
Chapter 1
A Hybrid Rule-Induction/Likelihood-Ratio
Based Approach for Predicting Protein-Protein
Interactions

Mudassar Iqbal, Alex A. Freitas, and Colin G. Johnson

Abstract We propose a new hybrid data mining method for predicting protein-
protein interactions combining Likelihood-Ratio with rule induction algorithms. In
essence, the new method consists of using a rule induction algorithm to discover
rules representing partitions of the data, and then the discovered rules are inter-
preted as “bins” which are used to compute likelihood ratios. This new method is
applied to the prediction of protein-protein interactions in the Saccharomyces Cere-
visiae genome, using predictive genomic features in an integrated scheme. The re-
sults show that the new hybrid method outperforms a pure likelihood ratio based
approach.
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1.1 Introduction

Protein-protein interactions are involved in almost every cellular function, from
DNA replication and protein synthesis to regulation of metabolic pathways [1].
Proteins interact with each other by physically binding themselves or with other
molecules in the cell and form larger complexes to perform specific cellular func-
tions. Hence, the study of protein-protein interactions is of utmost importance to
understand their functions [7, 2], and detailed information about the interactions
of proteins can have potentially very useful applications, e.g., predicting disease-
related genes by looking at their interactions [28] as well as a potential use in de-
veloping new drugs that can specifically interrupt or modulate protein interactions
[41]. Also, the study of these interactions at the genomic level can help understand-
ing the large scale organization and features of the underlying network and the role
of individual proteins within the network [46].
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Consequently a number of experimental techniques for determining protein-
protein interactions have been developed [39, 20, 12, 17]. Unfortunately the ex-
perimental determination of the interaction network of even very simple organisms
is difficult and potentially erroneous, and the overlap among the interactions de-
termined by different such techniques is very low [46, 42]. Hence, there is a clear
motivation to develop new computational methods which can use data integrated
from several genomic sources, as it is done in this work, as explained below. Many
experimental and computational methods for the prediction of protein-protein inter-
actions are discussed in recent reviews [36, 37, 41].

1.1.1 Computational Prediction of Protein-Protein Interactions

The purpose of computational methods is to predict unknown protein interactions
using the relevant genomic information available, i.e., computational methods typ-
ically try to predict protein interaction by using data produced by other genomic
techniques such as gene expression, localization etc, which are indirectly related to
protein interactions. A variety of computational methods have been investigated for
this problem so far. Many methods infer interactions from a single type of genomic
data. For example, [3] and [4] address the question whether protein interactions
can be predicted directly from the primary structure and associated data. Given a
database of interacting proteins, they develop a machine learning system (Support
Vector Machine) trained to recognise the potential interactions based solely on the
primary structure and the associated physicochemical properties.

Another well-known method is called Rosetta Stone Method. In this method,
Marcotte et al. [23] find and exploit a very interesting observation that:“some pairs
of interacting proteins have homologs in another organism fused into a single protein
chain (Rosetta stone”. Other biological hypothesis used for prediction of protein-
protein interactions include similarity in phylogenetic profiles [11] and co-evolution
of interacting partners [15, 16].

Another approach consists of casting the protein-protein interaction prediction
problem as a type of combinatorial optimization problem (Satisfiability) by look-
ing at the domain (conserved evolutionary units within the proteins) assignments of
interacting and non-interacting protein pairs and then use a combinatorial optimiza-
tion method to solve it. In [18] a particle swarm optimization method, a relatively
new type of computational intelligence algorithm, was used to infer domain-domain
interactions and then use the inferred domain-domain interactions to predict new
protein-protein interactions. Yet another approach consists of analyzing protein-
protein interaction data to infer domain-domain interactions using graph-theoretical
belief propagation methods [19].

Also, there is a whole group of methods in which information from different
genomic features is combined to predict interactions. Such methods are here called
“Integrative Method”. For instance, in [45], authors build an integrative model using
a kernel based method combining many heterogenous data sets and present a super-
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vised learning approach for prediction of protein interactions. Jansen et al. in [21]
formulate a Bayesian framework for combining different types of data and predict
genome wide interactions in Yeast. The basic idea is that given certain features cor-
responding to protein pairs under consideration and their class attribute (interacting
or non-interacting), one can estimate the likelihood of interaction for a given feature,
and overall likelihood is estimated using a naive Bayesian formulation by assuming
independance among all the features. Rhodes et al.[33] extend this Bayesian ap-
proach for predicting protein interaction to the human genome. The general idea of
all the integrative methods is that one could combine various relatively weak fea-
tures in a setting in which overall prediction is boosted by this integration of data.
Some interesting observations are drawn in [22] regarding this data integration for
protein interaction prediction. A detailed analysis of this data integration using dif-
ferent classifiers is researched in [5].

1.1.2 Overview of the Proposed Method

Our work is partly inspired by the work done by [21], in which they proposed a
Bayesian method using the MIPS (Munich Information center for Protein Sequences
[24]) complexes catalog as gold standard positive interactions, and a list of proteins
in separate sub-cellular compartments as negative interactions, as there is no partic-
ular data set of experimentally determined non-interactions. They integrate multiple
genomic data corresponding to protein pairs, including correlation in expression
levels, functional similarity based measure, etc., as well as other experimental data
about protein interactions, as predictive features for these positives and negatives.
We use many of protein pairs features used in [21] and a subset of their gold standard
non-interactions to conduct a data mining experiment in order to analyse the effect
of hybridizing simple naive Bayesian style likelihood based method with some rule
induction algorithms. Rule induction algorithms learn classification rules given the
predictive features as well as the class attribute of a set of examples (protein pairs
in this case). Those learned rules can be used to predict unknown protein interac-
tions. We first analyze a simplified version of the naive Bayes classification method
without using any prior information and analyze its behavior for different possible
values of sensitivity and specificity of prediction. Then we combine that simplified
naive Bayes formulation with another data mining algorithm, namely a rule induc-
tion algorithm which learns IF-THEN type classification rules from data.

In essence we propose a new hybrid approach where we use the partitioning of
the data corresponding to the induced rules as “bins” from which likelihood ratios
are computed and used to classify the data. We present a ROC curve analysis of
results obtained using different threshold levels on the calculated likelihood values.
Since these rules consist of multiple antecedents coping with attribute interactions,
the bins defined by these rules should give us a better insight as compared to the
uniform binning of attributes used in general naive Bayesian methods. We have
applied this hybrid method for a specific biological application here, e.g., prediction
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of protein-protein interactions in the yeast S. Cerevisiae using multiple genomic
features, but the underlying principles of the method are not application domain
dependent, and indeed it can be applied to a wide range of classification problems
in different application domains.

1.1.3 Organisation

The chapter is organized as follows. Section 2 discusses the background on rule in-
duction algorithms for classification. Section 3 details the protein interaction data
and data related to different arrtibutes used. Section 4 explains our method, starting
with a brief introduction to Naive Bayes for classification and a rule discovery algo-
rithm, the PART method for classification; and then proposes a new hybrid method
combining features of both techniques. Comparative results based on the ROC anal-
ysis are presented in Section 5. Finally, Section 6 concludes the chapter.

1.2 Classification Rule Discovery Algorithms

Classification is one of the major data mining tasks. Given the data (examples) with
the predictive attributes and class labels (e.g. interacting or non-interacting in a pro-
tein pair’s case), the task of classification amounts to find relationaship(s) among the
attributes and class labels. These relationships can be in the form of, for instance, IF-
THEN-ELSE type rules, decision tree or conditional probabilities depending upon
which approach is used for building the model [43]. A classification model is built
using the training data, i.e., with class value known, and that learned model’s quality
is then tested on the test data, i.e., where the class value is absent.

Classification rules are one of the popular data mining approaches mainly be-
cause of their comprehensibility, by representing the gained knowldge in a form
which is intutive to human understanding. These rules have two parts, i.e. the rule
antecedent-which is a conjunction of multiple conditions on the predictor attributes
and a rule consequent-which is the prediction of class attribute based upon the con-
ditions in the antecedent. Conditons over individual attribute values potentially in-
volve all relational operators.

IFcond1ANDcond2...T HENclass (1.1)

There are many approaches to built models involving rule sets for a classification
problem. One most common and widely used approach is the separate-and-conquer
approach, which we will discuss in some detail in the next section. Another popular
classification method is the divide-and-conquer technique by building decision trees
[31]. In the work below we describe a rule induction algorithm that uses aspects of
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both of these approaches. Therefore, we begin by reviewing the basic concepts of
these two methods.

1.2.1 Separate and Conquer Approach

One of the two main approaches to rule induction is the separate-and-conquer ap-
proach. This approach was originally devised in [25] with the name covering strat-
egy, whilst the term separate-and-conquer was introduced by Pagllao&Haussler [29].
Many different variants on this approach, designed to tackle different problems and
data types, have been implemented; the review by Fürnkranz [10] gives an overview.

The general idea of the separate-and-conquer approach begins with an induction
of a rule, via some rule induction algorithm, on the entire dataset. The examples that
are correctly classified by this rule are then removed from the dataset, and the rule
induction algorithm applied to this reduced dataset. An example is said to be cor-
rectly classified by a rule when the example’s attribute values satisfy the conditions
in the rule’s antecedent and the example’s class is the same as the class predicted by
the rule’s consequent. This process of rule induction and removal of covered train-
ing examples is repeated until the dataset is empty. In this way each example in the
training data will be covered by at least one rule.

This approach has been used with a number of rule representations, i.e. the al-
lowed structure of the antecedent in the IF-THEN rule. In early work on this ap-
proach [26] the antecedent of the rules is a simple relation between attribute and
value; for example, a threshold for a numerical value. In other approaches, more
sophisticated representations are allowed, for example in FOIL [32] PROLOG rela-
tions are used. A more sophisiticated approach is to allow the representation to ex-
pand when needed [40]; a number of approaches to this are reviewed by Fürnkranz
[10].

Many different approaches have been used for the rule induction mechanism
itself. These include both determininistic methods such as hill climbing [32] and
beam search [27], and stochastic methods such as evolutionary algorithms [14].

One danger with these methods is that they can suffer from overfitting, where the
model is fitted too specifically to the (noisy) training data set, and is therefore unable
to generalise well to the test data set (unseen during training). Methods for tackling
this problem revolve around the idea of pruning the rule set, either by removing
whole rules, or by simplifying the precedent of the rule [35]. Such pruning methods
fall into two main types: pruning methods that operate whilst the learning process
is running (so called pre-pruning methods), and post-pruning methods that process
the rule set after it has been generated. These methods are reviewed by Fürnkranz
[10].
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Fig. 1.1 An example of a decision tree.

1.2.2 Divide and Conquer Approach

In the previous section, the dataset was split by instances, each application of the
rule induction algorithm removing some instances from the dataset. By contrast, the
divide-and-conquer approach splits the attribute space as it works. The canonical
representation used in the divide-and-conquer approach is the decision tree.

An example of a decision tree is given in figure 1.1. To predict the class of an
unseen data instance using the tree, the tree is worked from the root. The algorithm
evaluates the condition at the root node, and then moves on the the left or right child
node depending on whether the result of evaluating that condition is true or false.
This process is repeated until a leaf node is found; the leaf node names the class that
should be assigned to that instance.

A number of methods have been devised for the induction of decision trees from
data sets. The most widely used methods are those based on information gain, first
introduced by Quinlan [30, 31]. This begins by constructing putative tree “stumps”
[43], based on a number of options for the condition in the root node (how these
options are constructed is algorithm and data-type specific). The training set is then
distributed between the edges adjacent to this node based on this criterion, and a
measure of the balance of classes associated with each of these edges is calculated.
This measure is highest when an edge contains only one class (as there is no more
decision to be made) and lowest when there is an equal balance of classes (as no
information has been provided by the consideration of that condition). Based on this
measure, the condition that maximises this information gain is chosen. This is then
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recursively repeated for lower levels of the tree, until one of the following conditions
is satisfied: all classes are classified correctly (i.e. there are no “impure” edges);
no more non-contradictory conditions can be created; or some algorithm-specific
criterion for the simplicity of representation is satisfied (to avoid overfitting).

1.3 Protein Interaction Data and Predictive Features

We use four different features which were described as highly predictive features
in the detailed analysis done by Lu et al. [22]. These features are explained below.
All these features have been downloaded from supplementary material available
with [22] and available online at http://networks.gersteinlab.org/
intint.

• mRNA Co-expression (COE): Based on the hypothesis that interacting proteins
have correlated expression profiles [21, 22, 13], this feature seems promising for
the prediction of protein-protein interaction.

• MIPS Functional Similarity (MIPS): Interacting proteins often function in the
same biological process [22]. The data associated with this feature was extracted
from the MIPS functional catalog.

• GO Functional similarity (GOF): This data is based on a similar hypothesis as
the MIPS data, but is created using the GO functional classification scheme. The
details of preparation of the data are given in [21] and [22].

• Marginal Essentiality (MES): This is a quantitative measure of the importance
of non-essential genes to a cell [47] and it is based on the Marginal-Benefit Hy-
pothesis that many non-essential genes make a significant but small contribution
to the fitness of the cell [38].

Of course there are many other genomic features available like essentiality, data
derived from Rosetta stone method, etc; but most such features are very scanty,
i.e., very few protein pairs have known values for these features, or their predictive
power is very low as compared to the above mentioned highly predictive features.
Hence, in this work we only use the above mentioned highly predictive features
along with some high confidence gold standard interacting and non-interacting pairs
of proteins.

We obtained the S. Cerevisiae protein interaction data from DIP (Data base of
Interacting Proteins [34, 44]). We obtained nearly 5000 high confidence positive in-
teractions in DIP, called CORE, which is a subset of the total number of reported
protein interactions in DIP. Negative interactions are hard to find. As used by many
researchers in this field we consider a protein pair as a negative example (i.e., the
proteins in question do not not interact) if the proteins in the pair are not in the same
cellular compartment [21, 22]. This gives us many hundred thousands of protein
pairs which are not co-localized. As there are too many negative examples found in
this way, we keep only a small subset of those. We obtained gold standard negatives
from [22]. For both positive and negative gold standard data, we keep only those
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pairs with complete information, i.e., with no missing values in the four predictive
features which we use. After this preprocessing we end up with 2122 positive inter-
actions (positive examples) and 5656 negative ones in our gold standard set.

1.4 A New Hybrid Rule Induction/Likelihood-Ratio Based
Method

In this section we will first discuss two different approaches which can be used for
prediction of protein-protein interactions. First we will describe a naive Bayesian
formulation which is based on the estimation of likelhood values of interactions
given the predictive features, followed by a discussion of rule induction algorithms
which output a classification rule set. Then we will describe a hybrid apprach which
integrates both rule induction algotithms and likelihood ratios drawn from naive
Bayesian approach.

1.4.1 From Naive Bayes to a Likelihood Based Approach for the
Prediction of Protein-Protein Interactions

The Bayesian approach is widely used in inference problems in many different
areas, including several types of bioinformatics problems. Jansen et al. [21] and
Rhodes et al. [33] used a form of Naive Bayes classifier to predict protein-protein
interactions by combining multiple features. Given a data set of interacting pro-
teins,considered as positives, and a set of protein pairs separated in different cellular
compartments, considered as negatives, prior odds are defined as:

Oprior =
P(pos)
P(neg)

=
P(pos)

1−P(pos)
(1.2)

Where P(pos) and P(neg) is the fraction of positives and negatives respectively
among all pairs of proteins in the training data. The posterior odds that a pair of
proteins interacts given the predictive features f1... fn is:

Oposterior =
P(pos| f1... fn)
P(neg| f1... fn)

= Oprior ∗L( f1... fn) (1.3)

L( f1... fn) is the likelihood ratio and is defined as:

L( f1... fn) =
P( f1... fn|pos)
P( f1... fn|neg)

(1.4)

Making the Naive Bayes assumption that the predictive features are independent
from each other given the class (positive or negative), the likelihood ratio can be
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easily calculated as the product of individual likelihood ratios for each feature fi as
per Eq.1.5.

L( f1... fn) = ∏
i=1..n

L( fi) = ∏
i=1..n

P( fi|pos)
P( fi|neg)

(1.5)

L( fi) is calculated as the fraction of positives having feature fi divided by the
fraction of negatives having feature fi. As we are using a relatively small subset of
total interactions and non-interactions and a reliable estimate of prior odds does not
seem to be available, we do not use the prior odds at all in this formulation, and
hence the posterior odds are the same as the likelihood ratio. Since the prior odds
are not used, we analyze the predictive accuracy obtained for different threshold
cutoffs on likelihood ratio values, instead. Hence, in this paper, we use a likelihood
based approach for the prediction of protein interactions.

1.4.2 Generating Classification Rules for Protein-Protein
Interaction Prediction

A popular type of data mining methods consist of building predictive models in the
form of IF-THEN classification rules. More precisely, each rule has the form:

IF (condition(s) on attribute value(s)) THEN (class value)

Hence, each rule represents a relationship between the predictor attributes (fea-
tures) and the goal attribute. Rules are discovered using the training set. The discov-
ered rules are then used to predict the class value of examples in the test set, unseen
during training [9]. Rule induction methods are known to present the knowledge
discovered from the data in a comprehensible form to the users. Such comprehensi-
ble rules can be very helpful for the domain experts, for example biologists in our
case, who can validate the discovered rules and potentially get new insight about the
data. The discovered rules also have the potential to represent new knowledge about
the problem at hand.

A variety of approaches exist for learning accurate and comprehensible rules
from the data [43]. One line of research is to begin with building a decision tree and
then transform it into a set of rules [31]. However, in the literature the term rule in-
duction is often used to refer to an algorithm which discovers rules somewhat more
flexible than a decision tree, in the sense that the discovered or induced rules cover
data space regions that can have some overlapping (unlike the leaf nodes of a deci-
sion tree, which represent non-overlapping data space regions). Most rule induction
algorithms use the previously discussed separate and conquer approach, which tries
to determine the most powerful rule that underlies the data by sequentially adding
conditions on the attributes to the rule, separates out those examples that are covered
by the rule and repeats the procedure on the remaining examples [6].

For the problem at hand, we use a method called PART [8] for the classification of
protein-protein pairs (examples or data instances) into interacting or non-interacting.



10 Mudassar Iqbal, Alex A. Freitas, and Colin G. Johnson

PART involves features of both decision tree building and rule induction algorithms-
both of which were reviewed above. PART is available for use in the freely available
data mining package WEKA [43]. The basic idea of this method is that it uses the
separate and conquer strategy, as in the case of rule induction algorithms, in that
it builds a rule, removes the examples it covers and continues creating rules for
the remaining examples until none are left. But it differs from most rule induction
algorithms in the way a rule is induced. To build a single rule, first a pruned decision
tree is built for the current set of examples. Then the leaf with the largest coverage is
made into a rule, and the tree is discarded. This process is iteratively repeated until
all training examples are covered by the induced set of rules. The details about the
PART method and its comparison to other competing methods are in [8].

1.4.3 Classification Rule Discovery as a Binning Method for a
Likelihood-based Approach

When using the rule induction method described in previous subsection, most of the
discovered rules contain conditions on multiple predictor attributes. For example,
the following rule containing conditions on two attributes (GO and MIPS as defined
in Section 2) and predicting class 0 (negative interaction).

IF ( GO ≥ 3.85 AND MIPS ≥ 5.45 AND MIPS ≤ 6.15 ) CLASS = 0

There will be some negative examples satisfying this rule as well as some (per-
haps small in number) positive examples. Unlike the Naive Bayes method, each dis-
covered rule represents an interaction among the attributes in the rule’s antecedent
(since all attributes in that antecedent have to be satisfied, in order for an example to
satisfy the rule). We can view each of these rules as a multiple-attribute binning of
the data. This allows us to compute the likelihood in a way conceptually similar to
Eq.1.4, i.e., the fraction of positive examples satisfying this rule antecedent divided
by the fraction of negative examples satisfying the antecedent of this rule, but with
the difference that, instead of computing a likelihood for each individual feature, we
compute a likelihood for each “bin”, i.e., each conjunction of the attribute values in
a rule antecedent. Of course the bins and corresponding likelihoods are computed
using rules discovered from the training data. We then evaluate this hybrid predic-
tor’s performance on the test set using a ROC curve. In other words, after having the
rules, or these multi-attribute bins, we calculate their likelihood ratios and predic-
tive accuracy by putting different thresholds on the minimum value of the likelihood
ratio required to assign an example to the positive class. In this way we can analyze
the whole range of threshold values like in the case of the Naive Bayes method, in-
stead of the hard classification done by stand alone rule based method. We analyze
the effects of these multi-attribute bins/rules against the assumption of the Naive
Bayes method which assumes independence among the attributes given the class.
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1.5 Results and Discussion

We present here a ROC (receiver operating characteristic) curve analysis of the re-
sults obtained using a likelihood-based approach as explained in section 1.4 and
using our hybrid approach based on a rule learner combined with likelihood ratio
test. A ROC curve graphically depicts the performance of a classifier at different
levels of thresholds that we put on the minimum likelihood for prediction of posi-
tive interaction in this two class classification problem. In other words, for a given
threshold value t, a test example (protein pair) is predicted to have interaction (posi-
tive class) if and only if the value of likelihood (Eq. 1.4) is greater than or equal to t.
This kind of analysis gives us an opportunity to evaluate the classifier not just by the
total number of classification errors it makes, but rather allows us to analyze what is
the tradeoff among two different types of errors, i.e., false positive predictions and
false negative predictions. It plots true positive rate (sensitivity) vs false positive
rate (1-specificity), where each point in the curve belongs to a particular threshold
on the likelihood value. In this way we can analyze the effect of different thresholds
on predictive accuracy instead of analyzing the effect of a single threshold using
prior odds.

We use the 10-fold cross validation procedure [43] in all experiments reported
here. Both positive and negative interaction data along with the predictive features
is divided into ten equal folds respectively. For each experiment, we divide the data
(for both positive and negative classes along with their features separately) randomly
in ten equal folds. Each time we use nine out of ten folds as training and the remain-
ing one fold as a test. This process is repeated ten times, each time using a different
fold as the test set. Likelihood values estimated during the training run are used to
predict protein-protein interactions in the test examples. Sensitivity and specificity
are defined by Eq. 1.6 and 1.7,

Sensitivity =
T P

T P+FN
(1.6)

Speci f icity =
T N

T N +FP
(1.7)

Where T P,T N,FP and FN are the number of true positives, true negatives, false
positives and false negatives respectively. A ROC curve for a good classifier will be
as close as possible to the upper left corner of the graph, with a large area under the
curve. Fig.1.2 shows the ROC curves for pure likelihood-based approach (hereafter
called LIKE) and the hybrid method (hereafter called LIKE-PART, i.e., Likelihood
based classifier using PART for finding rules/bins). The corresponding areas under
the curve are 0.8862 and 0.9325, showing a better predictive performance of the
LIKE-PART hybrid.

We can see from the Figure 1.2 that taking into account the multi-attribute bin-
ning or the rules produced by the base rule learner has enhanced the overall perfor-
mance of the classifier significantly, even though the features in this data are not so
much correlated, as reported in [22]. Table 1.1 reports the results for the likelihood
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Fig. 1.2 ROC Curve for LIKE-PART and Pure Likelihood-based Approach (LIKE)

cutoffs which correspond to maximum predictive accuracies for both methods. A
statistical significance test performed on the accuracy values over ten folds for these
likelihood cutoffs gives a p-value of 0.0000017, which indicates that LIKE-PART
outperforms the LIKE method very significantly.

Table 1.1 Results for maximum value of accuracy for both methods

Method LogLRcut T PR FPR(1−Spec) Sen∗Spec Acc T P/FP
LIKE-PART 0.49 0.748 0.0433 0.716 0.8998 6.48

LIKE 0.6 0.66 0.0457 0.63 0.874 5.41

1.6 Conclusions

In this work, we have addressed a challenging and important bioinformatics prob-
lem, namely the prediction of protein-protein interactions using a hybrid data mining
technique combining rule induction methods with likelihood ratio based classifiers.
We used integration of different genomic features for a small data set and imple-
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mented two versions of a likelihood ratio based classifier. We did not use any prior
odds, but rather used only likelihood ratio and presented a range of results using
ROC curve for different thresholds on the likelihood values used as a minimum
value for the prediction of positive examples. We proposed a new hybrid method
which used a known Rule Induction algorithm (PART) to induce rules from the train-
ing set taking into account possible attribute interactions and then interpret each rule
as a bin for the likelihood based classifier. Since these bins were produced by taking
into account attribute interaction, they avoid the unrealistic assumption of indepen-
dence between attributes that is made by a pure likelihood based classifier. Then we
compared the ROC curve of this new hybrid PART/Likelihood-based method with
the ROC curve of the pure likelihood-based method and we observe that the hybrid
method significantly improves as an overall classifier. Also, in the proposed method
we can use different levels for likelihood value cutoff for final prediction, which
gives us a more general setting where one can go for different levels of sensitivity
and specificity.

We have evaluated this collaborative technique in the specific problem of pre-
dicting protein-protein interactions using genomic features, but the basic idea be-
hind the technique, i.e., using induced rules as multi-attribute bins for the likelihood
ratio based classifier, can be used for other classification problems easily, since it is
independent from the application domain.
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