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Abstract 

 

Predicting protein structure and function from amino acid sequences is a central aim of bioinformatics. 

Most bioinformatics analysis uses sequence alignment as the basis by which to measure similarity. 

However, there is increasing evidence that many protein families are resistant to this straightforward 

method of comparison. Increasingly, a combination of machine-learning techniques and abstract 

representations of protein sequences are being used to classify proteins based upon the similarity of 

their physico-chemical properties rather than scoring sequence alignments. This is particularly effective 

in protein families that show greater structural conservation but appear to lack conserved sequences. 

Here we describe the inherent limitations of the alignment-dependent approaches to protein 

classification and present ‘alignment-free’ representations as a viable and realistic alternative to solve 

complex problems within bioinformatics.  

 

 

 



 4 

Introduction 

 

The discovery of new protein sequences is accelerating yet many of these proteins show similarity to 

existing sequences; the proportion of new but redundant sequences is thus increasing. This may 

indicate that the global proteome, estimated to be approximately five million sequences, is within a few 

years of completion (1). In light of this, and the extraordinary productivity of metagenomics (a 

relatively new field which combines the study of nucleotide sequences with their structure, regulation, 

and function) (2), efficient bioinformatics analysis of protein sequences to determine structure and 

function has become an imperative. Computational analysis of the nucleotide and protein sequences of 

a protein family can reveal the relatedness of its members (3). Protein sequence analysis has evolved 

into a rational methodology based upon the analysis of multiple sequence alignments, which can 

determine the similarity between proteins by comparing their primary sequences (4). The technique 

sorts proteins into recognisable groups using variance maximisation, which exploits the differences 

between the columns of aligned amino acids (5). Variance maximisation is based on the premise that an 

arrangement of groups that reflect intrinsic structure or function would feature many columns 

containing large frequencies of similar amino acids. Such groupings should differ significantly from an 

average distribution of residues and an optimal arrangement is achieved when there is the maximum 

variance obtained over all the groups being classified. Protein groups are therefore clustered by their 

similarity to each other. Sequence comparison takes places in two stages. First, the sequence is aligned 

with reference to homologous sequences, such that overtly similar regions are brought into register. 

Secondly, a score is derived from the calculated alignment. The relatedness of two proteins is 

quantified by calculating the similarity between the aligned sequences. The similarity or mutation 

matrix describes the probabilities of amino acid mutations for a given period of evolution. This makes 

the assumption that all mutations occur randomly but are dependent on probabilities defined by 

properties of the amino acids themselves. This model of evolution computes the probability that the 

alignment arises by reasons of common ancestry while the product of the database frequencies of the 

aligned amino acids are used as the probability of alignment by chance. This model assumes Neighbour 

Independence, each symbol mutates randomly and independently of each other so that the mutation of 

one amino acid is completely uncoupled from that of its neighbours, positional independence, the 

probability of mutating from amino acid i (Ai) to amino acid j (Aj) depends only on Ai and Aj has the 

same probability of occurrence in any part of the sequence and historic independence, the model is 

without memory and the probability of mutation at each site only depends on the present state of the 

sequence. 

 

The first set of replacement matrices were developed by Dayhoff (6). The replacement rates for the 

matrices were derived from alignments of protein sequences containing 1572 accepted mutations 

between 34 superfamilies, all of which had at least 85% homology. Data was collected on point 

accepted mutations (PAMs) per 100 residues. A 1-PAM mutation matrix describes an amount of 

evolution which will change, on the average, 1% of the amino acids. No linear relationship is implied 

between PAM distance and time as evolution rates vary significantly between different species and 
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protein types. The matrices P(0.5), P(1) and P(2.5) (known as the PAM50, PAM100 and PAM250 

matrices) are still used to assess the significance of proposed matches between target and database 

sequences. Commonly used also are the BLOSUM (BLOcks of Amino Acid SUbstitution Matrix) 

series of matrices, developed by Henikoff and Henikoff (7), which were derived from a database of 

alignments of protein blocks. BLOSUM matrices improved the accuracy of alignments previously 

obtained from the PAM matrices (this is demonstrated by the use of the local similarity search method 

BLAST). While the PAM matrices were estimated from only closely related sequences, the BLOSUM 

matrices were derived using local, ungapped alignments of distantly related sequences. Matrices of this 

series are identified by a number after the matrix (e.g. BLOSUM50), which refers to the minimum 

percentage identity of the blocks of multiple aligned amino acids used to construct the matrix. The 

BLOSUM matrices often perform better than PAM matrices for local similarity searches, but have not 

been as widely used in phylogenetics, the study of evolutionary relatedness amongst various organisms. 

Other matrices developed include Jones et al. (8), an amino acid replacement matrix calculated 

specifically for membrane spanning segments following the observation that the Dayhoff matrices were 

biased toward water-soluble globular proteins, and the SCV matrix (9), which focuses on representing 

solvent accessibility, residue charge and residue volume.  

 

Although the use of mutation matrices remains widespread in bioinformatics, there are certain 

limitations to the technique. Firstly, the matrices lack the discretion to determine which parts of the 

sequence are likely to be conserved, typically those relating to structure and function, and which are 

not. It is also the case that dependencies which relate one amino acid characteristic to the 

characteristics of its neighbours are not possible to model through this mechanism. The model 

represents evolution as a Markov process, assuming a consistent rate of evolution where each mutation 

occurs independently. In actuality, this fails to account for the true effect to multiple substitutions or 

the inconsistent effect of point mutations on the proteome (10). It is likely that the deterministic forces 

that have driven the evolution of the genetic code are partly physico-chemical in nature. Natural 

selection has produced a redundant code that protected the phenotype from errors due to the high 

frequency of silent point mutations. The structure of the genetic code may also reflect the biosynthetic 

pathway of amino acid formation (11). However, the relationship between point mutation within the 

genetic code and amino acid properties is not fully understood. It has been suggested that assuming a 

steady mutation rate can lead to a suboptimal description of the true phylogeny and that the strategy 

necessary to optimise a mutation matrix may vary considerably depending on the nature of the proteins 

or the organism from which they are derived. However, there is evidence that at low divergence 

between sequences, the genetic code is a better indicator of phylogeny while at high divergence better 

accuracy is achieved by focussing on amino acid properties (12). 

 

Quantifying the similarity or dissimilarity between two sequences is therefore ambiguous and depends 

largely on the relative importance that is assigned to a particular region (4).  More often the 

classification of proteins into groups is dependent on the identification of specific motifs within the 

primary sequence. Commonly these pertain to the protein’s active site (13) and these have been used to 
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develop the ‘fingerprints’ by which certain protein groups can be identified (14) or the PROSITE 

patterns or profiles of protein classification (15).  

 

A more fundamental problem with alignment-based techniques is the intrinsic logistic difficulty 

encountered when undertaking multiple sequence alignment, particularly when there are several 

hundred sequences to be aligned (16). There are inherent limitations in alignment-based techniques that 

may prohibit its application, particularly to protein groups with low sequence similarity. It has been 

observed that despite continual developments in the technique, there is still a significant drop off in the 

accuracy of the matrices when there is less than 30% sequence similarity between proteins. Above the 

‘twilight’ zone (20-30% homology), accuracies of up to 80% have been reported (17) (although such a 

figure is very largely on the dataset provided). Within the twilight zone, the accuracy level drops to 65-

68%, indicating there is a point where the relationship between similarity score and structural similarity 

breaks down. This would suggest that there is a point beyond which alignment scores lose the capacity 

to be a quantitative metric. There are several reasons why this may occur. Alignment-dependent 

techniques represent the sequences as being essentially linear, ignoring both the physical three-

dimensional nature of the protein structure and the dynamic nature of the complex it forms. Hence 

alignment does not fully account for long distance interactions nor the general fluidity of the actual 

protein. Another weakness of alignment is that it focuses only on ‘positive’ samples (protein family 

members) in the dataset without any contribution of ‘negative’ samples (non-members) to the training 

of the algorithm. It is also possible that the initial alignment of a protein group may introduce a bias 

into the subsequent alignment of new protein sequences. Lastly, the notion of alignment is based on the 

premise that protein sequences are contiguous, which is seemingly at odds with processes such as the 

shuffling of sub-genomic DNA fragments through genetic recombination and exon skipping (4).  

 

Attempts to compensate for the inherent problems of alignment-based techniques have largely 

concentrated on machine-learning techniques such as Artificial Neural Networks (ANNs) (19), Support 

Vector Machines (SVMs) (20) or Hidden Markov Models (HMMs) (21). Machine-learning techniques 

are a subfield of artificial intelligence which are focussed on the design and development of “learning” 

algorithms. These algorithms are employed in bioinformatics in an attempt to determine more intricate 

patterns of classification. Machine learning techniques are sometimes based upon the representation of 

a protein by its dipeptide composition, whereby each of the 400 possible pairs of amino acids is 

associated with a vector component representing the percentage of the primary sequence consisting of 

that pair. More recently, however, a different type of analysis has started to emerge, one that is based 

on the physicochemical properties of proteins and not on any direct or indirect alignment of the 

sequences. Similar techniques have already been successfully applied to the analysis of genomic 

sequences, where chaos game representations have shown the capacity to identify similar patterns 

between related genes of similar species and also shown that sub-sequences of a genome exhibit the 

main characteristics of the whole genome (22). This means that the Alignment-Free approach is 

capable of generating a similar score that is not dependent on direct alignment but which is based upon 

the specific sequential nature of the proteins. Such analysis assumes no homologous relationships 
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between similar sequences and is not reliant on motifs, allowing it to avoid some of the pitfalls of 

biased sampling. Instead, alignment-free descriptors are designed to extract sequence properties that 

are shared among functionally similar proteins, making it particularly suitable for the analysis of 

protein families with low sequence homology. We discuss below Alignment-Free approaches to protein 

sequence analysis; and how such approaches can be employed to classify and characterise protein 

families effectively.  

 

Technical Overview of Alignment-Free techniques 

 

Alignment-free techniques represent the physicochemical properties of proteins as numerical values 

related to their sequence and/or composition. Although some alignment based techniques do 

incorporate physicochemical properties as part of their methodology (23) This technique uses amino 

acid indices, which measure the relative values of a certain property such as hydrophobicity, polar 

values or steric values (24). Each index only measures a single property, and do not describe fully all 

the attributes of a residue. With so much redundancy contained within available indices, the 

physicochemical properties of each side-chain must be summarised into a few key values that 

sufficiently characterise each residue.  Sequence similarity can be assessed by combining many amino 

acid properties into a substitution or mutation matrix. Large numbers of amino acid indices and 

mutation matrices are contained in the Amino Acid Index (24). 

  

There are two ways in which the alignment-free techniques can represent a protein sequence, the 

discrete form and the sequential. The discrete form is based on a protein’s amino acid composition, 

consisting of the frequencies of the 20 different amino acids in the sequence. The sequential form also 

accounts for the order of amino acids in a sequence. While the discrete form is more manageable than 

the sequential, it possesses certain limitations. In the discrete form, the sequence order and length are 

lost. While composition is important, to exploit fully all information implicit within a protein sequence, 

we must incorporate information from the explicit order of amino acids. However, as protein sequences 

have variable lengths, normalisation of resulting derived data is necessary.  

 

A simple example of an alignment-free approach is the decision tree induction algorithm (25), which is 

applied to attributes representing dipeptide compositions. More precisely, each protein is represented 

by a vector of 20 values, representing the frequency of the 20 amino acids in the sequence. The C4.5 

algorithm is used to create subsets from the training set based on amino acid compositions (26). The 

choice of when to split is made by selecting the amino acid composition feature which best 

discriminates the classes to be predicted. The division continues until the stopping criteria are satisfied 

and a successful classification algorithm is generated.  

 

Optimised evidence-theoretic K-nearest neighbour (OET-KNN) is a classification method somewhat 

similar to an SVM (27). It has been used to classify proteins represented by amino acid composition. 

The basic idea of a K-NN algorithm is that, for each unknown protein sequence, the system computes a 
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measure of the similarity between that sequence and each of the known sequences in the training set. 

Then the system selects the K nearest training sequences, and the class of the majority of those 

sequences is transferred to the class of the unknown sequence. The technique has been applied 

successfully to various transmembrane protein families. 

 

One of the first attempts are representing proteins sequences based on amino acid composition was the 

PropSearch program (http://abcis.cbs.cnrs.fr/propsearch) (28). The program described the protein 

sequence as having 144 properties including amino acid composition, hydrophobicity, charge and 

‘doublet’ groups showing the incidence of pairing of amino acids with similar or different physical 

properties within the sequence. This provides a measure of the variation of the physical properties 

within the protein. Multiple sequences could be merged into an average sequence that reflected the 

properties of a specific protein family. Weights were optimised between protein subtypes to allow 

maximal discrimination between protein subtypes. 

 A similar approach is used for the Local Protein Sequence descriptors method, a discrete form of 

analysis whereby the protein sequence is divided into ten regions, the length and composition of which 

is dependent on the total size of the protein (29-30). Three descriptors - composition (C), transition (T) 

and distribution (D) - represent the properties of each local region. C represents the percentage of 

frequencies of residues with a specified property that occur in the local region, T represents the 

percentage frequency with which the specified property changes within the region while D 

characterises the distribution of the property along the entire region by measuring the location at which 

the first, 25%, 50%, 75% and 100% of the residues with the property occur. Descriptors for all local 

regions over the whole protein are combined to give a general representation of the sequence. Key to 

this analysis is the grouping of the twenty amino acids used, because a descriptor value refers to a 

group of similar amino acids rather than being associated with a single residue. As there is no 

conventional means of grouping the standard twenty amino acids, Cui et al. (30) put them into the three 

categories of hydrophobic (CVLIMFW), neutral (GASTPHY) and polar (RKEDQN). However, many 

side chains have properties pertaining to more than one group. For instance, tyrosine is characterised as 

neutral but has an aromatic ring and a hydroxyl group: one suggests hydrophobicity, the other polarity. 

Different amino acid groupings would be expected to produce different results. It is also difficult to 

anticipate the optimal number and distribution of groups. Too many groups might better represent the 

residues but could overly complicate the descriptors. Optimising the amino acid groupings using data 

mining techniques (31) showed clearly that the same groupings to appear, in particular the grouping of 

cysteine on its own, indicating a unique property of the residue. 

 

Sequential form analysis focuses on finding periodicity within protein sequences. The calculations are 

performed for a lag value of 1, e.g. adjacent residues, then for a lag value of 2, 3 and so on. One simple 

way to incorporate sequential information is by describing the balance of hydrophobic and hydrophilic 

properties with a protein. A secondary structural property, such as an ideal alpha helix, will naturally 

balance hydrophobic and hydrophilic residues, creating an amphiphilic sequence. The amphiphilic 

properties of different proteins will vary. The amphiphilic pseudo amino acid composition (Am-Pse-
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AA composition) exploits such variations to differentiate protein types (19). It incorporates the classic 

amino acid composition and supplements this with the amino acid sequence correlation along the 

length of the protein.  

 

 

 

It is, however, possible to incorporate far more than just amphiphilic values into a sequential 

representation. Kim et al. (32-33) classify sequences in a ‘feature space’ and create discrimination 

functions that put sequences into specific categories. The feature space uses statistical measures of 

physico-chemical properties and then uses a linear discriminant function to classify protein sequences. 

The Quasi-predictor Feature Classifier (QFC) algorithm was designed to statistically characterize the 

differentiating features of the physico-chemical properties of protein sequences using heuristic data 

reduction principles. The amino acid properties examined were the GES hydropathy, the Kyte-Doolittle 

index, polarity, isoelectric point, molecular weight, solubility and the alpha helix index. The values 

were also normalized using the Sliding Windows Recogniser with the separate values being summed 

over a window. Window lengths of 13-16 amino acids were shown to be more effective than lengths of 

32 and 64 amino acids. However, the QFC algorithm was shown to have a higher false positive rate 

than most motif-based techniques, suggesting that the technique would benefit from another stage of 

filtering. 

 

Proteochemometrics is a technique whereby 26 separate physicochemical properties of the protein are 

used to calculate five empirical ‘z’ values for all 20 amino acids (34-36). The z1 value accounts for the 

amino acid’s lipophilicity while the z2 value summarises the residue’s steric bulk/polarisability. 

Polarity of the amino acid is described by the z3 value while the z4-5 values represent the electronic 

effects. These five values are calculated for each amino acid in the sequence, generating a matrix that 

provides a purely numerical description of the protein’s character. AutoCross Co-variance (ACC)(37) 

is used to normalize the uneven size of the z matrices and then Principal Component Analysis (PCA) 

and Partial Least Squares (PLS) are carried out in order to provide a classification system for proteins. 

As the proteins used in the study had different lengths, an auto cross covariance (ACC) transformation 

was used to transform them to a uniform length. ACC calculates lag values between the residues 

positions within a z value (Auto contribution) and between z values (Cross contribution). The results of 

these transformations were new uniform sets of variables for each protein. Key to the ACC approach is 

balancing the two factors of maximum lag, L, and the degree of normalization, p. Optimal parameter 

values can be determined by trying various combinations and then assessing their total classification 

accuracy. However, further research by Secker et al. (38) has suggested that using an arithmetic mean 

over each attribute for each protein could be an effective means to normalise the data while vastly 

reducing the processing time and storage requirements necessary to implement the Auto Cross 

Covariance approach. It should be noted that this approach therefore applies a discrete representation to 

the data rather than a sequential one. Proteochemometrics is also used in the application of Self-

Organising Maps (SOMs) (39). SOMs are Artificial Neural Networks (ANNs) that perform 
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unsupervised learning (in this case, clustering) to determine one protein family from another. Unlike 

PCA, which relies upon establishing linear relations, an SOM can accommodate non-linear relations 

into its algorithm. In order to make a family map to determine a certain protein subtype, it is necessary 

to determine a family area that contains the most frequent “activator” family samples. A feature map 

developed for protein classification must also include an objective border between clusters that clearly 

distinguishes each family. 

 

 

 

Application of alignment-free techniques 

 

There are several instances where the application of alignment-free techniques have been proven to be 

effective where alignment based methods have not been. In such cases where there is a sequence 

similarity <30% between two sequences (sometimes described as the ‘twilight zone’), it is extremely 

difficult for them to be correctly aligned. Protein families that have great structural and/or functional 

homology but a low degree of sequence similarity are therefore very difficult to classify. An example 

of this is G protein-coupled receptors (GPCRs), which play an important role in many physiological 

systems by transducing an extracellular signal into an intracellular response.  

 

There is considerable interest in developing an algorithm that could effectively predict the function of a 

GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR 

sequences but in characterising the interrelationships between known GPCRs. An extremely 

heterogeneous set of molecules can act as GPCR ligands including ions, hormones, neurotransmitters, 

peptides and proteins. The GPCRs are a common target for therapeutic drugs and approximately 50% 

of all marketed drugs target GPCRs (40-41). In spite of their functional and sequence diversity, there 

are certain structural features common to all GPCRs. All GPCRs contain seven highly conserved 

transmembrane segments. The transmembrane segments form seven α-helices in a flattened two-layer 

structure known as the transmembrane bundle, a structure seen in all GPCRs (42). The GPCRs shows a 

far greater conservation with regard to the three-dimensional structure than to the primary sequence. 

The diversity of the GPCRs means it is difficult to develop a comprehensive classification system for 

all of the GPCR subtypes (43). Although the GPCRs can be grouped by structure but only subsets can 

efficiently be grouped by sequence. Previous attempts at predicting the function of a GPCR from its 

primary sequence, and therefore its position within a given hierarchical system, have included motif-

based classification tools (44-45) and machine learning methods such as Hidden Markov Models (46). 

The majority of predictive techniques, however, have used Support Vector Machines (SVMs) (47), 

machine-learning algorithms based on statistical learning theory. Although SVMs are more commonly 

used to solve 2-class problems, this technique can be applied to the classification of GPCR data by 

successively trying to classify one class against all others. Several publicly available SVM-based 

GPCR classifiers exist including PRED-GPCR (48-49), GPCRPred (50) and, GPCRsclass (51), which 
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concentrates on the Class A aminergic receptor subfamily. In the first round of analysis, an SVM is 

generated to distinguish amines from all other GPCRs.  

 

An alignment-free approach to GPCR classification was developed using techniques drawn from data 

mining and proteochemometrics  from a dataset of over 8,000 sequences. The predictive algorithm was 

developed based upon the simplest reasonable numerical representation of the protein’s 

proteochemometric z values (34-36). A selective top-down approach was developed which used a 

classifier to assign sequences to subdivisions within the GPCR hierarchy (52). The predictive 

performance of the algorithm was assessed against several standard data mining classifiers and further 

validated against Support Vector Machine-based GPCR prediction servers. The selective top-down 

approach was shown to have significantly higher accuracy than standard data mining methods in 

almost all cases. This suggests an Alignment-Free representation is the best approach to this particular 

set of proteins. 

 

Another example of where the application of an Alignment-Free technique can be effective is in the 

detection of allergens. Allergic reactions are dependent on a series of intrinsic and extrinsic factors that 

control both the development and triggering of the condition (53). They are often caused by the type I 

hyperreactive reaction, induced by antigens that elicit specific IgE antibodies or from cross-reactivity 

between similar allergens. The increasing use of modified proteins in food has lead to an increasing 

concern about the identification of allergenic proteins. The World Health Organisation (WHO) and 

Food and Agriculture Organisation (FAO) have defined an allergen as any protein that shares a 

contiguous sequence of at least six residues with a known allergen or has a homology with it of >35% 

over a region of 80 residues. This definition has been heavily criticised since it produces so many false 

positive results. Previous approaches to IgE prediction (IgE is a type of antibody only found in 

mammals that plays an important role in allergies) have used motif-based approaches (the 

MEME/MAST program) (54), a K-nearest neighbour classifier (55) and similarity searches against IgE 

epitope/epitope profiles (56). However, none of the techniques developed so far have produced a 

reliable predictor of IgE epitopes, partly due to the limited number of known epitopes available. Many 

allergens appear to cluster in a limited number of protein families but very few families seem to lack 

members with allergenic properties (57). There is considerable interest in designing allergens that can 

be modified to address specific cells of the immune system and hence to dictate the extent of the 

immune response created (58-59) although this is not possible without a strategy to determine proteins 

with allergenic properties from those with non-allergenic.  AllerTool (29) uses a SVM that encodes 

descriptors derived from amino acid composition and showed a predictive sensitivity and specificity of 

86% in determining allergens from non-allergens.  

 

Conclusion 

 

Alignment based techniques have many advantages, particularly that they are readily understood. 

However, as with all protein classification approaches, alignment based approaches exhibit many 
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limitations. There are classification problems in bioinformatics that are too subtle for conventional 

alignment-dependent analysis. It may be that alignment-based analysis cannot properly capture the 

uneven variance of genetic recombination or the subtle physico-chemical properties that underlying 

protein structure and folding. Alignment-free techniques also presents certain limitations as, following 

classification, it is difficult to establish what the properties are of protein sequence assigned to a 

specific group. Nonetheless, alignment-free analysis offers greater potential for pattern recognition 

within protein classes and can offer an accurate means of measuring protein similarity. Alignment-free 

approaches offer a valid alternative to alignment-based techniques and have a wide range of 

applications in the field of bioinformatics. 
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