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Abstract 
 

The G-protein coupled receptors – or GPCRs - comprise simultaneously one of the 

largest and one of the most multi-functional protein families known to modern-day 

molecular bioscience. From a drug discovery and pharmaceutical industry 

perspective, the GPCRs constitute one of the most commercially and economically 

important groups of proteins known. The GPCRs undertake numerous vital metabolic 

functions and interact with a hugely diverse range of small and large ligands. Many 

different methodologies have been developed to efficiently and accurately classify the 

GPCRs. These range from motif-based techniques to machine learning as well as a 

variety of alignment-free techniques based on the physiochemical properties of 

sequences. We review here the available methodologies for the classification of 

GPCRs. Part of this work focuses on how we have tried to build the intrinsically 

hierarchical nature of sequence relations, implicit within the family, into an adaptive 

approach to classification. Importantly, we also allude to some of the key innate 

problems in developing an effective approach to classifying the GPCRs: the lack of 

sequence similarity between the six classes that comprise the GPCR family and the 

low sequence similarity to other family members evinced by many newly revealed 

members of the family.  
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1 Introduction 

 

 The speed at which new protein sequences are discovered seems to constantly 

accelerate as new technology, such as third-generation instrumental sequencing, 

comes on-stream. However, many of these newly-sequenced proteins show strong, or 

at least overt, similarity to existing sequences: in terms of novelty, the proportion of 

new yet redundant sequences is also constantly increasing. This may indicate that we 

are close to defining a final complement of biological sequences available within 

nature. This virtual “global proteome” is estimated at close to five million sequences 

[1]. In light of this, and the bewildering productivity of metagenomics [2], the 

efficient analysis of protein sequences to determine structure and function has become 

an imperative goal of genomics. Bioinformatics, the application of knowledge-driven 

science to biological macromolecules and the complex systems that arise from their 

interactions, can collate and capitalise on this wealth of information by developing 

efficient and incisive algorithms for its analysis.  

 The coming step change apparent with biomedicine presents us with a confounding 

embarrassment of riches; a term which incidentally entered English as long ago as 

1738 in John Ozell's translation of a French play, L'Embarras des richesses (1726). 

The embarrassment of riches set to become ever richer in complexity and detail yet 

our inability to deal with it is set to become ever more embarrassing. The English 

language remains enthral to the common parlance of the past. Even today, in the 

globalised, multi-cultural twenty-first century, much of our idiomatic speech is 

submerged by the nautical vocabulary of the Eighteenth century or corralled by the 

high phrasing of William Tyndale's 1528 bible. In much the same way, our ways of 

thinking and of acting and of being can remain wedded to the past, hampered and 

constrained by unnecessary conservatism and caution, as seen in the way that so many 

cling to outmoded ways of tackling pressing and exigent issues. We need new and 

innovative approaches to functional genomics as much as we need them in business, 

politics, and diverse other areas of human activity. Fully rather than partially engaging 

with the potential of computer science is one such innovation. Experimentalists must 

allow themselves to be directed by data-hungry informatics analysis, abandoning their 

rigid instance on necessarily-restrictive experiment-first, hypothesis-driven research 

in favour of an approach that embraces the full potential of research that is driven 

instead by the informatics-led discovery and analysis of data [3].  



 4 

 The very large amount of data concerning protein function currently available is of 

incalculable valuable, since within it is the potential to understand better the nature of 

disease, and through that understanding to enact better treatment, instantiated by the 

design of more effective drugs, therapies, and vaccines. However, to properly 

capitalise on this rare potential, we need to use intelligent data analysis. This has been 

given the catchy epithet: "data mining" (DM), since it involves "mining", that is, 

identifying and analysing, raw data; transforming it first into information, then useful 

knowledge, and eventually, it may be hoped, into true understanding [4].  

 Biomedical discovery can often hinge upon effective computational sequence 

analysis revealing important and unexpected functional relationships between 

members of protein families. DM is a discipline within informatics that seeks to 

extract patterns from raw data that are useful, non-trivial, and previously unknown [5] 

[6]. When performing the DM task of classification, algorithms are exposed to input 

data, identifying therein patterns and regularities which are subsequently used to make 

predictions. In terms of machine learning terminology, the task of classification is a 

form of supervised learning where the patterns discovered by DM can be used to infer 

a class (or classification) of previously unseen or unclassified data; in this way the 

class (or function) of a protein can be predicted by these previously discovered 

patterns. Automated function prediction through classification algorithms is now a 

vital if underappreciated component of biological discovery, since new sequences are 

currently discovered at such a prodigious rate that classification is a task far beyond 

anything that manual labelling can achieve. Soon, new genomes may be delivered on 

a daily basis. The concomitant interpretation-gap will become huge beyond measure 

and, without automation, making sense of this glut of data will be impossible. 

 The potential confusion inherent within such a scenario has long been 

foreshadowed by our experience of one particular protein family: the G-protein 

coupled receptors or GPCRs. The GPCRs comprise a large and varied multi-gene 

super-family which consists of integral membrane proteins involved in seemingly 

innumerable physiological functions [7-8]. GPCRs are, for example, responsible for 

turning diverse extracellular and endogenous signals into a limited number of 

intracellular responses. A heterogeneous collection of molecules act as GPCR ligands: 

these include light, in the form of photons; ions; hormones; neurotransmitters; 

peptides; and proteins. Since GPCRs are implicit in physiological processes as diverse 

as neurotransmission, cellular metabolism, secretion, inflammatory responses, and 
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cellular differentiation [9], they have become a consistent target for the development 

of medicines: roughly 50% of all marketed drugs target a GPCR [10]. Most anti-

GPCR therapies have been derived through the somewhat haphazard processes innate 

to medicinal chemistry; driven, as it certainly was in times past when GPCR 

structures were not available, by the whims and caprices of synthetic chemistry rather 

than the focussed, rationality of structure-based design.   

 Now, of course, through both sequence analysis and the determination of crystal 

structures, there is much that initial in silico approaches can tell us about newly 

determined GPCR sequences, including forecasts of its potential function. Despite the 

diversity of the superfamily, there are many commonalities among GPCRs. Every 

member of the GPCR superfamily contains seven highly conserved transmembrane 

segments (of 25-35 consecutive residues), each displaying a high degree of 

hydrophobicity. Rather than forming a perfect circle or regular ellipse, the seven 

membrane-crossing α-helical segments (TM1-7) form a flattened two-layer structure 

known as the transmembrane bundle, which is thought to be common to all GPCRs 

[11].  

 Compared to many apparently similar sets of proteins, the GPCRs exhibit a far 

greater conservation of structure than of sequence. In this review, we seek to place 

this assertion into context and explore some of its implications. The proteome of a cell 

is considerably larger, more complex, and certainly more interesting than its genome. 

Some estimates place the number of proteins encoded by the human genome 2–3 

orders of magnitude higher than the number of genes. Mechanisms, including splice 

variants, inteins, post-translational modifications, cleavage of precursors, and other 

types of proteolytic activation, magnify the number of protein products by an order of 

magnitude [12].  

 Moreover, the proteome is more dynamic than the genome, showing greater 

differences between individual human patients, and exhibiting more profound 

differences with cell type, functional status, and disease state. Identifying, cataloguing 

and characterising an individual’s proteome and its complement of GPCRs, will 

doubtless prove more challenging than did annotating the genome. Analysing 

proteomes can only be addressed, and addressed convincingly, by coupling the 

experimental to the computational. Here we outline various approaches that have been 

used to develop GPCR classification algorithms and attempt to highlight the strengths 
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and weaknesses of the various approaches. By reviewing the various computational 

techniques used to classify and categorise the GPCRs, we will explore how the severe 

computational challenge presented by the complex hierarchical classification of the 

GPCRs has and will be met. Approaches such as those we describe will have 

important applications not only in discovering and characterising novel protein 

sequences but also in better understanding the interrelatedness apparent between 

known members of the GPCR superfamily.  

 

2. Brief Overview of Nomenclature, Classification, and Repertoires  

 

General, immanent difficulties in producing a comprehensive classification system for 

the protein super-families have existed for some time; as long perhaps as sufficient 

numbers of protein sequences to warrant such an analysis have been available [13]. 

Since they are so numerous, and the interrelationships within the group so complex, 

the GPCRs have proved especially contentious. Evolutionary relationships between 

different GPCR groups are not certain; some receptors may have arisen through 

convergent evolution to adopt a particular structural scaffold, and may not even be 

homologous.  

 Even selecting an appropriate nomenclature has provoked controversy. The term 

“family” has long been used to describe groupings with the GPCRs. The definition of 

family does not rely solely on the possession of sequence similarity, but also 

embraces a larger set of functional, structural, and evolutionary features. In this 

context, and when viewed rigorously, the term “superfamily” can seem ambivalent 

and confusing. 

 Unfortunately, and despite such difficulties, there is not - and possibly there never 

will be - any overarching term or collective noun able to include and subsume all 

GPCR sequences. Many have been suggested. Umma, for example, is used as a 

collective term encompassing the community, the totality of all Muslims, irrespective 

of all other allegiances. Thus, umma can serve as term able to sit above all other 

definitions of familial propinquity; it can imply relatedness in some not wholly 

explicit sense. Another such expression is “clan” [14]: it uses the idea of kinship 

leniently, recognizing both convergent and divergent evolution. Because of its 

pervasive usage, we retain here the terms: family and superfamily. They are useful, if 
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flawed, catch-all expressions and can encompass both homologous and non-

homologous protein families.  

 One of the first GPCR superfamily classification systems was introduced by 

Kolakowski for the now defunct GCRDb database [15], and further developed by 

Vriend et al. for the GPCRDB database [16-18]. GPCRDB divides the superfamily 

into six classes. The first of which is Class A, the so-called Rhodopsin-like GPCRs, 

accounting for over 80% of family members across species. There are around 300 

human non-olfactory Class A receptors mostly binding peptides, biogenic amines or 

lipids [19].  

 Peptide-binding receptors play important roles in mediating neurotransmitters, 

hormones and paracrine signals. Receptors which bind to biogenic amines, such as 

norepinephrine, dopamine, and serotonin, constitute a set of major drug targets, since 

pathological conditions - schizophrenia, Parkinson's disease, and depression amongst 

others – are excellent examples of where unbalanced endogenous amine levels lead to 

altered brain function. Likewise, diligent, sedulous, and assiduous efforts over two 

decades have led to a remarkable transformation in our knowledge of the structural 

basis of ligand-mediated functioning of the rhodopsin-like GPCRs: the structure of 

bovine rhodopsin published in 2000 has been followed more recently by those of 

ligand-bound avian and human β1- and β2-adrenoceptors, and the human A2A 

adenosine receptor, which were determined in an inactive, ligand-bound conformation 

[20-24]. 

 The second class is Class B or Secretin-like GPCRs; as a group they have only 

weak similarity at the sequence level to Class A receptors, despite a presumed 

similarity of more significant proportions at the structural and functional level [25]. 

The group is also rather smaller, with only 15 members, which bind large endogenous 

peptides such as: glucagon; the incretins - glucagon-like peptide 1 (GLP-1) and 

glucose-dependent insulinotropic polypeptide (GIP); vasoactive intestinal peptide 

(VIP), secretin and calcitonin; parathyroid hormone (PTH); corticotropin-releasing 

factor (CRF); growth-hormone releasing factor (GRF); and pituitary adenylate cyclase 

activating polypeptide (PACAP) [26]. The secretin-like receptors have a large N-

terminal extracellular domain of 100 to 160 residues, which plays a vital part in 

binding ligands. No complete class B structure has been determined, however; 

nonetheless, a structure corresponding to the N-terminal ligand binding domain has 
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been solved for 6 different receptor subtypes, which, when combined with biophysical 

data gives real insight into the structural basis of ligand binding [27-29].  

 The third class is Class C and comprises the Metabotropic glutamate-like receptors 

(mGluRs). These excitatory neurotransmitter receptors are activated via an indirect 

metabotropic process [30]. In humans, mGluRs are found principally within pre- and 

postsynaptic neurons in the hippocampus, cerebellum and the cerebral cortex, as well 

as other regions of the brain and in the periphery [31]. 

 The fourth class is Class D, which contains about 20 distinct receptors, is 

comprised of highly-diverged receptors for peptide pheromones [32] [33]. Class D 

GPCRs are split between two major subfamilies: Ste2 and Ste3. There is no obvious 

sequence similarity between these two subfamilies. The two subfamilies are expressed 

on cells with distinct phenotypes although both receptors types do activate the same G 

protein signalling pathway. Class D receptors lack many features characteristic of 

Class A GPCRs. They have no ERY or DRY motif on TM3, no NPxxY motif on 

TM7, and no disulfide between the end of TM3 and loop 2. The ligand of Ste2 is a 

small peptide that binds to a surface comprising the ends of the TM helices and the 

extracellular loop scaffold.  

 The fifth class of GPCRs is Class E, comprising cAMP receptors from the 

protozoan amoeba Dictyostelium discoideum, which form part of several chemotactic 

signalling systems [30]. Compared to other lower eukaryotes with sequenced 

genomes, Dictyostelium has over 55 GPCRs: including four receptors for extracellular 

cAMP [34-35]. cAR1, the best characterized cAMP receptor, is essential for the 

starvation-induced aggregation of up to 105 Dictyostelium amoebae and subsequent 

development. cAR1 mediates cellular chemotaxis along cAMP gradients and also 

induces critical aggregation-stage genes, including cAR1 and its G-protein partner 

Gα2. In addition to class D and E, other groups of GPCRs are only found exclusively 

outside the subphylum vertebrata, such as the large family of nematode chemosensory 

receptors [36]. 

 Finally, the sixth class is Class F, which contains Frizzled/smoothened receptors 

from Drosophila, which are necessary for Wnt binding and the mediation of 

hedgehog signalling respectively [37]. This recently identified a group of 7 TM 

receptors are considered the most highly diverged, especially with respect to 

rhodopsin [38].  
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 An alternative, and potentially superior, sequence-based classification system has 

been proposed for the GPCR family [39-40]. The GRAFS classification system was 

developed using phylogenetic analysis [41]. GRAFS divides the GPCR superfamily 

into the Glutamates, Rhodopsins, Adhesions, Frizzled/Taste 2 and Secretin families, 

from which the acronym GRAFS is derived. The authors of GRAFS were able 

successfully to differentiate pseudogenes from functional genes, and were also able to 

classify all human GPCR and leading to the identification of several new GPCRs [42-

49]. 

 The GRAFS GPCR families arose before the chordate lineage diverged from the 

lineage leading to nematodes as the nematode Caenorhabditis elegans has more than 

100 receptors belonging to the GRAFS GPCR families [50]. In parallel to the GRAFS 

families, other GPCR families have arisen and/or evolved in specific lineages or 

species, such as the plant MLO receptors [51] and the insect gustatory receptors [52]. 

Likewsie, GPCRs in fungi, plants and animals have no sequence similarity, except for 

one Adhesion-like GPCR found in thale cress (Arabidopsis thaliana) [53].  

 Thus, when looked at in isolation, or more typically from a purely 

anthropomorphic perspective, defining families that span and classify the GPCRs is 

more taxing than perhaps it should be.  For example, the group typified by the 

vomeronasal type 1 receptors [54], which are involved in pheromone recognition [55], 

is large and its members numerous in all mammals studied, yet in humans these genes 

number only five. Other, less easily categorised outlier GPCRs also exist. They can 

and do prove problematic to both manual and automated classification systems. 

Examples include the Ocular albinism receptor [56], ITR [57], and GPR108 [58], 

which are all only present as a single copy in humans.  
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2.1 GPCR Repertoire 

 

In spite of the high degree of structural similarity within the GPCR superfamily, the 

totality of the evidence presented above is consistent with the assertion that the 

discernible similarity across the whole tranche of proteins called or classified as 

GPCRs is so low as to make a proper, unambiguous phylogenetic analysis of these 

proteins next to impossible. Thus the lack of overt sequence similarity between GPCR 

families makes a putative common origin very much an open question. An agnostic 

view is perhaps warranted, suggesting that most of the various classes described 

above originated independently during evolution. Of the classes, adhesion and 

secretin families are most likely to have originated together [59]. This ambiguity is by 

no means a unique phenomenon in biology. The lipocalin protein is another example 

[60-68] with many similar features. They too have a highly conserved structure yet 

their similarity is often so low as to have frustrated its detection. 

 However, it is still perfectly possible to audit the complement of GPCRs or other 

proteins within a genome or proteome, irrespective of any spurious or specious 

evolutionary rationale that one is obliged to impose by biologist’s dogma. Various 

methods have been used to identify this so-called “repertoire” of GPCRs within the 

various genomes sequenced to date. Repertoires are, in a conceptual sense, genomes 

within genomes, or sub-genomes: the total number of a particular variety of protein or 

members of a protein family.  

 Previous best guesses put the number of GPCRs within the human genome at 

approximately one percent of total genes, with other estimations putting the number 

of GPCRs involved in olfaction at an inaccurate and unlikely additional 1000–2000. 

These figures, and the more accurate numbers given below, should be set against the 

size of the human genome. Currently, the principal human genome sequence is a 

composite from five different individuals: its putative size has been whittled or 

winnowed down from figures in excess of 100,000 first to about 40000 genes and 

then to around 20,000. A recent and more reliable assessment from 2006 puts the 

number of coding genes at or about 25,043 [69]; while, a 2007 estimate puts the value 

at about 20,488, with perhaps another 100 genes yet to be found [44].  

 An early analysis by Fredriksson et al. [40] put the total number of human GPCR 

genes at 802, while Niimura and Nei have put the current number of olfactory 

receptor (OR) genes at 388 and pseudogenes at 414 [70]. Subsequently, Fredriksson 
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and co-workers, and indeed several other groups as well, have been able to identify 

many new rhodopsin-like and adhesion-like GPCRs in the burgeoning suite of 

genomes available for study.  In light of this the size of any genome and the number 

of GPCRs within it must remain educated guesses. While both will alter, particularly 

as the genomes of individual humans are sequenced, we can be reasonably confident 

that the majority genes and most GPCRs have been discovered.  

 The increasing refinement of the human genome assembly has allowed for more 

sophisticated in silico analysis to be undertaken. The Human Genome Project used a 

combination of protein families and protein domains to estimate that there are 616 

GPCR sequences belonging to Classes A, B and C. A motif-based approach was used 

whereby InterPro estimated the total number of Rhodopsin-like GPCRs to be 569 

[71]. Takeda and colleagues extracted approximately 950 open reading frames from 

the human genome that had 200–1500 amino acid residues similar to those of GPCRs 

[72]. The GPCR repertoires of several other species have also been published, 

including mouse [41], rat [46], chicken [45], pufferfish [73], amongst several others. 

The recently-determined G protein-coupled receptor repertoire within the dog genome 

was shown to be more similar to that found in humans than that found in rodents [42].  

 

2.2 GPCR Training and Test Sets for Classification Algorithms. 

 

 In the machine learning scenario, a classification algorithm is trained with 

examples (i.e. GPCRs) with known classes and the classification model discovered 

from this set is used to predict the classes of further examples drawn from a separate 

test set, which were unseen during training. Issues of clarity, precision and bias are 

faced when we try to define the training and test sets to be used in GCPR 

classification. It is clearly worth ventilating some of the more apposite issues here. 

Usually, one would expect verification through the use of independent test data to be 

ideal; however, things can be deceptive. In general, the choice of both training and 

testing examples is important. Predicting examples very similar to training data is 

typically much easier prospect than predicting instances which are wildly unalike. 

Consider the classification task of predicting whether or not a protein is a GPCR. In 

this task the training set would contain, as positive examples, proteins known to be 

GPCR, whilst the negative examples would be proteins known not to be GPCRs. It is 

possible, if tedious, to create data sets containing positive and negative examples 
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which will favour good validation statistics. For example, if we have a valid positive 

set of GPCRs, we could choose very different sequences – say small globular proteins 

or sequences with extreme amino acid compositions or whatever – as negative 

examples. However, if one chooses as negative examples proteins which are similar to 

GPCRs – membrane proteins of a similar size composition and a similar number of 

transmembrane helices – then the task would seem to become very much demanding. 

What can be done to circumvent such problems? We can propose that a cascade of 

different negative sets of increasing difficulty is likely to be a more reliable and 

accurate test of a method’s effectiveness. Independent tests should if possible be 

conducted in a double blind fashion, since almost invariably when an author is party 

to an evaluation (and thus influences the choice of the test and the way that the test is 

conducted) it is never truly independent. It is well known that published comparative 

tests, as conducted by a particular experimenter, will typically favour their own work 

over that of others. 

 The above discussion considered the classification task of discriminating GPCRs 

from non-GPCRs. However, other types of classification problems can be defined for 

GPCRs. In particular, one can have a training set where all examples are known to be 

GPCRs, and then try to predict to which class a given GPCR protein belongs. For 

example, when developing GPCR classification algorithms, Davies et al. [74] built as 

large and comprehensive a dataset of GPCR sequences as possible with which to train 

and test the classifier. All protein sequences for the dataset were obtained from Entrez 

[75] using text-based searching and these were used to construct each GPCR sub-

family and Class level dataset. Only human proteins sequences were incorporated, 

with the exception of Class D proteins, which are found only in fungi, and Class E, 

which is only found in Dictyostelium. Atypically short, and probably incomplete, 

GPCR sequences less than 280 amino acids were removed, as were all duplicate 

sequences. Thus the construction of this data set, which relied on accumulated 

annotations extant within database, also relied on the insight, and the bias, of the 

many, many investigators who worked on the problem over the decades.   

 

3.0 Sequence based approaches to the Annotation of GPCRs 

 

 A central dogma within bioinformatics, which provides a key justification and 

raison d’être for the discipline, is that there exists a strong and readily-discernible 
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relationship between the sequence of a protein and its structure. This relationship 

provides a de facto link between sequence and function, as function arises largely 

from the dynamic 3-dimensional structure of a folded protein not from its sequence. 

This implies that the function of a newly discovered protein can be determined, at 

least in part, by determining the similarity of its sequence to the sequence of a known 

and studied protein.  

 As we mentioned above, the virtual global proteome nears completion [1]. That is 

not to say that all sequences will have been determined but that within the next few 

years all truly distinct sequences are expected to be discovered. From then on, with 

rare exceptions or the discovery of novel forms of life, such perhaps as any organic 

component of nanobacteria, sequencing will move from a bold and exciting era of 

discovery to a more mundane era of cataloguing and correction. To make a fanciful if 

not wholly inappropriate allusion, we will move from the era of Magellan, Cook, and 

Amundsen, to the era of the global positioning system. The glamour and excitement 

then will move inexorably away from the low hanging fruit of genome sequencing 

and focus instead on the use of the information in productive ways. Analysis of the 

GPCRs is just one such endeavour.  

 We do know that GPCRs with the same ligands can and do bind different G 

proteins. We also know that GPCRs binding the same G protein can bind completely 

different ligands [76-77]. Likewise, two GPCRs may bind the same ligand and bind 

the same G protein yet have less than 25% sequence identity. GPCRs for 

melanocortin, lysophosphatidic acid and sphingosine 1-phosphate have an atypically 

high degree of sequence similarity yet their functions are unrelated. Clearly, this is 

and may remain an on-going challenge; which is another way of saying that it is a 

difficult and complex problem demanding a solution. Fortunately, the importance of 

the GPCR as physiological agents and drug targets more than justifies our efforts to 

address and resolve this challenge.  

 

3.1 Full-length Sequence Searching Approaches to the Discovery and Annotation 

of GPCRs. 

 

 Arguably, the most obvious and straightforward approach to characterising a 

protein sequence usually involves searching a sequence database - which contains 

within it sets of previously annotated sequences – using a pair-wise similarity tool, 
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such as FastA [78] or BLAST (Basic Local Alignment Search Tool) [79]. BLAST 

searches typically reveal obvious similarities between the query and one or more 

sequences in the database, as determined from pair-wise alignments along with 

concomitant statistical significance. Proteins are listed, as ranked by expectation or 

‘E’ values. Such values are a measure of the reliability of the similarity calculated by 

the method. Low E values are more significant, implying the greater reliability of the 

identified relatedness between the two sequences.  

 For a GPCR query, most proteins sitting at the top of the list, and thus evincing 

high sequence identity, will be true GPCRs. BLAST searches have often identified 

new GPCR proteins, mainly where there is detectable sequence similarity to other 

GPCR sequences, a situation which is becoming increasingly uncommon. Currently, 

this kind of obvious similarity is harder and harder to find, as bioinformaticians find 

themselves increasingly working at the margins.  

 In the present era, BLAST, while well-used, is often of limited value for hunting 

out new members of the GPCR superfamily, since there is often a low degree of 

sequence similarity between the six families and between outliers within groups. An 

ideal result will show unambiguous similarity to a well-characterised protein over the 

full length of the query. However, often outputs contain no significant hits. 

Obviously, a more typical state of affairs would fall between such extremes, affording 

a list of incomplete matches to a wide variety of proteins. Many of these hits will be 

uncharacterised or have dubious or contradictory annotations [80]. The difficulty then 

lies in the reliable inference of homology (the verification of a divergent evolutionary 

relationship) and, from this, the extrapolation to biological function. 

 Why is this? As the size of sequence databases rises inexorably, and are 

increasingly contaminated by populations of poor-quality or partial sequences, the 

probability of making high-scoring yet actually random matches will also rise. 

Moreover, if not appropriately masked, hits matching atypical regions may swamp 

and thus obscure search outputs. Many sections of protein sequences are atypical: 

some have repetitious sequences where the same pattern is repeated many times over. 

Others have what is called low sequence complexity, where one or two residue types 

are used to the exclusion of all others [81]. This contrasts with normal protein 

sequences where the usage and repetition of each of the twenty amino acids varies 

little from the perfect average of 5%.    



 15 

 The modular or multi-domain structure of many proteins is also a problem. It may 

not be obvious, when matching to many concurrent domains, which corresponds 

correctly to the query. Even when the correct domain has been identified, direct 

transfer of extant functional annotation may not be appropriate, since the function of 

the domain may be quite different. Even if a wholly correct and validated match can 

be discovered, pairwise similarity struggles to distinguish orthologues from 

paralogues. Thus, in sum and to lapse into the vernacular, BLAST is very much a 

blunt instrument, particularly for the fine-detail analysis of large and/or complex 

protein families. Similar phenomena bedevil the analysis of other protein families, 

such as the Lipocalins [60-61, 82-85]. Similarity determined over the full sequence 

length simple cannot, when used alone, offer all answers to all the questions. Only the 

integrated and integrative use of a diversity of complementary techniques, each with 

their own strengths and weakness can achieve such an objective.   

 

3.2 Motif-based approaches to the Discovery and Annotation of GPCRs. 

 

 To a first approximation, BLAST generates generic, full-length similarities 

between sequences, while so-called motif-based approaches focus on specific, length-

restricted traits unique to families or sub-families. Many protein family databases - 

most famously typified by PROSITE [86] or PFAM [87], and latterly subsumed by 

InterPro [88], a system combining sequence profiles from several databases – are built 

on such an approach. They use multiple alignments to identify highly conserved 

regions that can form the basis of characteristic, and even diagnostic, motifs for 

family or subfamily membership. 

 Of available approaches – single motifs through to HMM models of entire 

sequences – perhaps the more informative are so-called “fingerprints”. GPCR 

fingerprints have been developed using patterns of common conservation within the 

seven transmembrane regions [89] [90] [91]. Rather than identifying a single, lone 

motif, fingerprinting looks at many short yet conserved regions within the sequence 

group. Sub-family and sub-sub-family level fingerprints are derived from segments 

within the TM regions, parts of the loops and parts of the N- and C-termini. False 

positives are readily determined since typically sequences will lack one or more of the 

motifs. 
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 The PRINTS database system [91] contains within it hundreds of GPCR 

fingerprints. Individual motifs within such fingerprint can reflect structurally or 

functionally important sections of sequence, say a TM domain or a ligand-binding 

site. PRINTS has been demonstrated to identify similarities between receptors with 

low sequence similarity: it allows a user to find the GPCR superfamily to which a 

particular query sequence belongs (i.e. at the level of rhodopsin-like versus secretin-

like, etc.); the family to which it belongs (e.g., muscarinic versus adrenergic, etc.); 

and also its subtype (i.e. muscarinic M1, M2, etc.). However, as known members 

become more numerous, it becomes ever harder to define fingerprints with synoptic 

precision. Nor can very atypical GPCR sequences be easily identified using the 

fingerprint method or indeed other methods. 

 Holden & Freitas  [92] classified GPCRs using three different kinds of motifs: 

PROSITE patterns, PRINTS fingerprints    and InterPro [88] entries. Three different 

GPCR datasets were created. Each dataset used a different set of attributes: 338 

proteins and 281 attributes were derived from PRINTS; 194 proteins and 127 

attributes from PROSITE; and 584 proteins and 448 attributes from InterPro. Holden 

& Freitas used a swarm intelligence algorithm [93] for GPCR classification.  

 Their algorithm induced sets of IF-THEN classification rules. These took the form:  

IF <set of motifs is present> THEN <predict a certain class>. The motifs forming 

these sets could come from either PROSITE, PRINTS, or InterPro. The goal of this 

work was to find the most discriminating set of motifs which formed the most 

accurate rule. PRINTS motifs performed best (89.6% classification accuracy at the 

family level), InterPro marginally worse (86.3% classification accuracy at the family 

level), while PROSITE patterns performed poorly. Substantially lower accuracy rates 

were obtained for sub-families and below. 

 

3.3 Machine Learning and Statistical Pattern Recognition approaches to the 

Discovery and Annotation of GPCRs: Artificial Neural Networks, Hidden 

Markov Models, and Support Vector Machines 

 

 In many cases, conventional bioinformatics techniques, such as global sequence 

searching and/or motif matching, can determine useful information from a sequence 

through pair-wise alignment or by comparing the sequence to previously determined 

motifs. Although such an alignment or motif based approach is without question  



 17 

valid, it may not always be optimal when trying to identify GPCRs. Firstly, the 

sequence of the GPCR superfamily varies between 290-834 amino acids in length, 

meaning that many of the subfamilies cannot be effectively aligned without 

significant and subjective manual intervention. One should also remember that 

conventional biochemically-based GPCR Classification schemes were created using 

the identity of the ligand to which the receptor binds not sequence similarity. A more 

computationally sophisticated, if not necessarily a more effective approach to the 

GPCR classification problem is through use of techniques based on Machine 

Learning, a branch of Artificial Intelligence or statistical pattern recognition. 

 As we have stressed, an intrinsic limitation of any supervised learning algorithm in 

the classification scenario is that a classification model constructed from a training set 

can only have a chance of good predictive accuracy on a test set that is derived from 

the same (or at least similar) probability distribution as the training set. Predictive 

models should always be tested for accuracy before being used. A particularly 

suitable method of assessing a model’s accuracy is by using cross-validation. This 

method splits the full data set into several - typically 10 - independent, non-

overlapping sets.  The classification algorithm is executed many times. During each 

cycle, one of the partitions is kept back as the test set and the algorithm is trained on 

the remainder. Accuracy is assessed using the single partition that had been kept back 

previously.  In this way, it can be hoped that test and training sets become as 

representative as possible.  

 The goal of all GPCR classification studies is to take a protein or genome 

sequence and classify it. To achieve this, predictive methods – speaking in 

generalities – are in want of three things: appropriate structural representations of the 

sequences being used to train them; an equivalent list of biological status (i.e. 

membership of superfamily, family, type, and subtype) corresponding to these 

sequences; and some form of computational engine capable of predicting relationships 

between the particular description of the sequences and their associated status. The 

outcome of this process is a predictive model relating structure to status (class). The 

induction engine can take any one of many different forms, such as machine learning 

or statistical pattern recognition techniques, as described here.  

 An example of Artificial Neural Networks (ANNs) in the analysis of GPCR data is 

the use of Self-Organising Maps (SOMs) [94]. SOMs perform unsupervised learning 

(in this case, clustering) to discriminate protein families from each other. Sequences 
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from the same family are expected to form a cluster although it cannot be assumed 

that the clusters will be visually recognized on the SOM output map. The overall 

performance of the map can be assessed using the sensitivity and specificity values as 

well as calculating the total accuracy of the clustering. Otaki et al. [95] reported a 

97.4% precision at clustering 12 Class A sub-families using SOMs. 

 A Hidden Markov model or HMM is a statistical model where the system being 

modelled is assumed to be a Markov process with unknown parameters. In a Markov 

process, the probability distribution describing future states depends solely on the 

present state not on states prior to that: the future depends upon the present not the 

past. In a regular Markov model, the state is seen by the observer and thus only state 

transition probabilities are parameters. In a HMM, the state is not visible, although 

variables influenced by that state can be seen, and so the aim is to determine the 

hidden parameters from the observable parameters. HMMs have gained significant 

currency, particularly when used for sequence alignment [96].  

 Support Vector Machines (SVMs) are machine-learning algorithms based on 

statistical learning theory [97]. In two-class problems, an SVM maps two sets of 

distinct data representing sequence descriptions onto a multi-dimensional feature 

space and then sets about constructing a division between the classes. The optimal 

division is one with a maximum distance to the closest data point from each of the 

two classes. Finding this optimal division is important since should another data point 

be added, it is easier to classify it correctly when there is a significant separation 

between classes. The data points nearest to the optimal division are termed support 

vectors. Although SVMs are more commonly used to solve 2-class problems, this 

technique can been applied to GPCR classification with more than two classes by 

running the algorithm multiple times (i.e. once for each class)  [98]. 

 

3.4 Alignment Free Methods approaches to the Discovery and Annotation of 

GPCRs: Proteochemometrics, Properties, and Statistics 

 

 Rather than aligning sequences, and from such alignments deducing pseudo-

evolutionary relationships, alignment-independent classification systems use the 

physiochemical properties of amino acids to give insight into functionally or 

structurally important differences between sequences. To enable this process, we need 

to turn the symbolic structure of the protein into a set of numbers. 



 19 

Proteochemometrics is an example of such an approach; it has been applied to the 

classification of the GPCR superfamily. Proteochemometrics uses Wold’s five Z 

values which encode key properties of the twenty biogenic amino acids [99-104]. 

Recondite electronic effects are described by the Z4 and Z5 values. Z3 values 

describe amino acid polarity. Polar or hydrophilic amino acids have large positive 

values, while non-polar amino acids have large negative values. Size or, more 

properly, volume properties are accounted for by Z2 values. Large negative values 

correspond to low volume amino acids while large positive numbers indicate amino 

acids with large volume and surface area. Z1 values account for amino acid 

lipophilicity: a large negative value corresponds to a lipophilic amino acid, and vice-

versa.  

 Replacing each amino acid in the sequence with these five Z values, and then 

transforming it in some manner, reduces a protein sequence to the required numerical 

description. The resulting, normalized matrix is analysed using Principal Component 

Analysis (PCA) and Partial Least Squares (PLS), generating a classification model. 

Using the proteochemometrics method, Lapnish et al. developed a model with an 

accuracy of 0.76 for a diverse set of amine GPCRs [103].  

 Kim et al. also developed a physico-chemically based classification method [105], 

which separates sequences into specific categories using a linear discriminant 

function, called a Quasi-predictor Feature Classifier (QFC) algorithm, within a 

statistically-defined ‘feature space’. The resulting model was used to screen databases 

for novel GPCRs. The QFC approach was trained on 750 GPCRs from the GPCRDB 

and 1000 randomly chosen non-GPCR proteins of 200-1000 amino acids in length. 

Several amino acid property scales were examined and the values normalized using a 

sliding window. Windows comprising 13-16 amino acids were more effective than 

those of 32 or 64 amino acids. Test sets of 100 GPCRs and 100 non-GPCRs were 

classified with a 99% accuracy; versus 530 ion channels (non-GPCR transmembrane 

proteins), QFC was 96.4% accurate. QFC had a higher false positive rate than many 

motif-based techniques, which is consistent with the approach needing more filtering.  

 Huang [106] used Quinlan’s C4.5 algorithm [107] to induce a decision tree 

partitioning 4395 GPCR sequences into 5 Classes, 39 sub-families, 93 sub-sub-

families, and types. Each protein was represented as a vector comprising its 

normalised composition. C4.5 chooses to split data by selecting the composition 

feature that best discriminates the classes to be predicted. Division continues until a 
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defined stopping criterion is attained. The technique was 86.9% accurate at the sub-

family level and 81.5% accurate for sub-sub-families. 

 

4.0 CLASSIFYING GPCR HIERARCHICALLY 

 

 In the last decade or so, networks have emerged from relative obscurity to become 

a powerful, pervasive, perhaps even dominant, description of complex biological, 

chemical, and physical systems. Such networks are often organized as a hierarchy. 

Networks arise in nature in many areas, and biology in particular is replete with 

examples: epidemiology, neural networks for locomotion, vision, speciation and the 

synchronous flashing of fireflies. 

 The standard depiction of a hierarchy represents it in the form of a tree or 

dendrogram. The word dendrogram comes from the Greek dendron meaning "tree" 

and gramma meaning "drawing". Within such trees, collections of nodes are divided 

into groups; groups that split into a succession of sub-divisions, usually over several 

levels. Arguably, the most familiar and immediate dendrogram is to most of us a 

family tree. In a family tree, individuals are connected to their siblings through direct 

parental lineage, and are connected to their cousins through a shared lineage in prior 

generations: grandparents and great-grandparents, and so on.  

 Going beyond mere straightforward clustering, the hierarchical nature inherent 

within networks implies significant organization at many levels. Sub-groups within 

networks often correspond to well-understood functional units: modules in protein-

protein interaction (PPI) networks, metabolic networks, or genetic regulatory 

networks; communities in social networks; or ecological niches in food webs. 

Hierarchies explain many general network properties, including their highly 

connected nature. The implication is that the hierarchy is a key organizing principle 

common to all complex networks, however they arise.  

 Traditionally, readily discernible groups within a network are deemed assortative 

or disassortative. In assortative networks, groups comprise members which are highly, 

and close to equally, interconnected, yet there are relatively fewer connections 

between groups. Disassortative networks are characterised by a few highly-connected 

hubs and many other nodes with very few connections. The majority of networks 

within molecular biology, including metabolic and PPI networks, are of this type. 
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 A network, hierarchical or otherwise, can be viewed as a graph, consisting of 

nodes or vertices linked together by edges or connections. Nodes are instances; edges 

their interactions. Edges can be bidirectional (two-way interactions) or unidirectional 

(one-way interactions). A graph where all edges are unidirectional is known as a 

directed graph. In a graph, edges may be weighted to indicate how strong the 

corresponding interactions are. Weighted edges may be different or nominally 

identical.  

 Compared to many other problems explored so thoroughly by computer science 

and computer scientists, hierarchical classification is a relatively under-investigated 

special case of the broader and rather better-known area labelled classification. Rather 

than trying to predict a set of classes without discernible and overt complex mutual 

dependency, classes are arranged in a furcating hierarchy of many levels [108]. In an 

informatic context, higher-level classes correspond to general functions, whilst lower-

level classes correspond to more specific functions. Specific classes will inherit the 

features or functions of their parents. An important distinction, when doing 

hierarchical classification, is whether the class hierarchy has the structure of a tree or 

direct-acyclic-graph (DAG). In a "tree-structured class hierarchy" each class has just 

one "parent class", although a parent class can have many child classes. In a "DAG-

structured class hierarchy" one class can potentially have several parents. The GPCR 

hierarchy is tree-structured, whilst other hierarchies, such as the Gene Ontology (GO), 

are DAG-structured. 

 Such hierarchies are obvious within extant pharmacological and sequence analysis 

of the GPCR family. It is explicit and implicit within many databases. At the level of 

superfamilies, motifs within a database tend to encode universally common features 

such as TM helices. At the family level, motifs encode regions uniquely characteristic 

of a particular family, distinguishing it from others. These regions are usually small 

parts of TM or loop regions, which are often involved in ligand binding. Interestingly, 

at the sub-family level, the majority of the motifs are found in the extracellular loops 

yet at the sub-subfamily level, most originate within intracellular loops.  

 There exist several strategies for predicting hierarchical classes [108]. The simplest 

is to flatten the dataset to the deepest (most specific) level of the hierarchy, then use 

one of many standard “non-heirarchical” classification algorithms to predict classes. 

This strategy is wasteful: it fails to take full advantage of the information implicit 
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within the class hierarchy and tends to obtain smaller predictive accuracy than truly 

hierarchical classification approaches, especially when the number of classes is large.  

 Very different is the global approach. This utilises a single, but complex, 

hierarchical classification algorithm that considers all hierarchical relationships 

among all classes in a single execution of the algorithm. Perhaps due to its 

complexity, implementations of such an approach are scarce, although one such model 

has been used for gene function prediction in Saccharomyces cerevisiae [109]. 

 A different hierarchical classification strategy is the so-called local method, 

nicknamed the top-down approach. In some sense, this represents an intermediate 

approach between the extremes of algorithmic simplicity and complexity associated 

with the flat and big-bang approaches. In the top-down approach, during training, a 

tree of local classifiers is constructed. This tree of local classifiers mirrors the 

distribution of classes in the class tree. In the testing phase, examples are classified by 

first exposing the unknown example to the classifier at the root node. A prediction is 

made and used to decide to which child (1st level) classifier the example will be 

transferred. This process continues until all examples have been categorised by the 

classifier at a leaf node. Usually, every node uses the same classification algorithm to 

formulate the local classifier at that node. 

 In light of the inherently hierarchical nature of networks - both networks 

constructed and observed by the human mind - we have attempted to make use of this 

powerful idea and constructed a means of using the concept of a hierarchy directly to 

help us automate the prediction of the many-levelled GPCR classification. Davies et 

al. [74] developed an alternative to this top-down hierarchical classification method 

by using a set of potential classification algorithms at each node, and selecting the 

best classifier at that stage. This ‘selective top-down approach’ has been found to 

outperform a standard top-down classifier in the GPCR classification task. However, 

the selective approach can be slow in training, particularly if the number of classes is 

large.  

 In the examples cited above, the data set contained 8354 protein sequences in 5 

classes at the family level (A–E), 40 classes at the sub-family level and 108 classes at 

the sub-subfamily level. Class F was not considered as it contains too few sequences 

from which to develop an accurate classification algorithm. Moreover, rather than use 

the primary sequence to perform the classification, which would rule out the use of 

the vast majority of traditional classifiers, the system uses an alternative form of 
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protein data representation. Their approach used a simplified version of the 

representation used in proteochemometrics, making use of Wold’s five z-values.  

 Since data mining algorithms do not tend to work with variable numbers of 

descriptors, it proved necessary to normalize the z-values so that all proteins had the 

same number of variables. Davies et al. [74] used a normalization method which 

calculated the arithmetic mean for each z value over the whole protein. This very 

simple technique was found to retain predictive accuracy while significantly reducing 

requirements for storage and processing time.  

 Later, they made use of an augmented version of this attribute creation method. In 

this case, 15 attributes described each protein. Five were created as described above 

but in addition to this, five more were created from the N-terminus of the protein and 

five from the C-terminus. Therefore, in the case of the N-terminus, the means for each 

of the five z-values were computed for only the first 150 amino acids, while in the 

case of the C-terminus, the means over the last 150 amino acids were also determined. 

 The selective top-down approach was implemented in WEKA [6]: and made use of 

10 classification techniques, namely: Naïve Bayes method, a Bayesian network, a 

SVM [110], nearest neighbour, the PART rule induction algorithm, J48 (WEKA’s 

implementation of the well-known C4.5 decision tree induction algorithm), a Naïve 

Bayes tree, a multi-layer neural network with back propagation, an artificial immune 

system, and a conjunctive rule learner. Our approach exploits the idea that some 

characteristics may be important to distinguish protein subsets at one classification 

level while being relatively unimportant at another. Classifiers were chosen in a 

training data-driven manner. Since different classifiers may be more suited to certain 

nodes of the class hierarchy, it was assumed that the overall classification accuracy 

should increase if a diverse set of algorithms is used within the hierarchy.  

 Compared to the standard top-down approach with the same classifier at every 

node, this selective approach involves additional steps: at each node, training data is 

randomly assigned between sub-training and validation sets; several classifiers are 

then trained using this sub-training data set and tested using the validation data set. 

The classifier with the greatest resulting classification accuracy is then selected for 

that particular node. Finally, the selected classifier is re-trained using the full original 

training data.  

 The headline accuracy statistics for the selective top-down approach were 95.87% 

at the family level (5 classes), 80.77% at the sub-family level (38 classes), and 
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69.98% at the sub-subfamily level (87 classes). Overall, our approach out-performed 

all single-classifier methods, and also compared favourably with several extant 

servers using both our data sets and theirs.  

 Recently, this approach has also been extended in 2 ways. First, we used our 

adaptive approach to reduce the innate complexity involved in representing the 20 

standard amino acids. There exists no universally-applicable reduced alphabet despite 

the numerous criteria upon which to group the amino acids. An optimization 

algorithm was developed to identify the most efficient grouping when classifying 

GPCRs [111-112].  

 Secondly, through the addition of an attribute selection step, where selection 

occurs independently at each node in a data-driven manner, leaving only those 

attributes that best discriminate classes at that node [113]. The number of attributes 

selected was highly variable between classifier nodes, but varied little for the same 

node during repeated cross-validation. Thus, it was postulated that the attribute 

selection method is reacting to the varying levels of difficulty of predicting particular 

classes at different positions in the class tree. It was found that the addition of this 

attribute selection stage made no significant difference to the predictive accuracy of 

the hierarchical classification system, yet did afford the advantage that the processing 

time was reduced significantly.  

 

5.0 Prediction Servers 

 

A question commonly articulated by those tasked with discovering and understanding 

biology, rather than those tasked with developing tools to analyse data, is this: what is 

the value of creating methods that cannot be used? Few have the time to implement 

all published methods that might prove useful, so it is that the prevalence of internet 

servers comes to resolve this dilemma. Many such servers are now available for the 

identification and classification of GPCRs. We adumbrate a few below.  

 HMMTOP (Hidden Markov Model for TOpology Prediction), available at URL: 

http://www.enzim.hu/hmmtop/, uses the idea that TM regions have the most atypical 

amino acid composition [114], and that such region may be determined by looking for 

maximum divergence rather than identifying regions with a specific composition. 

Thus, the topology of membrane proteins can be determined if their amino acid 

sequences can be segmented into specific regions in such a way that the product of the 
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relative frequencies of the amino acids of these segments along the amino acid 

sequence should be maximal. 

 TMHMM (Transmembrane Hidden Markov Model), URL:  

http://www.cbs.dtu.dk/services/TMHMM/, predicts transmembrane helices by using a 

HMM to partition a protein sequence into the most probable distribution compared to 

known GPCRs [115]. Models are estimated using a maximum likelihood and a 

discriminative method. This method consistently displays a high false positive rate, 

and many proteins with seven transmembrane helices are incorrectly predicted as 

possessing six or eight TM regions. Interestingly, when HMMTOP and TMHMM are 

combined they have a higher overall success rate (0.819) than when used separately 

(0.808 and 0.762).  

 GPCRHMM, URL: http://noble.gs.washington.edu/~lukall/gpcrhmm/, implements 

an HMM that specifically recognises GPCRs. Wistrand et al. [116] found distinct 

loop length patterns and differences in amino acid composition between cytosolic 

loops, extracellular loops and membrane regions.  

 Pred-GPCR (http://athina.biol.uoa.gr/bioinformatics/PRED-GPCR/) [117] 

combined fast fourier transforms with SVMs to leverage sequence hydrophobicity in 

the identification of GPCRs. 403 sequences from 17 sub-families from GPCR Classes 

B, C, D and F were used to train the program. Optimal performance reached an 

accuracy of 93.3%, and the accuracies for different subfamilies varied between 66.7 

and 100%. However, 105 of the 403 sequences originated from the 

frizzled/smoothened family and there were typically 10-20 sequences per subgroup. 

Given this unusual distribution within the training set, it seems unlikely that the 

classification model would prove highly predictive when applied to larger GPCR 

datasets with a less atypical class distribution.  

 GPCRsClass [118], URL: http://www.imtech.res.in/raghava/gpcrsclass/, is a SVM-

based server that focuses on Class A GPCRs. Using dipeptide composition, 

GPCRsClass is 99.7% accurate at dividing amine from non-GPCRs, and 92% 

accurate when splitting sequences into sub-subfamilies. A similar program from the 

same stable, GPCRPred, URL: http://www.imtech.res.in/raghava/gpcrpred/, first 

determines if a sequence is a GPCR, then which class it belongs to, and finally, 

assuming it is a Class A GPCR, to which subfamily it belongs [119]. GPCR vs non-

GPCR sequences had 99.5% accuracy, the Class prediction was 97.3% accurate, and 

the sub-family was on average 85% accurate. 
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 The hierarchical approach to GPCR classification developed by Secker, Davies, 

and co-workers, and described at length above, has also been made available freely 

over the world wide web, implemented within the webserver GPCRTree [120]; URL: 

http://igrid-ext.cryst.bbk.ac.uk/gpcrtree/.  

 Certain other servers, such as The GPCR Subfamily Classifier (former URL: 

http://www.soe.ucsc.edu/research/compbio/gpcr-subclass/), have now been retired 

from active service, while others, including a variant of the TMHMM program, called 

7TMHMM, URL: http://tp12.pzr.uni-rostock.de/~moeller/7tmhmm/, are only 

available for download. Many, many servers exist for predicting transmembrane 

proteins, notably: PRED-TMR2 [121] and TMHMM 2.0 [122]. For a putative GPCR, 

such servers can be used as a semi-independent check on the location of TM helices. 

 

6.0 Discussion and Conclusion  

 

Currently, molecular biology is generating prodigious quantities of genomic data, as a 

result of a number of automated experiments. It is tempting to conceive of the genome 

(the entire complement of genes comprising an organism) as an "encoded text" that is 

progressively decoded to produce proteins. But to decode this properly, that is in 

terms of function and interaction we need to leverage our knowledge in a dynamic 

and adaptive fashion. Knowledge is information that has been properly organised, 

integrating raw and visceral fact with complex, subtle, multi-levelled meaning. 

Understanding is the deepest and most profound cognitive level available to us; where 

we would be able not just to catalogue bald observations, but gain true and pervasive 

insight into not just how something happens but why and in what way it happens. In 

other words, beyond knowledge is understanding, an almost intuitive grasp of the 

whys that enables us to manipulate and to manage the world of our existence, not just 

experience it.  With the emergence of knowledge and understanding comes the ability 

to make intuitive predictions, to organize rationally, and to design and create; in short, 

to escape the limitations imposed by precedent and provenance, and remake the 

familiar world in the image of our aspirations. 

 However, it is, is it not always worth challenging our assumptions? Thus, at this 

stage, it might be appropriate to ask an important question: why is it important to 

address so well studied a superfamily as the GPCRs? There are several answers to this 

question. One answer is at once societal, economic, and commercial in nature. Unmet 
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medical need, real or perceived, is a strong driver of the world economy. GPCRs 

remain important drug targets still dominating a major, if diminishing, proportion of 

global pharmaceutical sales [10] [123] [124].  

 During 2009, 26 new drugs were formally approved by the FDA. Of these, around 

a fifth were molecules which directly targeted one or more GPCRs. Saphris or 

asenapine, a product from Merck-Organon, is a mixed antagonist which is active at a 

variety of aminergic rhodopsin-like GPCRs including serotonin receptors, dopamine 

receptors, adrenergic receptors, and histamine receptors. It acts as a treatment for 

acute episodes of bipolar disorder and schizophrenia. Bepreve or bepotastine, another 

of the five new GPCR-targetted drugs, is an ophthalmic H1-receptor antagonist able 

to inhibit histamine release from mast cells. Marketed by Ista pharmaceuticals it treats 

itchy eyes triggered by pollen, plants and other irritants. Fanapt or iloperidone, 

another treatment for schizophrenia, is a product of Vanda Pharmaceuticals licensed 

in the USA and Canada by Novartis. It is a dopamine, serotonin, and norepinephrine 

receptor antagonist. Prasugrel is a P2Y12 receptor antagonist that helps manage acute 

coronary syndrome; it is marketed by Eli Lilly and Daiichi Sankyo's and is intended 

to rival the Sanofi-Aventis and Bristol-Myers Squibb blockbuster plavix. Samsca or 

tolvaptan is a vasopressin V2-receptor antagonist which acts as a treatment of 

hyponatremia.  

 Additionally, three compounds – Bromocriptine, Imitrex, and Tenex – have been 

approved as switched therapies, and again all three target GPCRs. Together, this 

indicates that despite the emergence of a veritable plethora of alternative target 

families, from the Kinases onwards, GPCRs retain their place amongst the elite of 

accessible, profitable drug targets.  

 Having said all that, it must be remembered that the pharmaceutical industry has 

ceased to be the unstoppable engine of unalloyed, ever-increasing profitability that 

once it was. In 2004, North American sales grew at a rate of 8.3% to $235.4 billion, 

compared with 11.5% growth from 2002 to 2003. By 2006, annual sales in North 

America were $252 billion, increasing by only 5.7%. In 2006, for example, 

worldwide sales of prescription medicines rose by a modest 7% to around $602 

billion; and recall that 2006 was economically a very good year long before stock 

market turbulence and the cupidity of the wealthy plunged the world in financial 

turmoil. Established pharmaceutical companies have been inconvenienced by the 

coincidence of incipient product droughts, caused by weak or dwindling internal 
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pipelines, coupled to severe earnings pressures resulting from the expiry of major 

remunerative patents on flagship products. In particular, growth in the traditional 

markets of Japan, North America, and Europe has been slowing for several years. Yet, 

over half of marketed drugs concentrate on a single class of biological targets: 

GPCRs. This includes 25% the top 100 drugs, many of which are so-called 

blockbusters, each earning over $1 billion dollars a year. 

 Available biological databanks are now remarkably numerous; indeed, they require 

a database of their own to catalogue them [125], thus necessitating a significant 

degree of automated rather than manual data analysis. Manual analysis is, to lapse 

into the vernacular, slow but sure; automated analysis can be rapid yet uncertain. 

Annotation or labels within sequence databases are often inferred from observed 

similarities to homologous, annotated proteins. This may create error, particularly 

when sequence similarity is marginal. As a result, it is widely believed that there are 

now substantial numbers of incorrect annotations throughout commonly-used 

databases [126].  

 This problem is compounded by the Markov process of ‘error percolation’ [127], 

whereby the functional annotations of similar proteins may themselves have been 

acquired through chains of similarity to sets of other proteins. Such chains of 

inference are seldom recorded, so it is generally impossible to determine how a 

particular database annotation has been acquired. Such transitive approaches 

necessarily lead to a systematic deterioration of database quality, and pose a 

continuing threat to information reliability through the propagation of incorrect 

annotations. Although curators are aware of these problems, and constantly strive to 

reduce errors, nonetheless, databases are historical products, and users should always 

bear in mind their possible imperfections. 

 Other answers are more biological in nature. Another confounding issue for 

GPCRs within the human genome is the presence of polymorphisms, where numerous 

variant forms, or alleles, of a single gene exist within a population. Such “mutations”, 

both inactivating and activating, are implicated in many genetic disorders 

necessitating genome-wide association studies of SNPs to identify critical target 

receptors for disease susceptibility. Because pharmacogenomic and pharmacogenetic 

studies on GPCRs are currently very rare, the therapeutic relevance of receptor alleles 

often remains unclear. Anti-schizophrenic drugs, for example, bind to a number of 

receptors, several with potential therapeutic value. Without a proper understanding of 
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the role of receptor alleles in clinical outcome, or of how sequence variation affects 

signal transduction, it remains difficult to predict their individual relevance. 

 According to the IUPHAR database, URL: http://www.iuphar-db.org/index.jsp, 

there are currently over ninety so-called orphan GPCRs, showing palpable sequence 

similarity to Class A Rhodopsin-like receptors, for which there are no known ligands 

or functions [43]. There are also over 30 orphan receptors in the Class B GPCR 

family, and around 10 in Class C. Such numbers are likely to decrease, at least within 

the human genome, as tenacious experimentation slowly chips away at such lacuna in 

our knowledge.  

 Most orphan GPCRs have relatively low sequence similarity to well characterised 

GPCRs with known functions and/or known ligands; it is therefore often difficult to 

infer information about their function. It is possible that many of these orphan 

receptors have ligand-independent properties, specifically the regulation of ligand-

binding GPCRs on the cell surface [128-129]. This was first suggested when a study 

of the Class C metabotropic γ-aminobutyric acid B (GABAB) receptor showed that it 

was a heterodimer composed of two subunits, B1 and B2 [130]. GABAB1 was 

responsible for the binding of the ligand while the GABAB2 subunit promotes the 

efficient transport of GABAB1. It is also possible that many of the orphan receptors 

are also responsible for the regulation of non-orphan GPCR cell surface expression, in 

either a positive [131] or negative way [128]. If this is true then the relative 

expression of orphan and non-orphan GPCR proteins could be an important factor for 

the regulation of cell signalling. There has also been considerable interest in the 

tendency of GPCRs to form higher order oligomers in living cells [132]. Dimeric 

ligands linked by spacer arms have been used to identify the importance of co-

expression of certain GPCR subtypes, indicating that the formation of these oligomers 

is a crucial part of GPCR signalling, although the extent to which oligomerisation 

occurs across the whole GPCR superfamily remains uncertain. 

 Speaking more generally, the search for novel GPCRs in a genome of interest, 

whatever it may be, is confounded by issues that arise from the complex nature of 

multi-gene families: database search techniques cannot easily differentiate between 

proteins that have arisen by a process of speciation (so-called orthologues, where the 

functional counterpart of a sequence is found in another species) and those that have 
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arisen via intra-species duplication and divergence (so-called paralogues, which may 

perform related but distinct functions within the same organism).  

 Examination of the current literature shows that no real consensus exists for 

tackling the problem of in silico GPCR Classification. GPCR prediction is a 

complicated problem that may be beyond conventional bioinformatics techniques. 

Classification models based upon motifs are both simple and comprehensible to the 

user, allowing the user to see why a GPCR has been assigned a particular classs, but 

have been observed to have false positive and false negative prediction rates that are 

erratic. Models constructed by SVMs (Support Vector Machines) or ANNs (Artificial 

Neural Networks) are typically opaque to the user but are often more effective. The 

alignment-independent methods, while showing some of the highest overall accuracy, 

do not allow the user to infer any information about the protein sequence other than to 

which family it likely belongs. Therefore there is arguably a trade-off between the 

accuracy of the predictive technique and the comprehensibility of its results [133].  

 It should be noted that while many of the algorithms described show a high degree 

of accuracy, in most cases the technique has not been assessed independently. Further 

benchmarking of the techniques with several different GPCR datasets seems 

necessary. It may also be the case that a technique that is effective at determining 

GPCRs from non-GPCRs would be less effective at the class, sub-family or sub-sub-

family level. Different approaches could therefore be employed at each level of the 

classification. Furthermore, all the predictive techniques have hitherto been assessed 

using the GPCRDB Classification system. Future work in this field may need to be 

directed towards training algorithms based upon alternative classification systems, 

such as GRAFS, in order to determine the most comprehensive approach to 

classifying the GPCR superfamily. 

 Many commentators have questioned the long term viability of the so-called 

“blockbuster” drug, suggesting that the already fragmented pharmaceutical market is 

moving towards an era characterised by even more extensive fragmentation, where a 

plethora of individual, highly-focused markets are dominated not by a handful of big 

sellers but by a legion of niche products. Because of their well-characterised, easily 

druggable binding site, coupled to their vital biological roles, GPCRs remain the 

ultimate drug target. While we still need drugs, we will continue to explore the unique 

properties of the GPCR. This review has shown how we will take the next step on that 
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road allowing us to more fully exploit as drug targets the as yet untapped potential of 

the entire GPCR family.  
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Figure 1. Schematic of the three principal Classes of the GPCRs.  

 

A schematic comparison of the structural differences between main classes of 

GPCR stressing the divergent nature of ligand binding. By definition, the binding 

site of the natural, physiological ligand is called orthosteric, whereas binding sites 

located elsewhere are termed allosteric. 
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Figure 2. Four level hierarchy characteristic of the G Protein Coupled 

receptors (GPCRs)  

 

A schematic dendrogram that illustrates the four level hierarchy that 

characterises the G Protein Coupled receptor (GPCR) umma, as used in our 

analysis [74]. 
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Figure Error! No text of specified style in document.. Prototypical schematic 

of a data and classifier hierarchy 

 

Example of a hierarchical dataset (1) and how that hierarchy may be reflected in 

a tree of classifiers (2) ready for a top-down approach to classification. 
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