
An Efficient Algorithm for Hierarchical
Classification of Protein and Gene Functions

Fabio Fabris and Alex A. Freitas
School of Computing, University of Kent

Canterbury, Kent, CT2 7NF, UK
{ff79,A.A.Freitas}@kent.ac.uk

Abstract—The classification of protein and gene functions is a
complex problem that is becoming more relevant as the number
of sequenced genes and proteins increases. This work presents a
modified version of the Extended Local Hierarchical Naive Bayes
algorithm, which exploits the requirements of the original algo-
rithm (single-path, mandatory-leaf-prediction hierarchical classi-
fication problems in tree-structured class hierarchies) to greatly
improve classification run-time. We show that, considering 18
hierarchical classification datasets, the modified algorithm yields
equivalent predictive performance and significantly improves run-
time in the training and prediction phases.

I. INTRODUCTION

In the recent years, the cost of extracting genomic and
proteomic data from organisms has decreased significantly,
to the extent that researchers now have free access to vast
public collections of biological data. Generally speaking,
these datasets comprise the sequence information (amino-
acids, base-pairs, and other secondary information extracted
from gene or protein sequences) and the classification of the
biological processes that gene or protein is involved in a
curated ontology. An example of such ontology is the Gene
Ontology [7] and an example of a protein dataset is the
Universal Protein Resource [8].

To make sense of this ever-increasing flow of complex
information, data mining techniques such as clustering, clas-
sification and data visualization are, more than ever, required
to assist biologists. In this paper we shall focus on the clas-
sification task of data mining. Broadly speaking, classification
is the computational task of deriving a function F : x → C
from a set of instances in the form (xj, cj), where xj are the
predictive attributes of the j-th instance and cj is (are) the
classe(s) of the j-th instance. We call the derivation of F as
the “training phase”. After the training, we use F to predict
the classes of a set of previously unseen instances given only
their predictive attributes (prediction phase). Because there
are many approaches to build different F functions and none
is better than all the others in every occasion, it is wise to
estimate the predictive accuracy using some measure, such
as the F-Measure [6], to select the best classifier for a given
classification task.

The objective of using classification algorithms in this work
is to infer protein functions using only attributes describing
the protein and gene sequence information. That is, to build
a function F that maps the gene and protein sequences to
classes, namely, their functional classes, their location, and
the biological processes that they are involved in. The inferred
classes may be used as a starting point to select the most

promising wet-lab experiments to be performed, which are
much more time-consuming and expensive than their compu-
tational counterparts.

However, unlike the “flat” classes of standard classification
problems, ontologies that define the classification of genes
and proteins are normally organized as trees or Directed
Acyclic Graphs (DAGs). This complicates the use of out-of-
shelf classification algorithm and justifies the development of
specialized algorithms for hierarchical classification [5].

Additionally, due to the ever-increasing size of biological
datasets [10], it is important to develop efficient algorithms
that scale up well both in the training and prediction phase.
This factor has been neglected in the literature, where works
containing complexity and/or run-time analysis of hierarchical
classification algorithm are uncommon. To help fill this niche,
this work proposes a modified version of the Extended Local
Hierarchical Naive Bayes (ELHNB) [9]. The modification (M-
ELHNB) speeds up the training and prediction phases of the
algorithm, maintaining an equivalent predictive performance.

The remainder of this work is organized as follows: Sec-
tion II formally defines the hierarchical classification problem
and the sub-problem that we shall focus on. Section III presents
the original ELHNB classifier and our proposed modified
version. In Section IV we present and discuss the experimental
results and finally, in Section V we draw our conclusion and
lay ground for future work.

II. HIERARCHICAL CLASSIFICATION

Hierarchical Classification, sometimes called Structured
Classification, is a special type of classification problem in
which the classes of the instances have a pre-established
taxonomy, generally specified as a DAG or a tree. We shall
consider that this taxonomy defines an “Is-a” relationship
between classes, that is, if an instance is classified as ca, it is
also implicitly classified as all the classes in the set Anc(ca),
where Anc(c) is defined as the set of all ancestors of class c.

Following the notation proposed in [5], hierarchical clas-
sification problems may be described by the tuple 〈Υ,Ψ,Φ〉,
where Υ ∈ {T,DAG} defines the arrangement of the class
taxonomy (Tree or DAG, respectively), Ψ ∈ {MPL,SPL}
indicates, respectively, whether at least one instance has Mul-
tiple Paths of Labels (MPL) or every instance has only a Single
Path of Labels (SPL) in the class taxonomy. This distinction
is analogous to single-label and multi-label classification prob-
lems in “flat” classification. Φ ∈ {PD,FD} dictates if at least
one instance has Partial Depth (PD) labeling or every instance

has Full Depth (FD) labeling. FD labeling requires the most
specific class of all instances to be a leaf node, while in PD
labeling an instance may have a non-leaf node as its most
specific class.

Hierarchical classification algorithms may be classified in
two broad types: global or local. Local hierarchical classifi-
cation algorithms train several traditional (flat) classification
algorithms using some approach to transform the hierarchical
classification problem to a flat one during the training phase
and then recover the hierarchical structure from the flat classifi-
cations during the prediction phase. On the other hand, Global
approaches build a single classification model for the whole
hierarchy and do not require any problem transformation.

We shall focus on the Extended Local Hierarchical Naive
Bayes (ELHNB) classification algorithm, recently proposed
in [9]. In that work, a Naive Bayes (NB) local classifier
was trained for each class considering the classes of the
neighbouring nodes (parent and children) in the class hierarchy
as extended features. In the prediction phase, the algorithm
marginalises out the extended features by summing up the
probabilities of all possible combinations of neighbouring
classes. This algorithm is classified as “extended local” be-
cause although they use local NB classifiers, the class hierarchy
is taken into consideration by using the extended features.

III. EXTENDED LOCAL HIERARCHICAL NAIVE BAYES

Applying traditional classifiers in hierarchical classification
problems is not straight-forward. Although the literature has
multiple works on the subject of applying traditional algo-
rithms in the hierarchical classification setting [5], algorithms
that explicitly take the class hierarchy into account have the
potential of improving the classification performance, reducing
model size, and improving the interpretability of the classi-
fier [1].

For these reasons, one of the successful efforts towards
creating specific classification algorithms for hierarchical clas-
sification is the work of [9], which is an algorithm specially
tailored for hierarchical classification that takes into account
the class hierarchy explicitly. This algorithm, however, has
a specially lengthy prediction phase due to the necessity of
various probability calculations. We propose a modification of
the algorithm that significantly improves its run time, specially
in the prediction phase.

A. Original Algorithm

The ELHNB algorithm, specific for 〈T, SPL, FD〉 hierar-
chical classification problems, estimates the probability of an
instance belonging to each class Ci given its features x using
eq. (1) (readers interested in the derivation may refer to the
original paper.) Eq. (1) is used for each class Ci, 1 ≤ i ≤ N ,
where N is the number of classes in the hierarchy.

P (Ci = ci|x) =
1

P (x)
×

∑
yi∈{0,1}k(i)

(
P (x|Ci = ci,yi)P (Ci = ci|yi)P (x|yi)P (yi)∑

c′∈{ci,c̃i} P (x|Ci = c′,yi)P (Ci = c′|yi)

)
(1)

Where k(i) represents the number of neighbours of the i-
th class (the set containing the children and parent of the i-th
class node, given by the hierarchy), yi is a binary vector that
iterates over all possible classifications of the neighbourhood
of the i-th class, Ci is a random variable that may take the
values ci and c̃i, Ci = ci is the event of the current instance
being classified as belonging to the i-th class and Ci = c̃i the
event of the current instance not being classified as belonging
to the i-th class.

To estimate P (x|Ci,yi) and P (x|yi), the authors use
the Naive Bayes assumption that the predictive attributes are
independent given the class, reducing the estimation expres-
sions to P (x|Ci,yi) =

∏n
k=1 P (xk|Ci,yi) and P (x|yi) =∏n

k=1 P (xk|yi). The probabilities P (Ci|yi) and P (yi) may
be estimated by simple counting and P (x) by using the fact
that P (Ci = ci|x) + P (Ci = c̃i|x) = 1.

The probabilities calculated by the algorithm are not guar-
anteed to be consistent, that is, the probability of an instance
xk belonging to class i, P (Ci = ci|x), may be higher than the
probability the instance belonging to the parent of i, which is
inconsistent to the fact that if an instance belongs to class i
it implicitly belongs to the parent of i. Therefore, to tackle
this problem, the authors calculate the geometric average of
the probabilities of all possible paths from the root to the
leaves and choose the path with greatest probability as the
final classification, avoiding the inconsistency problem.

The overall time complexity of the algorithm’s training
phase considering the number of probability distributions that
need to be estimated is O(Smean × N), where Smean is the
mean size of the neighborhood of all nodes. Naturally, the
complexity of the prediction phase considering the number of
evaluations of probability functions is also O(Smean ×N).

B. Modified Algorithm

We shall demonstrate that for problems classified as
〈T, SPL, FD〉, the training phase of the Modified Extended
Local Hierarchical Naive Bayes (M-ELHNB) algorithm may
be executed faster by reducing the number of probability distri-
butions that must be estimated. Likewise, we shall demonstrate
that the prediction phase (the estimation of P (Ci = ci|x)) for
a given class may be executed in constant time regarding the
number of its child nodes in the class hierarchy. Since Ci is a
binary variable, it is enough to compute either P (Ci = ci|x) or
P (Ci = c̃i|x). Next we show how to compute P (Ci = c̃i|x)
since it allows for more simplifications in equation (1).

Theorem 1. Estimating P (x)P (Ci = c̃i|x) requires constant
time (that is, the estimation time complexity is independent of
the number of neighbours of Ci in the class hierarchy).

First, lets us consider non-leaf nodes, we may decom-
pose eq. (1) as follows:

P (Ci = c̃i|x) =
1

P (x)
×[∑

yi∈S1

(
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)∑

c′∈{ci,c̃i} P (x|Ci = c′,yi)P (Ci = c′|yi)

)
+

(2)

∑
yi∈S2

(
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)∑

Ci∈{ci,c̃i} P (x|Ci = c′,yi)P (Ci = c′|yi)

)
+

(3)

∑
yi∈S3

(
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)∑

Ci∈{ci,c̃i} P (x|Ci = c′,yi)P (Ci = c′|yi)

)]
.

(4)

Class sets S1, S2 and S3 are the only three possible types
of label configuration for the neighbourhood of the i-th class
node: 1) one parent and one child node, 2) one parent and
no children and, 3) no parents and no children. Notice that
these are the only possibilities because we are dealing with
single-path predictions in a tree setting. Figure 1 displays a
graphical representation of the three possibilities.

We may eliminate expression (2) from the summation since,
when yi ∈ S1, P (Ci = c̃i|yi) equals to 0 because there is no
case where c̃i happens and both its parent and some child
node are active (have a positive class label). This is because,
due to the “Is-a” hierarchy, if a child of Ci is active, Ci must
be active too. Similarly we may simplify expressions (3) and
(4) considering that P (Ci = ci|yi) is equal to 0 when yi ∈ S2

or yi ∈ S3. Equation (7) presents the simplifications.

P (Ci = c̃i|x) =
1

P (x)
× (5)[∑

yi∈S2

((((((((((((((
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)

((((((((((((((
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)

+

∑
yi∈S3

((((((((((((((
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)P (x|yi)P (yi)

((((((((((((((
P (x|Ci = c̃i,yi)P (Ci = c̃i|yi)

]
(6)

P (x)P (Ci = c̃i|x) =∑
yi∈S2

P (x|yi)P (yi) +
∑

yi∈S3

P (x|yi)P (yi). (7)

Therefore, because sets S2 and S3 are of unitary cardi-
nality, containing only one possible configuration of labels
for the neighbour (parent or child) classes of Ci, calculating
P (x)P (Ci = c̃i|x) requires constant time complexity with
respect to the number of neighbours of Ci in the class
hierarchy.

To calculate the probability P (x)P (Ci = c̃i|x) for leaf
nodes we may follow the same steps considering that the set S1

is empty (the leaf nodes have no children), the set S2 contains
only one element (the parent node of the leaf) and the set S3

is empty, meaning that the time complexity for the probability
estimation for leaf nodes is also independent of the number of
neighbors. �

To estimate the normalizing constant P (x) we would need
the value of P (Ci = ci|x), which is the original probability
estimated by [9], the very value that we would like to avoid
calculating because of the time complexity dependency on the
number of neighbours of the class node.

Thus, we use a heuristic to get rid of the normalizing con-
stant P (x): we calculate all non-normalized probabilities and
assume that the largest one, Zpseudo = maxCi(P (x)P (Ci =
c̃i|x)), is the pseudo-normalization constant. Additionally, we
do not use the geometric average approach proposed by [9]
to find the most probable path in the class hierarchy, instead,
we use a top-down strategy: first find the most probable class
that is a child of the root node, then, recursively find the most
probable child of this node, and so on, until a leaf node is
reached. This approach had better results than the original
strategy of using the geometric average in our experiments.

The overall time complexity of the training phase of the
modified algorithm, considering the number of probability
distributions that need to be estimated, is O(N), where N
is the number of class nodes in the hierarchy. The time
complexity of the prediction phase, considering the number
of evaluations of probability functions is also O(N).

Both time complexities are independent of the number of
neighbours of the class nodes and are strictly smaller than
O(Smean×N), where Smean is the mean number of neighbors
of all class nodes. Smean must be larger than one, since the
size of the neighborhood set S is at least 1 for all nodes if the
graph is connected.

IV. EXPERIMENTS

In this section we present the effects of the modification
made in the original ELHNB algorithm with respect to predic-
tive performance, training time, and prediction time. To test the
algorithm, we use 18 bioinformatics datasets, eight encoding
protein functions and ten encoding gene functions.

A. Datasets

We conducted our experiments in the same 18 datasets
made available by [9] 1. These datasets are commonly used
in works about hierarchical classification. For the sake of
organization, these datasets are divided in two groups: Group
A contains eight protein function datasets, four related to
G Protein-Coupled Receptors (GPCRs) and four related to
enzymes. GPCRs are transmembrane proteins that are common
targets of many medical drugs. Enzymes are large molecules
that speed up certain biochemical reactions. The names of the
datasets related to enzymes start with EC (Enzyme Commis-
sion) and the names of the datasets related to GPCR proteins
start with GPCR. The predictor attributes of datasets in Group
A are the binary values that represent the existence (or not) of
a particular protein signature (motif) in a protein amino acid
sequence, the amino acid sequence length, and the molecular
weight. The second part of the dataset name represents the
type of motif that was used to create the dataset (Interpro ,
FigerPrints, Prosite and Pfam). The creation of these datasets
is described in [4].

Group B contains different types of datasets related to
the Yeast genome, namely: secondary structure, phenotype,
homology, sequence statistics, and expression. The classes to
be predicted were extracted from FunCat. The creation of
these datasets is described in [2]. Table I presents the main
characteristics of the datasets used in this work, where “#”
means “number of”.

1The datasets and algorithms used in this work are available at http://www.
cs.kent.ac.uk/people/rpg/ff79/biokdd14 after the publication of this paper.

http://www.cs.kent.ac.uk/people/rpg/ff79/biokdd14
http://www.cs.kent.ac.uk/people/rpg/ff79/biokdd14

Ci

(a) Case 1 - Ci’s parent is active and ex-
actly one child node of Ci is active. In this
case, the number of possible configurations
of labels for the set yi of neighbours of Ci

is equal to the number of children of Ci.

Ci

(b) Case 2 - Ci’s parent is active, Ci’s
children are not active. This case contains
only one possible configuration of labels
for the set yi of neighbours of Ci.

Ci

(c) Case 3 - None of the neighbours of
Ci is active. This case contains only one
possible configuration of labels for the set
yi of neighbours of Ci.

Fig. 1: Simplified examples of the three possible cases, shaded nodes represent the active neighbourhood of the node Ci, i.e.,
neighbours whose class label is present in an instance.

TABLE I: Main characteristics of the datasets

Group Datasets # Attributes # Instances # Classes per level Level

A

GPCR-Interpro 450 6935 12/54/82/50
GPCR-Pfam 75 6524 12/52/79/49
GPCR-Prints 283 4880 8/46/76/49
GPCR-Prosite 129 5728 9/50/79/49
EC-Interpro 1216 11101 6/41/96/187

EC-Pfam 708 11057 6/41/96/190
EC-Prosite 585 11328 6/42/89/187
EC-Prints 382 11048 6/45/92/208

B

CellCycle 77 2486 16/47/69/32/8
Church 27 2499 16/49/67/34/6
Derisi 63 2497 16/48/70/31/7
Eisen 79 1641 16/43/55/23/2
Expr 551 2554 16/49/68/28/5

Gasch1 173 2595 16/48/71/32/7
Gasch2 52 2631 17/49/68/34/6

Phenotype 69 1023 15/43/40/15/1
Sequence 478 2689 17/48/65/29/5

SPO 80 2463 16/48/68/31/8

B. Predictive Performance

In this section we measure the impact of the proposed
modification in regards to predictive performance. We use
the well-known hierarchical F-Measure to measure predictive
performance. The hierarchical F-Measure (hF) is defined as
hF ≡ 2∗hP∗hR

hP+hR , [6] where hP is the hierarchical precision

and hR is the hierarchical recall, defined as hP ≡
∑

j |Pj∩Tj |∑
j |Pj |

and hR ≡
∑

j |Pj∩Tj |∑
j |Tj | , where Pj is the set of predicted classes

of the j-th instance and Tj is the set of true classes of the j-th
instance.

Table II presents the hierarchical F-Measure of the mod-
ified and original algorithm in 18 datasets. To test whether
the hF value of the modified algorithm (M-ELHNB) is sta-
tistically equivalent to the hF value of the standard ELHNB,
considering the combined results of all datasets, we used the
two-sided Wilcoxon Signed Rank test [3]. According to the
statistical test, it is not possible to reject the null hypothesis that
the algorithms are equivalent (p-value of 0.673 for α = 0.05).

TABLE II: Comparison between the Standard (ELHNB) and
the Modified Algorithm (M-ELHNB) in regards to the hierar-
chical F-Measure using 10-fold cross validation. Numbers in
brackets are the standard errors. Numbers in bold face indicate
the best performing algorithm.

Group Dataset ELHNB hF M-ELHNB hF

A

GPCR-Pfam 0.6087 (0.0042) 0.5926 (0.0037)
GPCR-Prosite 0.5893 (0.0068) 0.5597 (0.0070)
GPCR-Prints 0.7689 (0.0048) 0.7567 (0.0054)

GPCR-Interpro 0.7693 (0.0021) 0.7573 (0.0042)
EC-Prints 0.9360 (0.0022) 0.9451 (0.0016)
EC-Prosite 0.9490 (0.0022) 0.9686 (0.0010)
EC-Pfam 0.9604 (0.0016) 0.9748 (0.0012)

EC-Interpro 0.9605 (0.0021) 0.9772 (0.0013)

B

CellCyle 0.0898 (0.0084) 0.1382 (0.0064)
Church 0.0881 (0.0049) 0.0961 (0.0045)
Derisi 0.0751 (0.0045) 0.0825 (0.0033)
Eisen 0.0489 (0.0023) 0.1482 (0.0038)
Expr 0.0536 (0.0053) 0.0347 (0.0025)

Gasch1 0.0674 (0.0059) 0.0178 (0.0027)
Gash2 0.1153 (0.0061) 0.1307 (0.0056)

Phenotype 0.0761 (0.0062) 0.0809 (0.0072)
Sequence 0.0434 (0.0025) 0.0274 (0.0021)

SPO 0.0741 (0.0043) 0.1091 (0.0060)

C. Running time

To test the running time of the two algorithms we measured
the total running times of the training and prediction phases of
all 10 steps of the 10-fold cross-validation. All algorithms were
executed in a cluster computer with 24 Xeon E5520 processors
with 12 GB of RAM memory, running Ubuntu 12.04. We used
the Oracle Grid Engine to distribute the jobs. Both algorithms
were implemented in the Python programming language.

Figures 2 to 4 present the running times of the algorithms in
the selected datasets. We divided the datasets in three groups,
according to their overall running time. Group I contains the
smallest running times and Group III the largest. It is clear
from the figures that the modified algorithm has a better
running time in both the training and in the prediction phases,
as expected. The difference in running times is specially
significant in Group III: e.g., in the dataset “EC-Pfam” the

ELHNB algorithm took 88.2 hours to run its training and
prediction phases, while the modified algorithm took only 37.2
hours. A difference of more than 2 days, and a reduction of
about 58% in the time taken by ELHNB.

Phenotype Church Eisen Gasch2 Desiri CellCycle SPO

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ru
nt

im
e

(h
ou

rs
)

M-ELHNB Train Time
M-ELHNB Prediction Time
ELHNB Train Time
ELHNB Prediction Time

Fig. 2: Running time of the classifications algorithms, Group I

GPCR-Pfam Gasch1 GPCR-PrositeGPCR-Prints Sequence Expr

1.25

2.50

3.75

5.00

6.25

7.50

8.75

10.00

11.25

12.50

13.75

Ru
nt

im
e

(h
ou

rs
)

M-ELHNB Train Time
M-ELHNB Prediction Time
ELHNB Train Time
ELHNB Prediction Time

Fig. 3: Running time of the classifications algorithms, Group II

GPCR-Interpro EC-Prints EC-Prosite EC-Pfam EC-Interpro

14.2

28.3

42.5

56.7

70.8

85.0

99.2

113.3

127.5

141.7

155.8

Ru
nt

im
e

(h
ou

rs
)

M-ELHNB Train Time
M-ELHNB Prediction Time
ELHNB Train Time
ELHNB Prediction Time

Fig. 4: Running time of the classifications algorithms, Group III

V. CONCLUSION AND FUTURE WORK

In this paper we presented a modified version of the
ELHNB algorithm specialized for hierarchical classification
problems where each instance is assigned a single path from

the root node to a leaf node in the class hierarchy - called single
path, mandatory leaf class prediction problems. We showed
that our algorithm is statistically equivalent to the standard one
in terms of predictive performance, but significantly faster.

An extension of this work may be the application of the
modified algorithm in other domains and the extension of
the algorithm for other types of hierarchical structures such
as DAGs, multiple paths, non-mandatory leaf class prediction
classification problems.

ACKNOWLEDGMENT

The first author is financially supported by CAPES, a Brazilian
research-support agency (process number 0653/13-6).

REFERENCES

[1] H. Blockeel, L. Schietgat, J. Struyf, S. Džeroski, and
A. Clare, “Decision Trees for Hierarchical Multilabel
Classification: A Case Study in Functional Genomics,”
in Knowledge Discovery in Databases: PKDD 2006, ser.
Lecture Notes in Computer Science, vol. 4213. Springer
Berlin, 2006, pp. 18–29.

[2] A. Clare and R. D. King, “Predicting gene function
in Saccharomyces cerevisiae,” Bioinformatics, vol. 19,
no. 2, pp. ii42–ii49, Oct. 2003.

[3] J. Demsar, “Statistical Comparisons of Classifiers over
Multiple Data Sets,” Journal of Machine Learning Re-
search, vol. 7, pp. 1–30, 2006.

[4] N. Holden and A. A. Freitas, “Improving the Performance
of Hierarchical Classification with Swarm Intelligence,”
in Proc. of the 6th European Conf. on Evolutionary
Computation, Machine Learning and Data Mining in
Bioinformatics (EvoBIO). Springer, 2008, pp. 48–60.

[5] C. N. S. Jr and A. A. Freitas, “A survey of hierarchical
classification across different application domains,” Data
Mining and Knowledge Discovery, vol. 44, no. 1-2, pp.
31–72, 2011.

[6] S. Kiritchenko, S. Matwin, and F. Famili, “Functional
annotation of genes using hierarchical text categoriza-
tion,” in BioLINK SIG: Linking Literature, Information
and Knowledge for Biology, 2005.

[7] The Gene Ontology Consortium, “The Gene Ontology
(GO) database and informatics resource.” Nucleic acids
research, vol. 32, pp. D258–61, 2004.

[8] The Uniprot Consortium, “The Universal Protein Re-
source (UniProt) in 2010.” Nucleic acids research,
vol. 38, pp. D142–8, Jan. 2010.

[9] L. d. C. Merschmann and A. A. Freitas, “An Extended
Local Hierarchical Classifier for Prediction of Protein
and Gene Functions,” ser. Lecture Notes in Computer
Science, vol. 8057. Springer Berlin, 2013, pp. 159–171.

[10] L. D. Stein, “Integrating biological databases.” Nature
Reviews Genetics, vol. 4, no. 5, p. 337, 2003.

	Introduction
	Hierarchical Classification
	Extended Local Hierarchical Naive Bayes
	Original Algorithm
	Modified Algorithm

	Experiments
	Datasets
	Predictive Performance
	Running time

	Conclusion and Future Work

