 2 14
Degree of discriminancy (D) 1.6 9 16 10 7 0.357

ˆhFµCD
=/ ˆhFMCD , 10 2 3 5 5 8

ˆhFµCD ,/ ˆhFMCD = 4 3 1 1 2 15
Degree of discriminancy (D) 2.5 0.667 3 5 2.5 0.533

Clus vs. HC4.5 Clus vs. BR Clus vs. LP HC4.5 vs. BR HC4.5 vs. LP BR vs. LP

hF =/ ˆhFµCD
= 3 0 1 1 2 0

Degree of indifferency (E) 0.05 0 0.0167 0.0167 0.033 0

hF =/ ˆhFMCD = 3 2 0 1 0 1
Degree of indifferency (E) 0.05 0.033 0 0.0167 0 0.0167

ˆhFµCD
=/ ˆhFMCD = 4 0 0 0 0 0

Degree of indifferency (E) 0.0667 0 0 0 0 0

4.7. Summary and Discussion: Measures versus Methods
This section gives an overview of the behaviour of the measures considering the methods used in the

experiments, and gives answers to the five questions asked in Section 1. Statistical tests were also carried out to
verify if the differences between the methods were statistically significant, with a confidence level of 95%. The
test used was the two-sided non-pairwise Wilcoxon rank-sum test (Hollander and Wolfe, 1999), with the Holm
correction (Holm, 1979) for multiple comparisons. The datasets were divided using k-fold cross-validation,
with k = 5.

Table 13 shows where the algorithms located in the rows were statistically better than the algorithms located
in the columns. The numbers in the rows indicate the datasets where some statistically significant difference(s)
were detected, and the black circles indicate the measures where these differences were detected. In each row
of each cell, the circles refer to evaluation measures in the following order: hierarchical precision, hierarchical
micro precision, hierarchical macro precision, hierarchical loss function, hierarchical recall, hierarchical micro
recall, hierarchical macro recall, hierarchical f-measure, hierarchical micro f-measure and hierarchical macro
f-measure.
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Table 13. Results of Statistical Tests.

HMC-BR HMC-LP Clus-HMC HMC4.5

H
M

C
-B

R

——

4 � � � � � � � � � � 4 � � � � � � � � � � 4 � � � � � � � � � �
5 � � � � � � � � � � 5 � � � � � � � � � � 5 � � � � � � � � � �
7 � � � � � � � � � � 10 � � � � � � � � � � 7 � � � � � � � � � �
8 � � � � � � � � � � 12 � � � � � � � � � � 10 � � � � � � � � � �

10 � � � � � � � � � � 6,8,9,11 � � � � � � � � � � 8,9,11,12 � � � � � � � � � �
11 � � � � � � � � � �
12 � � � � � � � � � �

H
M

C
-L

P

1 � � � � � � � � � �

——

3 � � � � � � � � � � 2 � � � � � � � � � �
2 � � � � � � � � � � 5 � � � � � � � � � � 5 � � � � � � � � � �
3 � � � � � � � � � � 10 � � � � � � � � � � 11 � � � � � � � � � �
4 � � � � � � � � � � 12 � � � � � � � � � � 12 � � � � � � � � � �
8 � � � � � � � � � � 1,2,4,6,8 � � � � � � � � � � 1,3,4,6,7 � � � � � � � � � �

5,10,12 � � � � � � � � � �

C
lu

s-
H

M
C

2 � � � � � � � � � � 6 � � � � � � � � � �

——

10,11 � � � � � � � � � �
3,6 � � � � � � � � � � 7 � � � � � � � � � �

4 � � � � � � � � � � 9 � � � � � � � � � �
7,10 � � � � � � � � � � 10 � � � � � � � � � �

11 � � � � � � � � � � 8,11,12 � � � � � � � � � �
8,9,12 � � � � � � � � � �

H
M

C
4.

5

3 � � � � � � � � � � 3,4,5 � � � � � � � � � � 5 � � � � � � � � � �

——

4 � � � � � � � � � � 6 � � � � � � � � � � 7 � � � � � � � � � �
1,5 � � � � � � � � � � 7 � � � � � � � � � � 10 � � � � � � � � � �
2,6 � � � � � � � � � � 8 � � � � � � � � � �

7 � � � � � � � � � � 9,10,11,12 � � � � � � � � � �
8,12 � � � � � � � � � �

9,10,11 � � � � � � � � � �

A first glance at Table 13 already illustrates how much measures disagree among each other. Each circle
represents a different measure. The first three measures evaluate the precision of the methods. Then comes the
H-Loss, followed by the three recall evaluation measures. The last three measures are the hierarchical f-measure
variations. It must be observed that a black circle followed by a empty circle means that one measure considers
the methods statistically different while the other considers they have an equivalent performance. For example,
consider the results for Hierarchical Precision (first circle) when compared to Hierarchical Micro Precision
(second circle), obtained when comparing HMC-BR with the other methods. In this case, Hierarchical Precision
considered HMC-BR better than HMC-LP in five datasets (i.e., datasets 5,7,10, 11 and 12), and better than
HMC4.5 in six datasets (datasets 5, 8, 9, 10, 11 and 12). The Hierarchical Micro Precision considered the HMC-
BR better than HMC-LP in one dataset, and better than HMC4.5 in three datasets. Hence, looking at Table 13, it
is possible to see that the Hierarchical Precision and the Hierarchical Micro Precision disagree according to the
statistical tests four times when comparing HMC-BR and HMC-LP and five times when comparing HMC-BR
and HMC4.5.

It is also easy to notice that global methods, in general, present better recall than local methods, specially in
terms of Hierarchical Micro and Macro Recall. Clus-HMC has better Hierarchical Micro Recall than HMC-BR
in all datasets, except 1 and 5, and when comparing it with HMC-LP using this same measure, Clus-HMC is
better in the datasets 6 to 12. Note that the Hierarchical Recall and Hierarchical Micro Recall still disagree in
many cases. The better performance of the global methods in the recall measures are a indicative that the global
classifiers are better than the local ones in detecting the most specific classes of the examples. High values of
hierarchical precision measures are a indicative that the classifiers are better in detecting the most general classes
of the hierarchy, while high hierarchical recall values are a indicative that the classifiers are better in detecting
the most specific classes of the hierarchy.

Comparing the approaches among themselves (HMC4.5 vs Clus-HMC and HMC-BR vs HMC-LP), it is
possible to see that there are more statistically significant differences in the comparisons among the local methods
than in the comparisons among the global methods. These results confirm the results obtained when analysing
the degrees of indifferency of the measures, which showed that the global methods had similar performances in
the datasets investigated.

If we look at the results obtained with the f-measure variations, we observe that more statistically significant
differences were detected when the global methods outperformed the local methods, than when the local methods
outperformed the global methods, and, in the majority of the cases, global methods performed better. We can
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summarize the discussion in Sections 4.2 to 4.6 and the results in Table 13 answering the five questions asked in
Section 1.

• Q1: Does a specific evaluation measure favour a specific classification approach (global or local) when used
to compare global and local based methods?
According to our experiments, H-Loss seems to favour local methods, so it should not be used as an evaluation
measure to compare the predictive performance of local and global methods, because the measure’s bias would
be unfairly favouring local methods. It is also worth mentioning that the Hierarchical Loss Function does
not take into account very skewed class distributions, which are common in HMC problems. Additionally,
according to the comparisons performed, H-loss was neither statistically consistent nor more discriminant
than the other measures.
As an example of how H-Loss can favour local methods, consider Figure 14, where bold solid circles represent
classes assigned to an instance. Figure 14(a) represents the true classes of an instance, Figure 14(b) represents
the classes assigned to the instance by a global classifier, while Figure 14(c) represents the classes assigned
to the instance by a local classifier. As can be observed in the figure, even though H-Loss considers mistakes
made at higher levels in the class hierarchy more important than mistakes made at lower levels, the calculation
of the H-Loss function results in the value 2 for the local method and 4 for the global method. In this case, we
can see how the measure favoured the local method, even though its prediction was worse than the prediction
made by the global method. We are aware that the situation shown in the figure can be easily reverted if we
consider that the global method made the prediction shown in Figure 14(c) and the local method made the
prediction shown in Figure 14(b). However, analysing the errors committed by the classifiers in the datasets
used in this work, we observed that the situation presented in Figure 14 occurred in the majority of the times,
which is confirmed considering that the global methods obtained the best overall f-measure values and the
worst H-Loss values.

(a) True classes

(b) Prediction by global method (c) Prediction by local method

Figure 14. Example of how H-Loss can favour local approach when comparing local and global approaches.

• Q2: Which classification approach (global or local) is better overall, considering the four aforementioned
classification scenarios?
Global methods in general obtained better classification performances when the f-measure evaluation was
considered, which is an indicative that global methods are better for the HMC tasks investigated. According
to the f-measure results presented in Figures 10, 11, 12 and 13, the global methods used in this study presented
the best results in the majority of the variations performed in the dataset studied.

• Q3: Do global/local methods are better in predicting more specific/general classes?
Global methods, in general, achieved better results of recall than local methods, regardless of the dataset
characteristics. It seems that, by the experiments and the characteristics of global methods (predictions directly
in the more specific classes), the global approach is more suitable for predicting more specific classes, which
means a higher recall value. Although this situation can be reversed using high threshold values, the use of
thresholds between 0.4 and 0.6 seems a reasonable choice for practical use, since the outputs of these methods
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are real values between 0 and 1. The higher precision values obtained by the local methods are a indicative
that the local approach is better in predicting the more general classes of the hierarchy. As already mentioned,
high values of hierarchical precision measures are a indicative that the classifiers are better in detecting the
most general classes of the hierarchy, while high hierarchical recall values are a indicative that the classifiers
are better in detecting the most specific classes of the hierarchy. In HMC classification, more specific classes
are more informative and potentially more useful predictions to the user – because it allows users to design
more specific biological experiments to try to confirm those computational predictions.

• Q4: How different hierarchical and multi-label characteristics influence different evaluation measures and
classification approaches?
As the number of classes assigned to instances in a dataset grows, the results of global methods generally
improve for all measures of precision, while the same does not always happen to local methods. The latter
may be due to the error propagation inherent to local methods. As more classes are assigned to an instance,
we might have more mistakes in the higher levels of the hierarchy, which are propagated downwards.
In datasets with unbalanced hierarchies, the accuracy of local methods, measured by H-Micro Precision and
Recall, increases as the unbalance becomes more evident, while this is not always true for the global methods.
This may happen because with more unbalance, errors are less propagated downwards.
Considering the multi-label variations (increase in the percentage of multi-label instances and number of
classes), the experiments showed that the global methods perform better than local methods. We then recom-
mend the use of global methods in datasets with a great number of multi-label instances and classes.
Hierarchical Macro Precision and Recall are two of the few measures whose behaviours are consistent across
most methods. Their absolute values obviously change, but the curves are always very similar.
Very unbalanced hierarchies seem to favour the classification using local methods. The increase in the number
of child nodes of each internal node, however, seems to harm the performance of local methods and favour
the use of global methods.

• Q5: Which evaluation measure is more suitable to use in the classification scenarios investigated?
Considering all the experiments performed, and the comparisons among different measures, if we had to
recommend a measure to evaluate any HMC method, in general, we would say the Hierarchical Precision
and Recall proposed in (Kiritchenko et al., 2005) effectively do their jobs. Although the Hierarchical Micro
and Macro F-Measures were, in general, more discriminant than Hierarchical F-Measure, the hP and hR
have the advantage of not depending on any user defined parameter, and the experiments showed that they
are consistent if compared to the other measures. The micro and macro measures based on distance, for
example, depend on the acceptable distance Disθ between the true and predicted classes, which is a subjective
user parameter. Depending on the choice of Disθ, the values of the measures can drastically change. The
Hierarchical Precision and Recall measures were also recommended by Silla and Freitas (2010), although the
authors did not perform any empirical comparisons of HMC evaluation measures.

5. CONCLUSIONS AND FUTURE WORKS

This work reviewed some evaluation measures proposed in the literature to assess hierarchical multi-label
classification (HMC) methods, and investigated their use for the evaluation of four different decision tree-based
HMC methods, two based on the global approach and two based on the local approach. This evaluation employed
12 different real datasets, generated from the original yeast cell cycle microarray experiment (Spellman et al.,
1998). Four main characteristics of the datasets were varied: (i) the percentage of multi-label instances, (ii) the
number of classes assigned to an instance, (iii) the unbalance of the hierarchy, and (iv) the maximum number of
child nodes per internal node.

The HMC evaluation measures analysed in this work were divided into two main groups: distance-based and
hierarchy-based evaluation measures. We discussed the advantages and disadvantages of each type of measure,
emphasizing that most measures do not take into consideration that predictions at deeper levels of the hierarchy
are more difficult and many times more useful, as they lead to more specific information than predictions at
shallower levels. We presented alternative ways of dealing with this problem by weighting prediction according
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to the hierarchical level. Additionally, we compared the evaluation measures investigated according to their
degrees of consistency, discriminancy and indifferency.

As a result of our analysis, we recommend the Hierarchical Precision and Hierarchical Recall measures
proposed by Kiritchenko et al. (2005) as standard hierarchical multi-label measures, as they do not depend
on any user defined parameter, and when compared with the results of other measures, they are relatively
consistent across different HMC methods. The use of Precision-Recall curves (Davis and Goadrich, 2006) is
also recommended because many different threshold values can be used, leading to a threshold-independent
evaluation measure. We also recommend the use of global classification methods, since they presented the best
classification performances in the majority of the datasets variations investigated in this work.

As future works, we plan to generate artificial datasets with more hierarchical and multi-label variations
including also Gene Ontology structured hierarchies, and also add more hierarchical multi-label methods to the
experiments. It is also interesting to develop new HMC methods to generate classification rules. The use of global
methods has already shown to be a good alternative to the HMC task (Clare and King, 2003; Vens et al., 2008;
Alves et al., 2010; Otero et al., 2010), because they can generate simpler sets of rules and simpler final classifiers.
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