
Noname manuscript No.
(will be inserted by the editor)

A Survey of Hierarchical Classification

Across Different Application Domains

Carlos N. Silla Jr. · Alex A. Freitas

Received: date / Accepted: date

Abstract In this survey we discuss the task of hierarchical classification. The litera-

ture about this field is scattered across very different application domains and for that

reason research in one domain is often done unaware of methods developed in other

domains. We define what is the task of hierarchical classification and discuss why some

related tasks should not be considered hierarchical classification. We also present a

new perspective about some existing hierarchical classification approaches, and based

on that perspective we propose a new unifying framework to classify the existing ap-

proaches. We also present a review of empirical comparisons of the existing methods

reported in the literature as well as a conceptual comparison of those methods at a

high level of abstraction, discussing their advantages and disadvantages.

Keywords Hierarchical Classification · Tree-structured class hierarchies · DAG-

structured class hierarchies.

1 Introduction

A very large amount of research in the data mining, machine learning, statistical pat-

tern recognition and related research communities has focused on flat classification

problems. By flat classification problem we are referring to standard binary or multi-

class classification problems. On the other hand, many important real-world classifi-

cation problems are naturally cast as hierarchical classification problems, where the

classes to be predicted are organized into a class hierarchy – typically a tree or a DAG

(Directed Acyclic Graph). The task of hierarchical classification, however, needs to be

Carlos N. Silla Jr.
School of Computing, University of Kent, Canterbury, UK
Tel.: +44 (0)1227 823192
Fax: +44 (0)1227 762811
E-mail: cns2@kent.ac.uk

Alex A. Freitas
School of Computing, University of Kent, Canterbury, UK
Tel.: +44 (0)1227 827220
Fax: +44 (0)1227 762811
E-mail: A.A.Freitas@kent.ac.uk

2

better defined, as it can be overlooked or confused with other tasks, which are often

wrongly referred to by the same name. Moreover, the existing literature that deals

with hierarchical classification problems is usually scattered across different applica-

tion domains which are not strongly connected with each other. As a result, researchers

in one application domain are often unaware of methods developed by researchers in

another domain. Also, there seems to be no standards on how to evaluate hierarchical

classification systems or even how to setup the experiments in a standard way.

The contributions of this paper are:

– To clarify what the task of hierarchical classification is, and what it is not.

– To propose a unifying framework to classify existing and novel hierarchical classi-

fication methods, as well as different types of hierarchical classification problems.

– To perform a cross-domain critical survey, in order to create a taxonomy of hier-

archical classification systems, by identifying important similarities and differences

between the different approaches, which are currently scattered across different

application domains.

– To suggest some experimental protocols to be undertaken when performing hi-

erarchical classification experiments, in order to have a better understanding of

the results. For instance, many authors claim that some hierarchical classification

methods are better than others, but they often use standard flat classification eval-

uation measures instead of using hierarchical evaluation measures. Also, in some

cases, it is possible to overlook what would be interesting to compare, and authors

often compare their hierarchical classification methods only against flat classifica-

tion methods, although the use of a baseline hierarchical method is not hard to

implement and would offer a more interesting experimental comparison.

This survey seems timely as different fields of research are more and more us-

ing an automated approach to deal with hierarchical information, as hierarchies (or

taxonomies) are a good way to help organize vast amounts of information. The first

issue that will be discussed in this paper (Section 2) is precisely the definition of the

hierarchical classification task. After clearly defining the task, we classify the existing

approaches in the literature according to three different broad types of approach, based

on the underlying methods. These approaches can be classified as: flat, i.e., ignoring

the class hierarchy (Section 3); local (Section 4) or global (Section 5). Based on the

new understanding about these approaches we present a unifying framework to classify

hierarchical classification methods and problems (Section 6). A summary, a conceptual

comparison and a review of empirical comparisons reported in the literature about

these three approaches is presented in Section 7. Section 8 presents some major appli-

cations of hierarchical classification methods; and finally in Section 9 we present the

conclusions of this work.

2 What is Hierarchical Classification?

In order to learn about hierarchical classification, one might start searching for papers

with the keywords “hierarchical” and “classification”; however, this might be mislead-

ing. One of the reasons for this is that, due to the popularity of SVM (Support Vector

Machine) methods in the machine learning community (which were originally devel-

oped for binary classification problems), different researchers have developed different

methods to deal with multi-class classification problems. The most common are the

3

One-Against-One and the One-Against-All schemes (Lorena and Carvalho, 2004). A

less known approach consists of dividing the problem in a hierarchical way where classes

which are more similar to one another are grouped together into meta-classes, resulting

in a Binary Hierarchical Classifier (BHC) (Kumar et al, 2002). For instance, in (Chen

et al, 2004) the authors modified the standard SVM, creating what they called a H-

SVM (Hierarchical SVM), based on this hierarchical problem decomposition approach.

When we consider the use of meta-classes in the pattern recognition field, they

are usually manually assigned, like in (Koerich and Kalva, 2005), where handwritten

letters with the same curves in uppercase and lowercase format (e.g. “o” and “O”) will

be represented by the same meta-class. An automated method for the generation of

meta-classes was recently proposed by Freitas et al (2008). At first glance the use of

meta-classes (and their automatic generation) seems to be related to the hierarchical

problem decomposition approach, as one can view the use of meta-classes as a two-

level hierarchy where leaf classes are grouped together by similarity into intermediate

classes (the meta-classes). This issue is interesting and deserves further investigation,

but is beyond the scope of this paper. In this paper we take the perspective that this

kind of approach is not considered to be a hierarchical classification approach, because

it creates new (meta-)classes on the fly, instead of using a pre-established taxonomy.

In principle a classification algorithm is not supposed to create new classes, which is

related to clustering.

In this paper we are interested in approaches that cope with a pre-defined class hi-

erarchy, instead of creating one from the similarity of classes within data (which would

lead to higher-level classes that could be meaningless to the user). Let us elaborate on

this point. There are application domains where the internal (non-leaf) nodes of the

class hierarchy can be chosen based on data (usually in the text mining application

domain), like in (Sasaki and Kita, 1998; Punera et al, 2005; Li et al, 2007; Hao et al,

2007), where they build the hierarchy during training by using some sort of hierar-

chical clustering method, and then classify new test examples by using a hierarchical

approach. However, in other domains, like protein function prediction in bioinformat-

ics, just knowing that classes A and B are similar can be misleading, as proteins with

similar characteristics (sequences of amino acids) can have very different functions and

vice-versa (Gerlt and Babbitt, 2000). Therefore, in this work, we are interested only

in hierarchical classification (a type of supervised learning). Hierarchical clustering (a

type of unsupervised learning) is out of the scope of the paper.

Hierarchical classification can also appear under the name of Structured Classifi-

cation (Seeger, 2008; Astikainen et al, 2008). However, the research field of structured

classification involves many different types of problems which are not hierarchical clas-

sification problems, e.g. Label Sequence Learning (Altun and Hofmann, 2003; Tsochan-

taridis et al, 2005). Therefore, hierarchical classification can be seen as a particular type

of structured classification problem, where the output of the classification algorithm

is defined over a class taxonomy; whilst the term structured classification is broader

and denotes a classification problem where there is some structure (hierarchical or not)

among the classes.

It is important then to define what exactly is a class taxonomy. Wu et al (2005) have

defined a class taxonomy as a tree structured regular concept hierarchy defined over a

partially order set (C,≺), where C is a finite set that enumerates all class concepts in

the application domain, and the relation ≺ represents the “IS-A” relationship. Wu et al

(2005) define the “IS-A” relationship as both anti-reflexive and transitive. However, we

prefer to define the “IS-A” relationship as asymmetric, anti-reflexive and transitive:

4

– The only one greatest element “R” is the root of the tree.

– ∀ci, cj ∈ C, if ci ≺ cj then cj 6≺ ci.

– ∀ci ∈ C, ci 6≺ ci.

– ∀ci, cj , ck ∈ C, ci ≺ cj and cj ≺ ck imply ci ≺ ck.

This definition, although originally proposed for tree structured class taxonomies,

can be used to define DAG structured class taxonomies as well. Ruiz and Srinivasan

(2002) give a good example of the asymmetric and transitive relations: The “IS-A”

relation is asymmetric (e.g. all dogs are animals, but not all animals are dogs) and

transitive (e.g., all pines are evergreens, and all evergreens are trees; therefore all pines

are trees).

Note that, for the purposes of this survey, any classification problem with a class

structure satisfying the aforementioned four properties of the IS-A hierarchy can be

considered as a hierarchical classification problem, and in general the hierarchical clas-

sification methods surveyed in this work assume (explicitly or implicitly) the underlying

class structure satisfies those problems. In the vast majority of works on hierarchical

classification, the actual class hierarchy in the underlying problem domain can indeed

be called a IS-A hierarchy from a semantical point of view. However, in a few cases

the semantics of the underlying class hierarchy might be different, but as long as the

aforementioned four properties are satisfied, we would consider the target problem as a

hierarchical classification one. For instance, the class taxonomy associated with cellular

localization in the Gene Ontology (an ontology which is briefly discussed in Section

8.2) is essentially, from a semantical point of view, a PART-OF class hierarchy, but it

still satisfies the four properties of the aforementioned definition of a IS-A hierarchy, so

we consider the prediction of cellular location classes according to that class hierarchy

as a hierarchical classification problem.

Whether the taxonomy is organized into a tree or a DAG influences the degree

of difficulty of the underlying hierarchical classification problem. Notably, as it will

be seen in Section 7, most of the current literature focus on working with trees as it

is an easier problem. One of the main contributions of this survey is to organize the

existing hierarchical classification approaches into a taxonomy, based on their essential

properties, regardless of the application domain. One of the main problems, in order

to do this, is to deal with all the different terminology that has already been proposed,

which is often inconsistent across different works. In order to understand these essential

properties, is important to clarify a few aspects of hierarchical classification methods.

Let us consider initially two types of conventional classification methods that cannot

directly cope with hierarchical classes: two-class and multi-class classifiers. First, the

main difference between a binary classifier and a multi-class classifier is that the binary

classifier can only handle two-class problems, whilst a multi-class classifier can handle in

principle any number of classes. Secondly, there are multi-class classifiers that can also

be multi-label, i.e. the answer from the classifier can be more than one class assigned

to a given example. Thirdly, since these types of classifiers were not designed to deal

with hierarchical classification problems, they will be referred to as flat classification

algorithms. Fourthly, in the context of hierarchical classification most approaches could

be called multi-label. For instance, considering the hierarchical class structure presented

in Figure 1 (where R denotes the root node), if the output of a classifier is class 2.1.1, it

is natural to say that it also belongs to classes 2 and 2.1, therefore having three classes

as the output of the classifier. In (Tikk et al, 2004) this notion of multi-label is used

and they call this a particular type of multi-label classification problem. However, since

5

R

1

1.1

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

1.2

Fig. 1 An Example of a tree-based hierarchical class structure

this definition is trivial, as any hierarchical approach could be considered multi-label in

this sense, in this work we will only consider a hierarchical classifier to be hierarchically

multi-label if it can assign more than one class at any given level of the hierarchy to a

given example. This distinction is particularly important, as a hierarchically multi-label

classification algorithm is more challenging to design than a hierarchically single-label

one. Also, recall that in hierarchical classification we assume that the relation between

a node and its parent in the class hierarchy is a “IS-A” relationship.

According to Freitas and de Carvalho (2007); Sun and Lim (2001) hierarchical

classification methods differ in a number of criteria. The first criterion is the type of

hierarchical structure used. This structure is based on the problem structure and it

typically is either a tree or a DAG. Figure 2 illustrates these two types of structures.

The main difference between them is that in the DAG a node can have more than one

parent node.

R

1

1.1

2

2.1 2.21.2

R

1

1.1

2

1-2.1 2.21.2

Fig. 2 A simple example of a tree structure (left) and a DAG structure (right)

The second criterion is related to how deep the classification in the hierarchy is

performed. I.e., the hierarchical classification method can be implemented in a way

that will always classify a leaf node (which Freitas and de Carvalho (2007) refer to as

mandatory leaf-node prediction and Sun and Lim (2001) refer to as virtual category

tree) or the method can consider stopping the classification at any node in any level

of the hierarchy (which Freitas and de Carvalho (2007) refer to as non-mandatory leaf

6

node prediction and Sun and Lim (2001) refer to as category tree). In this paper we

will use the term (non-)mandatory leaf node prediction, which can be naturally used

for both tree-structured and DAG-structured class taxonomies.

The third criterion is related to how the hierarchical structure is explored. The

current literature often refers to top-down (or local) classifiers, when the system em-

ploys a set of local classifiers; big-bang (or global) classifiers, when a single classifier

coping with the entire class hierarchy is used; or flat classifiers, which ignore the class

relationships, typically predicting only the leaf nodes. However, a closer look at the

existing hierarchical classification methods reveals that:

1. The top-down approach is not a full hierarchical classification approach by itself,

but rather a method for avoiding or correcting inconsistencies in class prediction

at different levels, during the testing (rather than training) phase;

2. There are different ways of using local information to create local classifiers, and

although most of them are referred to as top-down in the literature, they are very

different during the training phase and slightly different in the test phase;

3. Big-bang (or global) classifiers are trained by considering the entire class hierarchy

at once, and hence they lack the kind of modularity for local training of the classifier

that is a core characteristic of the local classifier approach.

These are the main points which will be discussed in detail in the next four sections.

3 Flat Classification Approach

The flat classification approach, which is the simplest one to deal with hierarchical

classification problems, consists of completely ignoring the class hierarchy, typically

predicting only classes at the leaf nodes. This approach behaves like a traditional

classification algorithm during training and testing. However, it provides an indirect

solution to the problem of hierarchical classification, because, when a leaf class is

assigned to an example, one can consider that all its ancestor classes are also implicitly

assigned to that instance (recall that we assume a “IS-A” class hierarchy).

However, this very simple approach has the serious disadvantage of having to build

a classifier to discriminate among a large number of classes (all leaf classes), without

exploring information about parent-child class relationships present in the class hierar-

chy. Figure 3 illustrates this approach. We use here the term flat classification approach,

as it seems to be the most commonly used term in the existing literature, although in

(Burred and Lerch, 2003) the authors refer to this approach as “the direct approach”,

while in (Xiao et al, 2007) this approach is referred to as a “global classifier” – which

is misleading as they are referring to this näıve flat classification algorithm, and the

term global classifier is often used to refer to the “big-bang” approach (Section 5).

In (Barbedo and Lopes, 2007) the authors refer to this approach as a “bottom-up”

approach. They justify this term as follows: “The signal is firstly classified according

to the basic genres, and the corresponding upper classes are consequences of this first

classification (bottom-up approach).” In this paper, however, we prefer to use the term

flat classification to be consistent with the majority of the literature.

Considering the different types of class taxonomies (tree or DAG), this approach

can cope with both of them as long as the problem is a mandatory-leaf node prediction

problem, as it is incapable of handling non-mandatory leaf node prediction problems.

In this approach training and testing proceed in the same way as in standard (non-

hierarchical) classification algorithms.

7

R

1

1.1

2

2.1 2.2

2.1.1 2.1.2 2.2.1 2.2.2

1.2

Fig. 3 Flat classification approach using a flat multi-class classification algorithm to always
predict the leaf nodes

4 Local Classifier Approaches

In the seminal work of Koller and Sahami (1997), the first type of local classifier

approach (also known as top-down approach in the literature) was proposed. From

this work onwards, many different authors used augmented versions of this approach

to deal with hierarchical classification problems. However, the important aspect here

is not that the approach is top-down (as it is commonly called), but rather that the

hierarchy is taken into account by using a local information perspective. The idea

behind this reasoning is that in the literature there are several papers that employ this

local information in different ways. These approaches, therefore, can be grouped based

on how they use this local information and how they build their classifiers around it.

More precisely, there seems to exist three standard ways of using the local information:

a local classifier per node, a local classifier per parent node and a local classifier per

level. In the following subsections we discuss each one of them in detail. Also note that

unless specified otherwise, the discussion will assume a single label tree-structured class

hierarchy and mandatory leaf node prediction.

It should be noted that, although the three types of local hierarchical classification

algorithms discussed in the next three sub-sections differ significantly in their training

phase, they share a very similar top-down approach in their testing phase. In essence,

in this top-down approach, for each new example in the test set, the system first

predicts its first-level (most generic) class, then it uses that predicted class to narrow

the choices of classes to be predicted at the second level (the only valid candidate

second-level classes are the children of the class predicted at the first level), and so on,

recursively, until the most specific prediction is made.

As a result, a disadvantage of the top-down class-prediction approach (which is

shared by all the three types of local classifiers discussed next) is that an error at

a certain class level is going to be propagated downwards the hierarchy, unless some

procedure for avoiding this problem is used. If the problem is non-mandatory leaf node

prediction, a blocking approach (where an example is passed down to the next lower

8

level only if the confidence on the prediction at the current level is greater than a

threshold) can avoid that misclassifications are propagated downwards, at the expense

of providing the user with less specific (less useful) class predictions. Some authors use

methods to give better estimates of class probabilities, like shrinkage (McCallum et al,

1998) and isotonic smoothing (Punera and Ghosh, 2008). The issues of non-mandatory

leaf node prediction and blocking are discussed in Section 4.4.

4.1 Local Classifier Per Node Approach

This is by far the most used approach in the literature. It often appears under the

name of a top-down approach, but as we mentioned earlier, we shall see why this is not

a good name as the top-down approach is essentially a method to avoid inconsistencies

in class predictions at different levels in the class hierarchy. The local classifier per node

approach consists of training one binary classifier for each node of the class hierarchy

(except the root node). Figure 4 illustrates this approach.

2.1.22.1.1 2.2.22.2.1

1.1 2.1 2.21.2

R

21

Fig. 4 Local classifier per node approach (circles represent classes and dashed squares with
round corners represent binary classifiers)

There are different ways to define the set of positive and negative examples for

training the binary classifiers. In the literature most works often use one approach and

studies like Eisner et al (2005); Fagni and Sebastiani (2007) where different approaches

are compared are not common. In the work of Eisner et al (2005) the authors identify

and experiment with four different policies to defining the set of positive and negative

examples. In (Fagni and Sebastiani, 2007) the authors focus on the selection of the

negative examples and empirically compare four policies (two standard ones compared

with two novel ones). However the novel approaches are limited to text categorization

problems and achieved similar results to the standard approaches; and for that reason

they are not further discussed in this paper. The notation used to define the sets of

positive and negative examples is based on the one used in (Fagni and Sebastiani, 2007)

and is presented in Table 1.

9

Table 1 Notation for Negative and Positive Training Examples.

Symbol Meaning
Tr the set of all training examples

Tr+(cj) the set of positive training examples of cj

Tr−(cj) the set of negative training examples of cj

↑ (cj) the parent category of cj

↓ (cj) the set of children categories of cj

⇑ (cj) the set of ancestor categories of cj

⇓ (cj) the set of descendant categories of cj

↔ (cj) the set of sibling categories of cj

∗(cj) denotes examples whose most specific known class is cj

– The “exclusive” policy (as defined by Eisner et al (2005)): Tr+(cj) = ∗(cj) and

Tr−(cj) = Tr \ ∗ (cj). This means that only examples explicitly labeled as cj as

their most specific class are selected as positive examples, while everything else

is used as negative examples. For example, using Fig. 4, for cj = 2.1, Tr+(c2.1)

consists of all examples whose most specific class is 2.1; and Tr−(c2.1) consists of

the set of examples whose most specific class is 1, 1.1, 1.2, 2, 2.1.1, 2.1.2, 2.2,2.2.1 or

2.2.2. This approach has a few problems. First, it does not consider the hierarchy

to create the local training sets. Second, it is limited to problems where partial

depth labeling instances are available. By partial depth labeling instances we mean

instances whose class label is known just for shallower levels of the hierarchy, and

not for deeper levels. Third, using the descendant nodes of cj as negative examples

seems counter-intuitive considering that examples who belong to class ⇓ (cj) also

implicitly belong to class cj according to the “IS-A” hierarchy concept.

– The “less exclusive” policy (as defined by Eisner et al (2005)): Tr+(cj) = ∗(cj)

and Tr−(cj) = Tr \∗ (cj)∪ ⇓ (cj). In this case, using Fig. 4 as example, Tr+(c2.1)

consists of the set of examples whose most specific class is 2.1; and Tr−(c2.1)

consists of the set of examples whose most specific class is 1, 1.1, 1.2, 2, 2.2, 2.2.1

or 2.2.2. This approach avoids the aforementioned first and third problems of the

exclusive policy, but it is still limited to problems where partial depth labeling

instances are available.

– The “less inclusive” policy (as defined by Eisner et al (2005), it is the same as the

“ALL” policy defined by Fagni and Sebastiani (2007)): Tr+(cj) = ∗(cj)∪ ⇓ (cj)

and Tr−(cj) = Tr \ ∗ (cj)∪ ⇓ (cj). In this case Tr+(c2.1) consists of the set of

examples whose most specific class is 2.1, 2.1.1 or 2.1.2; and Tr−(c2.1). consists of

the set of examples whose most specific class is 1, 1.1, 1.2, 2, 2.2, 2.2.1 or 2.2.2.

– The “inclusive” policy (as defined by Eisner et al (2005)): Tr+(cj) = ∗(cj)∪ ⇓ (cj)

and Tr−(cj) = Tr \ ∗ (cj)∪ ⇓ (cj)∪ ⇑ (cj). In this case Tr+(c2.1) is the set of

examples whose most specific class is 2.1,2.1.1 or 2.1.2; and Tr−(c2.1) consists of

the set of examples whose most specific class is 1,1.1,1.2,2.2,2.2.1 or 2.2.2.

– The “siblings” policy (as defined by Fagni and Sebastiani (2007), and which Ceci

and Malerba (2007) refers to as “hierarchical training sets”): Tr+(cj) = ∗(cj)∪ ⇓
(cj) and Tr−(cj) =↔ (cj)∪ ⇓ (↔ (cj)). In this case Tr+(c2.1) consists of the set

of examples whose most specific class is 2.1,2.1.1 or 2.1.2; and Tr−(c2.1) consists

of the set of examples whose most specific class is 2.2,2.2.1,2.2.2.

– The “exclusive siblings” policy (as defined by Ceci and Malerba (2007) and referred

to as ”proper training sets”): Tr+(cj) = ∗(cj) and Tr−(cj) =↔ (cj). In this case

Tr+(c2.1) consists of the set of examples whose most specific class is 2.1; and

Tr−(c2.1) consists of the set of examples whose most specific class is 2.2.

10

It should be noted that in the aforementioned policies for negative and positive

training examples, we have assumed that the policies defined in (Fagni and Sebastiani,

2007) follow the usual approach of using as positive training examples all the examples

belonging to the current class node (∗(cj)) and all of its descendant classes (⇓ (cj)).

Although this is the most common approach, several other approaches can be used, as

shown by Eisner et al (2005). In particular, the exclusive and less exclusive policies use

as positive examples only the examples whose most specific class is the current class,

without using the examples whose most specific class is a descendant from the current

class in the hierarchy. It should be noted that the aim of the work of Eisner et al (2005)

was to evaluate different ways of creating the positive and negative training sets for

predicting functions based on the Gene Ontology, but it seems that they overlooked

the use of the siblings policy which is common in the hierarchical text classification

domain. Given the above discussion, one can see that it is important that authors be

clear on how they select both positive and negative examples in the local hierarchical

classification approach, since so many ways of defining positive and negative examples

are possible, with subtle differences between some of them.

Concerning which approach one should use, Eisner et al (2005) note that as the

classifier becomes more inclusive (with more positive training examples) the classifiers

perform better. Their results (using F-measure as a measure of performance) comparing

the different measures are: Exclusive: 0.456, Less Exclusive: 0.528, Less Inclusive: 0.696

and Inclusive: 0.697. In the experiments of Fagni and Sebastiani (2007), where they

compare the siblings and less-inclusive policies, concerning predictive accuracy there is

no clear winner. However, they note that the siblings policy uses considerably less data

in comparison with the less-inclusive policy, and since they have the same accuracy,

that is the one that should be used. In any case, more research, involving a wider

variety of datasets, would be useful to better characterise the relative strengths and

weakness of the aforementioned different policies in practice.

During the testing phase, regardless of how positive and negative examples were

defined, the output of each binary classifier will be a prediction indicating whether

or not a given test example belongs to the classifier’s predicted class. One advantage

of this approach is that it is naturally multi-label in the sense that it is possible to

predict multiple labels per class level, in the case of multi-label problems. Such a natu-

ral multi-label prediction is achieved using just conventional single-label classification

algorithms, avoiding the complexities associated with the design of a multi-label classi-

fication algorithm (Tsoumakas and Katakis, 2007). In the case of single-label (per level)

problems one can enforce the prediction of a single class label per level by assigning

to a new test example just the class predicted with the greatest confidence among all

classifiers at a given level – assuming classifiers output a confidence measure of their

prediction. This approach has, however, a disadvantage. Considering the example of

Figure 4 it would be possible, using this approach, to have an output like Class 1 =

false and Class 1.2 = true (since the classifiers for nodes 1 and 1.2 are independently

trained), which leads to an inconsistency in class predictions across different levels.

Therefore, if no inconsistency correction method is taken into account, this approach

is going to be prone to class-membership inconsistency.

As mentioned earlier, one of the current misconceptions in the literature is the

confusion between local information-based training of classifiers and the top-down ap-

proach for class prediction (in the testing phase). Although they are often used together,

the local information-based training approach is not necessarily coupled with the top-

down approach, as a number of different inconsistency correction methods can be used

11

to avoid class-membership inconsistency during the test phase. Let us now review the

existing inconsistency correction methods for the local classifier per node approach.

The class-prediction top-down approach seems to have been originally proposed by

Koller and Sahami (1997), and its essential characteristic is that it consists of perform-

ing the testing phase in a top-down fashion, as follows. For each level of the hierarchy

(except the top level), the decision about which class is predicted at the current level

is based on the class predicted at the previous (parent) level. For example, at the top

level, suppose the output of the local classifier for class 1 is true, and the output of

the local classifier for class 2 is false. At the next level, the system will only consider

the output of classifiers predicting classes which are children of class 1. Originally, the

class-prediction top-down method was forced to always predict a leaf node (Koller and

Sahami, 1997). When considering a non-mandatory leaf-node prediction problem, the

class-prediction top-down approach has to use a stopping criterion that allows an ex-

ample to be classified just up to a non-leaf class node. This extension might lead to

the blocking problem, which will be discussed in Section 4.4.

Besides the class-prediction top-down approach, other methods were proposed to

deal with inconsistencies generated by the local classifier per node approach. One such

method consists of stopping the classification once the binary classifier for a given node

gives the answer that the unseen example does not belong to that class. For example,

if the output for the binary classifier of class 2 is true, and the outputs of the binary

classifiers for classes 2.1 and 2.2 are false, then this approach would ignore the answer

of all the lower level classifiers predicting classes that are descendant of classes 2.1 and

2.2 and output the class 2 to the user. By doing this, the class predictions respect the

hierarchy constraints. This approach was proposed by Wu et al (2005) and was referred

to as “Binarized Structured Label Learning” (BSLL).

In (Dumais and Chen, 2000) the authors propose two class-membership inconsis-

tency correction methods based on thresholds. In order for a class to be assigned to a

test example, the probabilities for the predicted class were used. In the first method,

they use a boolean condition where the posterior probability of the classes at the first

and second levels must be higher than a user specified threshold, in the case of a two-

level class hierarchy. The second method uses a multiplicative threshold that takes into

account the product of the posterior probability of the classes at the first and second

levels. For example, let us suppose that, for a given test example, the posterior prob-

ability for each class in the first two levels in Figure 4 were: p(c1) = 0.6, p(c2) = 0.2,

p(c1.1) = 0.55, p(c1.2) = 0.1, p(c2.1) = 0.2, p(c2.2) = 0.3. Considering a threshold of

0.5, by using the boolean rule the classes predicted for that test example would be

class 1 and class 1.1 as both classes have a posterior probability higher than 0.5. By

using the multiplicative threshold, the example would be assigned to class 1 but not

class 1.1, as the posterior probability of class 1 × the posterior probability of class 1.1

is 0.33, which is below the multiplicative threshold of 0.5.

In the work of Barutcuoglu and DeCoro (2006); Barutcuoglu et al (2006); DeCoro

et al (2007) another class-membership inconsistency correction method for the local

classifier per node approach is proposed. Their method is based on a Bayesian aggrega-

tion of the output of the base binary classifiers. The method takes the class hierarchy

into account by transforming the hierarchical structure of the classes into a Bayesian

network. In (Barutcuoglu and DeCoro, 2006) two baseline methods for conflict resolu-

tion are proposed: the first method propagates negative predictions downward (i.e. the

negative prediction at any class node is used to overwrite the positive predictions of

its descendant nodes) while the second baseline method propagates the positive pre-

12

dictions upward (i.e. the positive prediction at any class node is used to overwrite the

negative predictions of all its ancestors). Note that the first baseline method is the

same as the BSLL.

Another approach for class-membership inconsistency correction based on the out-

put of all classifiers has been proposed by Valentini (2009), where the basic idea is

that by evaluating all the classifier nodes’ outputs it is possible to make consistent

predictions by computing a “consensus” probability using a bottom-up algorithm.

Xue et al (2008) propose a strategy based on pruning the original hierarchy. The

basic idea is that when a new document is going to be classified it can possibly be related

to just some of the many hierarchical classification classes. Therefore, in order to reduce

the error of the top-down class-prediction approach, their method first computes the

similarity between the new document and all other documents, and creates a pruned

class hierarchy which is then used in a second stage to classify the document using a

top-down class-prediction approach.

Bennett and Nguyen (2009) propose a technique called expert refinements. The

refinement consists of using cross-validation in the training phase to obtain a better

estimation of the true probabilities of the predicted classes. The refinement technique

is then combined with a bottom-up training approach, which consists of training the

leaf classifiers using refinement and passing this information to the parent classifiers.

So far we have discussed the local classifier per node approach mainly in the con-

text of a single label (per level) problem with a tree-structured class hierarchy. In the

multi-label hierarchical classification scenario, this approach is still directly employ-

able, but some more sophisticated method to cope with the different outputs of the

classifiers should be used. For example, in (Esuli et al, 2008) the authors propose the

TreeBoost.MH which uses during training at each classification node the AdaBoost.MH

base learner. Their approach can also (optionally) perform feature selection by using

information from the sibling classes. In the context of a DAG, the local classifier per

node approach can still be used in a natural way as well, as it has been done in (Jin

et al, 2008; Otero et al, 2009).

4.2 Local Classifier Per Parent Node Approach

Another type of local information that can be used, and it is also often referred to

as top-down approach in the literature, is the approach where, for each parent node

in the class hierarchy, a multi-class classifier (or a problem decomposition approach

with binary classifiers like One-Against-One scheme for Binary SVMs) is trained to

distinguish between its child nodes. Figure 5 illustrates this approach.

In order to train the classifiers the “siblings” policy, as well as the “exclusive sib-

lings” policy, both presented in Section 4.1, are suitable to be used.

During the testing phase, this approach is often coupled with the top-down class

prediction approach, but this coupling is not necessarily a must, as new class prediction

approaches for this type of local approach could be developed. Consider the top-down

class-prediction approach and the same class tree example of Figure 5, and suppose that

the first level classifier assigns the example to the class 2. The second level classifier,

which was only trained with the children of the class node 2, in this case 2.1 and 2.2,

will then make its class assignment (and so on, if deeper-level classifiers were available),

therefore avoiding the problem of making inconsistent predictions and respecting the

natural constrains of class membership.

13

2.1.22.1.1 2.2.22.2.1

1.1 2.1 2.21.2

R

21

Fig. 5 Local classifier per parent node (circles represent classes and dashed squares with
round corners in parent nodes represent multi-class classifiers – predicting their child classes)

An extension of this type of local approach known as the “selective classifier” ap-

proach was proposed by Secker et al (2007). The authors refer to this method as the

Selective Top-Down approach, but it is here re-named to “selective classifier” approach

to emphasize that what are being selected are the classifiers, rather than attributes as

in attribute (feature) selection methods. In addition, we prefer to reserve the term “top-

down” to the class prediction method during the testing phase, as explained earlier.

Usually, in the local classifier per parent node approach the same classification algo-

rithm is used throughout all the class hierarchy. In (Secker et al, 2007), the authors

hypothesise that it would be possible to improve the predictive accuracy of the local

classifier per parent node approach by using different classification algorithms at dif-

ferent parent nodes of the class hierarchy. In order to determine which classifier should

be used at each node of the class hierarchy, during the training phase, the training set

is split into a sub-training and validation set with examples being assigned randomly

to each of those datasets. Different classifiers are trained using that sub-training set

and are then evaluated on the validation set. The classifier chosen for each parent class

node is the one with the highest classification accuracy on the validation set. An im-

provement over the selective classifier approach was proposed by Holden and Freitas

(2008), where a swarm intelligence optimization algorithm was used to perform the

classifier selection. The motivation behind this approach is that the original selective

classifier approach uses a greedy, local search method that has only a limited local view

of the training data when selecting a classifier, while the swarm intelligence algorithm

performs a global search that considers the entire tree of classifiers (having a complete

view of the training data) at once. Another improvement over the selective classifier ap-

proach was proposed by Silla Jr. and Freitas (2009b), where both the best classifier and

the best type of example representation (out of a few types of representations, involv-

ing different kinds of predictor attributes) are selected for each parent node classifier.

14

In addition, Secker et al (2010) extended their previous classifier-selection approach in

order to select both classifiers and attributes at each classifier node.

So far we have discussed the local classifier per parent node approach in the context

of a single label problem with a tree-structured class hierarchy. Let us now briefly dis-

cuss this approach in the context of a multi-label problem. In this multi-label scenario,

this approach is not directly employable. There are, at least, two approaches that could

be used to cope with the multi-label scenario. One is to use a multi-label classifier at

each parent node, as done by Wu et al (2005). The second approach is to take into

account the different confidence scores provided by each classifier and have some kind

of decision thresholds based on those scores to allow multiple labels. One way of doing

this would be to adapt the multiplicative threshold proposed by Dumais and Chen

(2000). When dealing with a DAG-structured class hierarchy, this approach is also not

directly employable, as the created local training sets might be highly redundant (due

to the the fact that a given class node can have multiple parents, which can be located

at different depths). To the best of our knowledge this approach has not yet been used

with DAG-structured class hierarchies.

4.3 Local Classifier Per Level Approach

This is the type of “local” (broadly speaking) classifier approach least used so far on

the literature. The local classifier per level approach consists of training one multi-

class classifier for each level of the class hierarchy. Figure 6 illustrates this approach.

Considering the example of Figure 6, three classifiers would be trained, one classifier

for each class level, where each classifier would be trained to predict one or more classes

(depending on whether the problem is single-label or multi-label) at its corresponding

class level. The creation of the training sets here is implemented in the same way as in

the local classifier per parent node approach.

This approach has been mentioned as a possible approach by Freitas and de Car-

valho (2007), but to the best of our knowledge its use has been limited as a baseline

comparison method in (Clare and King, 2003) and (Costa et al, 2007b).

One possible (although very näıve) way of classifying test examples using classifiers

trained by this approach is as follows. When a new test example is presented to the

classifier, get the output of all classifiers (one classifier per level) and use this informa-

tion as the final classification. The major drawback of this class-prediction approach is

being prone to class-membership inconsistency. By training different classifiers for each

level of the hierarchy it is possible to have outputs like Class 2 at the first level, Class

1.2 at the second level, and Class 2.2.1 at the third level, therefore generating inconsis-

tency. Hence, if this approach is used, it should be complemented by a post-processing

method that tries to correct the prediction inconsistency.

To avoid this problem, one approach that can be used is the class-prediction top-

down approach. In this context, the classification of a new test example would be done

in a top-down fashion (similar to the standard top-down class-prediction approach),

restricting the possible classification output at a given level only to the child nodes of

the class node predicted in the previous level (in the same way as it is done in the local

classifier per parent node approach).

This approach could work with either a tree or a DAG class structure. Although

depth is normally a tree concept, it could still be computed in the context of a DAG,

but in the latter case this approach would be considerably more complex. This is

15

2.1.22.1.1 2.2.22.2.1

1.1 2.1 2.21.2

R

21

Fig. 6 Local classifier per level (circles represent classes and each dashed rectangle with round
corners encloses the classes predicted by a multi-class classifier)

because, since there can be more than one path between two nodes in a DAG, a class

node can be considered as belonging to several class levels, and so there would be

considerable redundancy between classifiers at different levels. In the context of a tree

structured class hierarchy and multi-label problem, methods based on confidence scores

or posterior probabilities could be used to make more than one prediction per class

level.

4.4 Non-Mandatory Leaf Node Prediction and the Blocking Problem

In the previous sections, we discussed the different types of local classifiers but we

avoided the discussion of the non-mandatory leaf node prediction problem. The non-

mandatory leaf node prediction problem, as the name implies, allows the most specific

class predicted to any given instance to be a class at any node (i.e. internal or leaf node)

of the class hierarchy, and was introduced by Sun and Lim (2001). A simple way to

deal with the non-mandatory leaf-node prediction problem is to use a threshold at each

class node, and if the confidence score or posterior probability of the classifier at a given

class node – for a given test example – is lower than this threshold, the classification

stops for that example. A method for automatically computing these thresholds was

proposed by Ceci and Malerba (2007).

The use of thresholds can lead to what Sun et al (2004) called the blocking problem.

As briefly mentioned in Section 4.1, blocking occurs when, during the top-down process

of classification of a test example, the classifier at a certain level in the class hierarchy

predicts that the example in question does not have the class associated with that

classifier. In this case the classification of the example will be “blocked”, i.e., the

example will not be passed to the descendants of that classifier. For instance, in Figure

1 blocking could occur, say, at class node 2, which would mean that the example would

not be passed to the classifiers that are descendants of that node.

16

Three strategies to avoid blocking are discussed by Sun et al (2004): threshold

reduction method, restricted voting method and extended multiplicative thresholds.

These strategies were originally proposed to work together with two binary classifiers

at each class node. The first classifier (which they call local classifier) determines if

an example belongs to the current class node, while the second classifier (which they

call sub-tree classifier) determines whether the example is going to be given to the

current node’s child-node classifiers or if the system should stop the classification of

that example at the current node.

These blocking reduction methods work as follows:

– Threshold Reduction Method: This method consists of lowering the thresholds of

the subtree classifiers. The idea behind this approach is that by reducing the thresh-

olds this will allow more examples to be passed to the classifiers at lower levels. The

challenge associated with this approach is how to determine the threshold value of

each subtree classifier. This method can be easily used with both tree-structured

and DAG-structured class hierarchies.

– Restricted Voting: This method consists of creating a set of secondary classifiers

that will link a node and its grandparent node. The motivation for this approach is

that, although the threshold reduction method is able to pass more examples to the

classifiers at the lower levels, it is still possible to have examples wrongly rejected

by the high-level subtree classifiers. Therefore, the restricted voting approach gives

the low-level classifiers a chance to access these examples before they are rejected.

This approach is motivated by ensemble-based approaches and the set of secondary

classifiers are trained with a different training set than the original subtree classi-

fiers. This method was originally designed for tree-structured class hierarchies and

extending it to DAG-structured hierarchies would make it considerably more com-

plex and more computationally expensive, as in a DAG-structured class hierarchy

each node might have multiple parent nodes.

– Extended Multiplicative Thresholds: This method is a straightforward extension

of the multiplicative threshold proposed by Dumais and Chen (2000) (explained

in Section 4.1), which originally only worked for a 2-level hierarchy. The extension

consists simply of establishing thresholds recursively for every two levels.

5 Global Classifier (or Big-Bang) Approach

Although the problem of hierarchical classification can be tackled by using the previ-

ously described local approaches, learning a single global model for all classes has the

advantage that the total size of the global classification model is typically considerably

smaller, by comparison with the total size of all the local models learned by any of

the local classifier approaches. In addition, dependencies between different classes with

respect to class membership (e.g. any example belonging to class 2.1 automatically

belongs to class 2) can be taken into account in a natural, straightforward way, and

may even be explicitated (Blockeel et al, 2002). This kind of approach is known as the

big-bang approach, also called “global” learning. Figure 7 illustrates this approach.

In the global classifier approach, a single (relatively complex) classification model

is built from the training set, taking into account the class hierarchy as a whole during

a single run of the classification algorithm. When used during the test phase, each

test example is classified by the induced model, a process that can assign classes at

17

2.1.22.1.1 2.2.22.2.1

1.1 2.1 2.21.2

R

21

Fig. 7 Big-Bang classification approach using a classification algorithm that learns a global
classification model about the whole class hierarchy

potentially every level of the hierarchy to the test example (Freitas and de Carvalho,

2007).

Originally in the work of Sun and Lim (2001) the authors stated that there were two

approaches to hierarchical classification: top-down and big-bang. This statement has

been followed by several works in the field up to the writing of this paper (Costa et al,

2007b; Secker et al, 2007; Alves et al, 2008; Xue et al, 2008). Based on the new per-

spective about the top-down approach discussed earlier, that approach is essentially a

strategy for avoiding class-prediction inconsistencies across class levels during the test-

ing (rather than training) phase, when using a local hierarchical classification method.

However, we still lack a clear definition for the big-bang approach, as such definition

has not been made so far. Usually, by a mutual exclusion criterion, any hierarchical

classification method not considered top-down has been called big-bang.

Therefore, one of the contributions of this survey is clarifying what kinds of ap-

proaches can be considered as global classifier approaches. Compared to the local clas-

sifier approaches, much less research has been reported using the global classifier ap-

proach. Although the latter approach has the advantage of learning, during the training

phase, a global model for all the classes in a single step, it has an added complexity to

it.

Although there seems to be no specific core characteristic shared by all global

classifier approaches, in general global classifiers have two related broad characteristics,

as follows. They consider the entire class hierarchy at once (as mentioned earlier)

and they lack the kind of modularity for local training of the classifier that is a core

characteristic of the local classifier approach. We emphasize that the crucial distinction

between the global (big-bang) and local classifier approaches is in the training phase.

A global classifier can even use a top-down approach (typically used by local classifier

approaches) in its testing phase. In this latter case, as long as the classifier’s training

18

phase follows the two aforementioned broad characteristics of the global approach, it

should be classified as a global (rather than local) classifier.

From the current state of the art, the main kinds of approaches that are usually

considered to be global approaches are as follows. First, there is an approach based

on the Rocchio classifier (Rocchio, 1971). This approach uses the idea of class clus-

ters, where new examples are assigned to the nearest class by computing the distance

between the new test example and each class.

One example of this approach is found in (Labrou and Finin, 1999). In this work

the system classifies web pages into a subset of the Yahoo! hierarchical categories.

This method is specific to text mining applications. During the testing phase each new

document has its similarity computed with respect to each document topic. The final

classification is given based on some threshold.

Another type of global classifiers is based on casting the hierarchical class problem

as a multi-label classification problem (Kiritchenko et al, 2005, 2006). In order to be

able to predict any class in the hierarchy, the training phase is modified to take into

account all the classes in the hierarchy, by augmenting the non-leaf nodes with the

information of its ancestor classes. During the test phase, since the algorithm does not

take the hierarchy into account, it may suffer from the same limitations of the local

classifier per node, that is, it is prone to class-prediction inconsistency. For this reason,

in the approach of (Kiritchenko et al, 2005, 2006), the authors have a post-processing

step, which takes all the outputs into account in order to ensure that the hierarchical

constrains are respected.

Another type of global classifiers consists of modifying existing classifiers to directly

cope with the class hierarchy and benefit from this additional information. Global

classifiers of this type are heavily specific to the underlying flat classification algorithm,

as the original classification algorithms are modified in some way to take into account

the entire class hierarchy. This might represent a disadvantage when compared to the

local classifier approaches, which are not specific to a classification algorithm and can

be augmented in a number of different ways. However, to the user, the output of a

global classifier approach might be easier to understand/interpret than the one from

a local classifier approach, due to the typically much smaller size of the classification

model produced by the former approach, as mentioned earlier. This is the case for

instance in (Vens et al, 2008), where the number of rules generated by the global

approach is much smaller than the number of rules generated by the local approaches

used in their experiments. Also, the global classifier approach does not suffer from the

major drawback of the local classifier approach, namely the fact that a misclassification

at a given class level is propagated to the lower levels of the class hierarchy. Different

modifications of the base flat classification algorithms have been proposed by different

authors, as follows.

In (Wang et al, 2001) an association rule mining algorithm is heavily modified in

order to handle hierarchical document categorization. The main modification was to

make the algorithm work with a set of labels instead of a single label.

In (Clare and King, 2003) a modified version of the decision tree algorithm C4.5 to

handle the class hierarchy (HC4.5) was used. However, there are few details available

about how this algorithm is different from the standard C4.5. The only information the

authors provide is that they modified the entropy calculation formula to consider some

form of weighting. It seems that, other things being equal, deeper nodes are preferred

over shallower ones, because deeper nodes provide more specific class predictions to

19

Table 2 Global classifier approaches and their underlying flat counterpart

Base Algorithm Global Approach
Ant-Miner Otero et al (2009)
Association Rule-based Classifier Wang et al (2001)
C4.5 Clare and King (2003)
Naive Bayes Silla Jr. and Freitas (2009a)
Predictive Clustering Trees Blockeel et al (2006); Vens et al (2008)
Kernel Machines Cai and Hofmann (2004, 2007); Dekel et al

(2004a,b); Rousu et al (2005, 2006); Seeger
(2008); Qiu et al (2009); Wang et al (2009)

users. In (Silla Jr. and Freitas, 2009a) the authors have used the same principle to

create a global-model Naive Bayes classifier.

In (Blockeel et al, 2002, 2006; Vens et al, 2008) the authors present the Clus-HMC

algorithm, which is based on predictive cluster trees. The main idea of the method is

to build a set of classification trees to predict a set of classes, instead of only one class.

To do this, the authors transform the classification output into a vector with boolean

components corresponding to the possible classes. They also need to take into account

some sort of distance-based metric to calculate how similar or dissimilar the training

examples are in the classification tree. Originally the metric used was the weighted

Euclidian Distance. In the work of Aleksovski et al (2009) the authors investigated

the use of other distance measures, namely the Jaccard distance, the SimGIC distance

and the ImageClef distance. They concluded that there was no statistically significant

difference between the different distance metrics. Also, in (Dimitrovski et al, 2008)

the authors have proposed the use of two ensembles approaches (bagging and random

forests) applied to the Clus-HMC algorithm and concluded that the use of ensembles

improves the classification accuracy.

In (Otero et al, 2009) the authors proposed the hAnt-Miner algorithm, a global-

model hierarchical Ant-Miner classification method (a type of swarm intelligence method

based on the paradigm of ant colony optimization) to cope with DAGs.

Table 2 lists the original flat classification algorithm and which authors have mod-

ified it in order to create global classification approaches.

6 A Unifying framework for Hierarchical Classification

Based on our discussion so far, there are very many types of hierarchical classifica-

tion algorithms and a number of different types of hierarchical classification problems.

Hence, there is a clear need for a more precise way of describing (using a standardized

terminology as much as possible) which kind of hierarchical classification problem is

being solved, and what are the characteristics of the hierarchical classification algo-

rithm being used. For this reason, in this section we propose a unifying framework for

hierarchical classification problems and algorithms.

6.1 Categorization of the different types of hierarchical classification problems

In the proposed framework a hierarchical classification problem is described as a 3-tuple

< Υ, Ψ, Φ >, where:

20

– Υ specifies the type of graph representing the hierarchical classes (nodes in the

graph) and their interrelationships (edges in the graph). The possible values for

this attribute are:

– T (tree), indicating that the classes to be predicted are arranged into a tree

structure;

– D (DAG), indicating that the classes to be predicted are arranged into a DAG

(Direct Acyclic Graph).

– Ψ indicates whether a data instance is allowed to have class labels associated with

a single or multiple paths in the class hierarchy. For instance, in the tree-structured

class hierarchy of Fig. 4, if there is a data instance whose most specific labels are,

say, both 2.1.1 and 2.2.1, that instance has multiple paths of labels. This attribute

can take on two values, as follows (the values’ names are self-explained):

– SPL Single Path of Labels. This term is equivalent to the term “single label

per class level” which was used in the previous sections of this paper (to be

consistent with some works in the literature). In the proposed unifying frame-

work we prefer the new term because it can be naturally applied to both trees

and DAGs, whilst the definition of “class level” is not so clear in the case of

DAGs.

– MPL Multiple Paths of Labels. This term is equivalent to the term “hierarchi-

cally multi-label” which was used in the previous sections.

– Φ describes the label depth of the data instances, as follows.

– The value FD (Full Depth Labeling) indicates that all instances have a full

depth of labeling, i.e. every instance is labeled with classes at all levels, from

the first level to the leaf level.

– The value PD (Partial Depth Labeling) indicates that at least one instance

has a partial depth of labeling, i.e. the value of the class label at some level

(typically the leaf level) is unknown. In practice it is often useful to know not

only that a dataset has at least one instance with a partial depth of labeling,

but also the precise proportion of instances with such partial depth of labeling.

Hence, in the problem-describing tuple of the proposed framework, the value of

this attribute can be specified in a more precise way as PD%, where % means

the percentage of the instances that have partial depth labeling.

6.2 Categorization of different types of hierarchical classification algorithms

A hierarchical classification algorithm is described as a 4-tuple < ∆, Ξ, Ω, Θ >, where:

– ∆ indicates whether or not the algorithm can predict labels in just one or multiple

(more than one) different paths in the hierarchy. For instance, in the tree-structured

class hierarchy of Fig. 4, if the algorithm can predict both class 1.1 and 1.2 to a

given instance, which is equivalent to predicting the paths R-1-1.1 and R-1-1.2,

then the algorithm is capable of multiple label path prediction. This attribute can

take on two values, as follows:

– SPP (Single Path Prediction) indicates that the algorithm can assign to each

data instance at most one path of predicted labels.

– MPP (Multiple Path Prediction) indicates that the algorithm can potentially

assign to each data instance multiple paths of predicted labels.

21

Note that this attribute is conceptually similar to the aforementioned Ψ attribute

used to describe hierarchical classification problems; but they refer to different

entites (algorithms vs. problems). If the target problem is a SPL (Single Path of

(True) Labels) one, it would be more natural to use a SPP (Single Path Prediction)

algorithm, since a MPP (Multiple Path Prediction) algorithm would have “too

much flexibility” for the target problem and could produce invalid classifications,

wrongly assining multiple paths of labels to some instances. If the target problem

is a MPL (Multiple Paths of (True) Labels) one, then one should use a MPP

algorithm, since a SPP algorithm would clearly have “too little flexibility” for the

target problem, not predicting true labels to some instances. In practice, however,

in order to avoid the complexities associated with MPP algorithms, some works

simply transform an original MPL problem into a simpler SPL problem, and then

apply a SPP algorithm to the simplified data set. This kind of transformation can

be achieved by using, for instance, variations of the methods for transforming flat

multi-label problems into flat single-label ones described by Tsoumakas and Katakis

(2007), with proper adaptations for the context of hierarchical classification. In any

case, when such a problem simplification is done, it should be clearly indicated in

the work.

– Ξ is the prediction depth of the algorithm. It can have two values:

– MLNP (Mandatory Leaf-Node Prediction) which means the algorithm always

assign leaf class(es).

– NMLNP (Non-Mandatory leaf-node prediction) which means the algorithm

can assign classes at any level (including leaf classes).

Again, there is a natural relationship between this Ξ attribute for describing

algorithms and its counterpart Φ attribute for describing problems. If the target

problem is a FD (Full Depth Labeling) one, one should of course use a MLNP

algorithm, since a NMLNP algorithm would have “too much flexibility” and

would “under-classify” some instances. If the target problem is a PD (Partial

Depth Labeling) one, one should of course use a NMLNP algorithm, since a

MLNP algorithm would have “too little flexibility” and would “over-classify”

some instances.

– Ω is the taxonomy structure the algorithm can handle. It has two values:

– T (tree), indicating that the classes to be predicted are arranged into a tree

structure;

– D (DAG), indicating that the classes to be predicted are arranged into a DAG

(Direct Acyclic Graph).

In principle an algorithm designed for coping with DAGs can be directly applied

(without modification) to trees. However, the converse is not true, i.e., if an algo-

rithm was designed for coping with tree-structured class hierarchies only, it would

have to be significantly extended to cope with DAGs, as discussed across earlier

sections of this paper.

– Θ is the categorization of the algorithm under the proposed taxonomy (Section 3)

and has the values:

– LCN (Local Classifier per Node). Within this category, there is also another

argument that needs to be specified, which is the strategy used for selecting

negative and positive examples. It can have the following values (most of them

defined previously in section 4.1):

• E (Exclusive).

22

• LE (Less Exclusive).

• LI (Less Inclusive).

• I (Inclusive).

• S (Siblings).

• ES (Exclusive Siblings).

• D (Dynamic) for the cases where the positive and negative examples are

selected in a dynamic way (like in Fagni and Sebastiani (2007)), but in this

case the paper should clearly state how the examples are chosen.

– LCL (Local Classifier per Level).

– LCPN (Local Classifier per Parent Node).

– GC (Global Classifier).

Hence, researchers in hierarchical classification can use this unifying framework to

make precisely clear what are the main characteristics of the problem they are solving

and also the main characteristics of the hierarchical classification algorithm being used.

7 Conceptual and Empirical Comparison Between Different Hierarchical

Classification Approaches

In the previous sections, we provided a critical review of the existing approaches for

the task of hierarchical classification. Therefore, it is interesting to compare the ex-

isting approaches on an abstract level. Table 3 provides a summary of the different

approaches, considering their advantages and disadvantages. In that table, the three

rows referring to the three types of local classifiers consider only the training phase of

those local approaches. The next row considers the testing phase of any of those three

types of local classifiers using the top-down approach. For each row in the table, the

description of advantages and disadvantages is self-explanatory.

Also, it is interesting to verify what kinds of approaches have been investigated and

what kinds of class structure (tree or DAG) have been used so far in the literature.

Table 4 classifies the works reviewed in this paper according to the new proposed

taxonomy. The analysis of Table 4 shows that the majority of the research carried out

so far deals with tree-structured classification problems, rather than DAG-structured

ones. Also, the number of papers found in the literature using local classifiers is more

than twice the number of papers using global classifiers. This is expected as developing

new global classifiers is more complicated than using local approaches with well-known

classifiers.

Considering the issues of single/multiple path predictions and prediction depth, a

more detailed analysis is carried out in Table 5. Note, however, that this table contains

only the papers in the literature which provide clear information about these two is-

sues. Therefore, Table 5 refers to fewer papers than Table 4, although the papers which

are mentioned in the former are reported in more detail, according to the standardized

terminology of the proposed unified framework. It should be noted that a significant

number of papers that are mentioned in Table 4 are not mentioned in Table 5 be-

cause those papers did not provide clear information about some characteristics of the

corresponding hierarhical classification problem or algorithm. This reinforces the need

for the hierarchical classification community in general to be clearer on which kind

of problem and what type of algorithms they are using, and the proposed unifying

framework offers a standardized terminology and a taxonomy for this purpose.

23

Table 3 Summary of characteristics of different approaches, at a high level of abstraction

Hierarchical
Approach

Advantages Disadvantages

Flat Classifier Simplicity; Completely Ignores the class hierarchy;
Local Classifier
per Node (training
phase)

Simplicity; May suffer from the blocking problem;
Naturally Multi-label; Prone to inconsistency;

Employs a greater number of classi-
fiers;

Local Classifier
per Parent Node
(training phase)

Simplicity; May suffer from the blocking problem;
Employs fewer classifiers than
Local Classifier per Node;

Prone to inconsistency;

Local Classifier
per Level (training
phase)

Simplicity; Prone to inconsistency;
Employs a small number of
classifiers;

A classifier might have to discriminate
among a large number of classes (at
deep levels);
Ignores parent-child class relationships
during training;

(Any) Local Classifier
with the top-down
class prediction
approach

Preserves natural constrains in
class membership;

May suffer from the blocking problem;

Considers the class hierarchy
during testing and during the
creation of the training sets;

Depending on the problem at hand,
can create a very complex set of cas-
cade of classifiers, which in turn leads
to a complex classification model;

Generality (can be used with
any base classifier);

Misclassification at a given class node
is propagated downwards to all its de-
scendant classes;

Global Classifier
Preserves natural constrains in
class membership;

Classifier-specific;

Considers the class hierarchy
during training and testing;
Single (although complex) de-
cision model;

Although the great majority of research has been carried out on local classifiers, one

question that naturally arises is whether a particular type of approach is better than

the others or not. In order to investigate that, a compilation of the existing literature

(based on the conclusions of the authors of each paper) is shown in Table 6, where the

symbols ↑, ↓, ∼ represent whether each approach (corresponding to a given row in the

table) obtained a better (↑), worse (↓) or similar (∼) predictive performance than the

approach shown in the corresponding column. The names of the approaches in the rows

and columns of this table are abbreviated as follows: LCN is the Local Classifier per

Node, LCPN is the Local Classifier per Parent Node and LCPL is the Local Classifier

per Level. It should be noted that when a particular approach is compared against

itself, e.g. LCPN against LPCN, this represents the case where the authors propose a

new method within the same broad approach and use the standard approach of that

type as a baseline. Also, the lack of any comparisons in a given table cell should not

be interpreted as no comparisons were done in the corresponding cell. Sometimes this

is the case, while in others the authors compare only different variations of their own

approach (e.g. parameter tuning) and not to other approaches.

A careful analysis of the data compiled in Table 6 shows that, taking into account

the works that compare their hierarchical approaches against flat classification, the

hierarchical approaches are usually better than the flat classification approach. How-

24

Table 4 Categorization of hierarchical classification methods proposed in the literature ac-
cording to the taxonomy proposed in this paper.

Approach (Θ) Class
Structure
(Ω)

List of Works

Flat Classifier
Tree Barbedo and Lopes (2007)
DAG Hayete and Bienkowska (2005)

Local Classifier
per Node

Tree D´ Alessio et al (2000); Dumais and Chen (2000);
Sun and Lim (2001); Mladenic and Grobelnik (2003);
Sun et al (2003, 2004); Liu et al (2005); Wu et al
(2005); Cesa-Bianchi et al (2006a,b); Cesa-Bianchi and
Valentini (2009); Esuli et al (2008); Punera and Ghosh
(2008); Xue et al (2008); Bennett and Nguyen (2009);
Binder et al (2009); Valentini (2009); Valentini and Re
(2009)

DAG Barutcuoglu and DeCoro (2006); Barutcuoglu et al
(2006); DeCoro et al (2007); Guan et al (2008); Jin
et al (2008)

Local Classifier
per Parent Node

Tree Koller and Sahami (1997); Chakrabarti et al (1998);
McCallum et al (1998); Weigend et al (1999); D´
Alessio et al (2000); Ruiz and Srinivasan (2002);
Burred and Lerch (2003); Tikk and Biró (2003); Tikk
et al (2003); McKay and Fujinaga (2004); Li and
Ogihara (2005); Brecheisen et al (2006a); Tikk et al
(2007); Holden and Freitas (2005, 2006, 2008, 2009);
Xiao et al (2007); Secker et al (2007, 2010); Costa
et al (2008); Silla Jr. and Freitas (2009b); Gauch et al
(2009)

DAG Kriegel et al (2004)
Local Classifier
per Level

Tree Clare and King (2003)
DAG

Global Classifier
Tree Labrou and Finin (1999); Wang et al (1999, 2001);

Clare and King (2003); Blockeel et al (2006); Cai and
Hofmann (2004, 2007); Dekel et al (2004a,b); Peng and
Choi (2005); Rousu et al (2005, 2006); Astikainen et al
(2008); Seeger (2008); Silla Jr. and Freitas (2009a);
Qiu et al (2009)

DAG Kiritchenko et al (2005, 2006); Alves et al (2008); Dim-
itrovski et al (2008); Vens et al (2008); Aleksovski et al
(2009); Otero et al (2009); Wang et al (2009)

ever, it is less clear if the global approach is better or worse to deal with hierarchical

classification problems than the local approach.

Two studies that tried to answer that question were (Costa et al, 2007b) and (Ceci

and Malerba, 2007). In (Costa et al, 2007b) an evaluation comparing: the flat classifi-

cation approach, the local classifier per level approach, the local classifier per parent

node approach and a global approach (using HC4.5 (Clare, 2004)) was performed using

two biological datasets with the same base classifier (C4.5). In those experiments, the

local classifier per parent node with the top-down class prediction approach performed

better on the first dataset while the global approach performed better on the second

dataset.

In (Ceci and Malerba, 2007) the authors investigated the use of flat classifiers

against the hierarchical local classifier per parent node approach using the same base

classifier: SVM or Naive Bayes depending on the experiment. In their experiments, us-

25

Table 5 A more detailed categorization of some hierarchical classification works, according
to the following attributes of the proposed unifying framework: Approach (Θ), Class Structure
(Ω), Label Cardinality Prediction (∆) and Prediction Depth (Ξ).

< Θ, Ω, ∆, Ξ > List of Works
< LCN, T, SPP, NMLNP > Punera and Ghosh (2008); Binder et al (2009)
< LCN, T, MPP, NMLNP > Dumais and Chen (2000); Cesa-Bianchi et al

(2006a,b); Cesa-Bianchi and Valentini (2009); Bennett
and Nguyen (2009); Valentini (2009); Valentini and Re
(2009)

< LCN, D, MPP, NMLNP > Barutcuoglu and DeCoro (2006); Barutcuoglu et al
(2006); DeCoro et al (2007); Guan et al (2008); Jin
et al (2008)

< LCPN, T, SPP, MLNP > Koller and Sahami (1997); Chakrabarti et al (1998);
Weigend et al (1999); Ruiz and Srinivasan (2002);
Burred and Lerch (2003); Tikk and Biró (2003);
McKay and Fujinaga (2004); Li and Ogihara (2005);
Holden and Freitas (2005, 2006, 2008, 2009); Xiao et al
(2007); Secker et al (2007, 2010); Costa et al (2008);
Silla Jr. and Freitas (2009b); Gauch et al (2009)

< LCPN, T, SPP, NMLNP > Tikk et al (2007)
< GC, T, SPP, MLNP > Qiu et al (2009)

< GC, T, SPP, NMLNP > Labrou and Finin (1999); Silla Jr. and Freitas (2009a)
< GC, T, MPP, NMLNP > Clare and King (2003); Blockeel et al (2006); Rousu

et al (2005, 2006); Dimitrovski et al (2008); Aleksovski
et al (2009)

< GC, D, SPP, NMLNP > Otero et al (2009)
< GC, D, MPP, NMLNP > Alves et al (2008); Vens et al (2008)

ing accuracy as the evaluation measure, the flat SVM obtained better results than its

hierarchical counterpart. In a deeper analysis of the misclassified instances, the authors

used a combination of four measures into one. The idea behind the use of different mea-

sures was to verify different types of errors in a hierarchical classification scenario (e.g.

sibling classification error; predicting only higher-level classes (and not the most spe-

cific class) for a given example, etc.). After this deeper analysis of the misclassification

errors, the authors noticed that although the flat SVM is more accurate, it commits

more serious errors than its hierarchical counterpart. Therefore, it seems that whether

one particular approach is better than another remains an open question. Hence, the

issue of whether one particular approach is better than another naturally depends on

the evaluation measure used.

Regardless of which approach is better, the analysis of (Ceci and Malerba, 2007)

raises an important concern: How to evaluate hierarchical classification algorithms?

Since the use of flat classification measures might not be enough to give us enough

insight at which algorithm is really better. Before trying to answer this question, we

analysed how the evaluation was carried out in the surveyed papers. The analysis shows

that most researchers used standard flat classification evaluation measures, while rec-

ognizing that they are not ideal, because the errors at different levels of the class

hierarchy should not be penalized in the same way. Other authors propose their own

hierarchical classification evaluation measures, which are often only used by the ones

who propose it, and in some cases there is not a clear definition of the evaluation

measure being suggested. There are also cases when researchers use more than one

existing evaluation measure and also propose their own! A good review of hierarchi-

cal classification evaluation measures is found in (Sun et al, 2003), although it is out

26

Table 6 An analysis of how the hierarchical classification methods proposed in the literature
performed when compared to other approaches.

Approach Work Result when compared against
Flat LCN LCPN LCL GC

LCN Brecheisen et al (2006a) ∼
D´ Alessio et al (2000) ↑
Liu et al (2005) ↑
Cesa-Bianchi et al (2006a,b) ↑ ↑
Cesa-Bianchi and Valentini (2009) ↑
DeCoro et al (2007) ↑
Guan et al (2008) ↑
Valentini (2009) ↑ ↑
Valentini and Re (2009) ↑ ↑
Sun et al (2004) ↑
Barutcuoglu and DeCoro (2006) ↑
Punera and Ghosh (2008) ↑
Bennett and Nguyen (2009) ↑
DeCoro et al (2007) ↑

LCPN Koller and Sahami (1997) ∼
Burred and Lerch (2003) ∼
Chakrabarti et al (1998) ↑
McCallum et al (1998) ↑
Dumais and Chen (2000) ↑
Ruiz and Srinivasan (2002) ↑ ∼
Kriegel et al (2004) ↑
McKay and Fujinaga (2004) ↑
Li and Ogihara (2005) ↑
Xiao et al (2007) ↑
Jin et al (2008) ↑
Gauch et al (2009) ↑
Secker et al (2007) ↑
Costa et al (2008) ↑
Holden and Freitas (2008) ↑

LCL Clare and King (2003) ∼
GC Dekel et al (2004a,b) ↑ ↑

Wang et al (2001) ↑
Peng and Choi (2005) ↑
Rousu et al (2005, 2006) ↑
Blockeel et al (2006) ↑
Cai and Hofmann (2004, 2007) ↑
Wang et al (1999) ↑
Kiritchenko et al (2005, 2006) ↑ ∼
Astikainen et al (2008) ↑
Wang et al (2009) ↑
Vens et al (2008) ↑
Otero et al (2009) ↑
Silla Jr. and Freitas (2009a) ↑
Clare and King (2003) ∼
Aleksovski et al (2009) ∼
Blockeel et al (2006) ↑
Dimitrovski et al (2008) ↑
Qiu et al (2009) ↑

of date now. A more recent survey on evaluation measures for hierarchical classifica-

tion was presented by Costa et al (2007a), however it was limited to tree-structured

problems with single-label class predictions. An evaluation measure that can cope with

multi-label prediction in tree-structured problems was proposed by Cesa-Bianchi et al

27

(2006b), called h-loss (for hierarchical loss) as opposed to the traditional zero-one loss.

The h-loss however cannot cope with DAGs.

There seems to be no studies that empirically compare the use of the different

hierarchical classification evaluation measures, in different application domains (which

is important as they have very different class structures), against the flat classifica-

tion accuracy measure. This would be particularly interesting because most of the

approaches currently use flat classification evaluation measures. When comparing a hi-

erarchical classification approach against a flat classification approach authors usually

report small gains in accuracy, while when using the hierarchical evaluation measures

proposed in (Kiritchenko et al, 2006) the difference in predictive accuracy over the

flat approach in the worst case was of 29.39%. This poses an interesting question, if

hierarchical approaches overall show similar or better results against the flat classifica-

tion approach when using flat classification evaluation measures, couldn’t the results

be actually much better if a hierarchical classification evaluation measure was used

instead?

This question naturally leads to the question of which hierarchical classification

measure to use? Based on our experience, we suggest the use of the metrics of hier-

archical precision (hP), hierarchical recall (hR) and hierarchical f-measure (hF) pro-

posed by Kiritchenko et al (2005). They are defined as follows: hP =

∑
i
|P̂i∩T̂i|∑
i
|P̂i|

,

hR =

∑
i
|P̂i∩T̂i|∑
i
|T̂i|

, hF = 2∗hP∗hR
hP+hR , where P̂i is the set consisting of the most specific

class(es) predicted for test example i and all its(their) ancestor classes and T̂i is the

set consisting of the true most specific class(es) of test example i and all its(their)

ancestor classes. The summations are of course computed over all test examples. Note

that these measures are extended versions of the well known metrics of precision, recall

and f-measure but tailored to the hierarchical classification scenario. To determine if

there is statistically significant difference between different algorithms, the interested

reader is referred to (Garćıa and Herrera, 2008).

Although no hierarchical classification measure can be considered the best one in

all possible hierarchical classification scenarios and applications, the main reason for

recommending the hP, hR and hF measures is that, broadly speaking, they can be ef-

fectively applied (with a caveat to be discussed later) to any hierarchical classification

scenario; i.e., tree-structured, DAG-structured, single path of labels (SPL), multiple

paths of labels (MPL), mandatory leaf-node prediction or non-mandatory leaf-node

prediction problems. Let us elaborate on these points, in the context of the categoriza-

tion of different types of hierarchical classification problems and algorithms proposed

in the previous section.

First, the hP, hR and hF measures can be applied not only to tree-structured

classes, but also to DAG-structured classes. In the latter case, although in a DAG a node

can have multiple paths, one can still compute the set of all ancestors of a node (possibly

involving multiple paths from the node to the root) without any ambiguity, and this

set of ancestors is basically what is needed to compute these hierarchical classification

measures. Secondly, these measures can be applied not only to SPL problems, but also

to MPL problems, since one can also compute the set of all ancestors of multiple nodes

without any ambiguity. Thirdly, the hP, hR and hF measures can also be naturally

applied to full depth labeling problems, associated with mandatory leaf-node prediction

algorithms.

28

The fourth case to be considered here, and the most interesting and complex one,

is the case of partial depth labeling problems associated with non-mandatory leaf-node

prediction algorithms. This is a scenario where the application of these measures faces

some problems, in particular due to a relationship between the concepts of hierarchical

precision and hierarchical recall and the concepts of generalization and specialization

errors presented in (Ceci and Malerba, 2007). In the latter work, a generalization error

refers to the case where the most specific class predicted for an example is more generic

than the true most specific known class associated with the example; e.g., predicting

only class R.1 for an example whose most specific known class is R.1.1. A specialization

error refers to the case where the most specific class predicted for an example is more

specific than the true most specific known class associated with the example; e.g.

predicting class R.1.1 for an example whose most specific known class is R.1.

To illustrate some issues associated with the hP, hR and hF measures in the context

of generalization and specialization errors, let us consider some hypothetical examples.

Consider the following three cases of generalization errors:

– A) Predicted Classes: “R.1”, True Known Classes: “R.1.2”

– B) Predicted Classes: “R.1”, True Known Classes: “R.1.2.1”

– C) Predicted Classes: “R.1”, True Known Classes: “R.1.2.1.1”

In these cases the values of hP and hR will be, respectively:

– A) hP = 1/1; hR = 1/2

– B) hP = 1/1; hR = 1/3

– C) hP = 1/1; hR = 1/4

Hence, one can see that for a fixed predicted class, the larger the generalization

error (corresponding to a deeper true known class), the lower the hR value, whilst the

hP value remains constant. Now let us consider the following cases of specialization

errors:

– D) Predicted Classes: “R.2.2”, True Known Class: “R.2”

– E) Predicted Classes: “R.2.2.1”, True Known Class: “R.2”

– F) Predicted Classes: “R.2.2.1.3”, True Known Class: “R.2”

In these cases the values of hP and hR will be, respectively:

– D) hP = 1/2; hR = 1/1

– E) hP = 1/3; hR = 1/1

– F) hP = 1/4; hR = 1/1

Hence, one case see that for a fixed true known class, the larger the specialization

error (corresponding to a deeper predicted class), the lower the hP value, whilst the

hR value remains constant. In summary, the hF measure, which aggregates hP and hR

into a single formula, seems to be able to effectively penalize both generalization and

specialization errors, at first glance.

However, there is a problem associated with the use of the hP measure in the context

of the so-called “specialization error”, as follows. Suppose that the most specific true

known class for an example is R.1, and the algorithm predicts to that example the

class R.1.1, leading to a hP value of 1/2. Is this penalization fair? Can we be sure that

this kind of over-specialized prediction is really an error? This seems to depend on

the application. In some applications perhaps we could consider this penalization fair,

29

and consider this over-specialization as an error, if we interpret the most specific true

known class as representing the absolute truth about the classes associated with the

example. In practice, however, in many applications this interpretation seems unfair,

because the most specific true known class associated with an example represents, as

emphasized by the use of the keyword “known”, just our current state of knowledge,

which includes current uncertainties about deeper classes that might be solved later,

as more knowledge about the example’s classes becomes available.

To consider a concrete example, a major application of hierarchical classification

is in the prediction of protein functions where classes are terms in the Gene Ontology,

which is briefly reviewed in the next Section. In this application, many proteins are

currently annotated with very generic classes only. However, this does not mean the

protein really does not have more specific classes, it just means the more specific classes

of the protein are not known at present, but might very well be discovered later by

biologists. In this kind of application, if the most specific known class of an example

is R.1, if the algorithm predicts for that example class R.1.1, the only thing we can

really say for sure is that the prediction was correct at the first level, we simply do

not know if the prediction was correct or not at the second level, since the true class

of the example at the second level is unknown. Therefore, in this kind of application

there is an argument to modify the definition of hP in such a way that over-specialized

predictions are not considered as errors and so are not penalized.

Despite the above problem, overall the measures of hP, hR and hF seem effective

measures of hierarchical classification across a broad range of scenarios, as discussed

above, which justifies their recommendation. In (Sokolova and Lapalme, 2009) the au-

thors also consider these measures to be adequate as they do not depend on subjective

and user-specific parameters like the distance-based or semantics-based measures. It

should also be noted that, in contrast to the hP, hR and hF measures, some other

measures of hierarchical classification face some problems in their computation when

applied to DAG-structured and/or MPL problems. For instance, although a distance-

based measure can naturally be applied to a tree-structured class hierarchy, the concept

of the distance between two nodes faces some ambiguity in a DAG, where there can be

multiple paths between two nodes. In that case, it is not clear if the distance between

two nodes should be given by the shortest, longest or average distance among all paths

connecting those two nodes.

8 Major Applications of Hierarchical Classification

8.1 Text Categorization

The use of hierarchical classification in the field of text categorization dates back to

at least 1997, when Koller and Sahami (1997) proposed the use of a local classifier

per parent node for training coupled with the top-down class-prediction method for

testing. There are different types of motivation to work with hierarchical classification

in this field. The first one is due to the large growing of the number of electronic

documents, and a natural way to handle them is to organize them into hierarchies.

Indeed, virtually any type of electronic document can be organized into a taxonomy,

e.g. webpages, digital libraries, patents, e-mails, etc. For instance, in (Chakrabarti et al,

1998) the authors propose an interesting example showing how the use of hierarchies

can improve the use of information retrieval systems. The example they use is to search

30

for the keywords jaguar (and other related words to the animal) on web-search websites.

They note that for the user it would be very difficult to retrieve the information he/she

was seeking, as a huge amount of information about the car was returned. However,

if the user could limit his/her search within a hierarchy (e.g. search for jaguar in the

part of the hierarchy rooted at animals), that would help to disambiguate polysemous

terms. Figure 8 illustrates one example of a document-related class hierarchy.

Antenna Modulator Demodulator Motive Regulator

Communication ElectronicsElectricity

Transmission Heating SystemResistorTelephony Oscilattor Ampli er

Patent

Fig. 8 A small part of one of the two taxonomies used in (Chakrabarti et al, 1998) that
represents a portion of the US patent database taxonomy.

8.2 Protein Function Prediction

In bioinformatics, particularly in the task of protein function prediction, the classes to

be predicted (protein functions) are naturally organized into class hierarchies. Examples

of these hierarchies are the Enzyme Commision (Barret, 1997) and the Gene Ontology

(Ashburner et al, 2000). The Enzyme Commision class hierarchy is – as suggested by

its name – specific to enzymes (proteins that speed up chemical reactions), but the

Gene Ontology class hierarchy is extremely generic, and can be applied to potentially

any type of protein. Protein function prediction is important because this type of

information can be potentially used to develop drugs and for better diagnosis and

treatment of diseases, since many diseases are caused by or related to malfunctioning

of proteins. Figure 9 illustrates a very small part of the the Gene Ontology hierarchy.

It is important to note that other hierarchical classification schemes exist to annotate

proteins, e.g. the MIPS FunCat Ruepp et al (2004). These different hierarchies have

been used by different authors (Clare and King, 2003; Kriegel et al, 2004; Wu et al,

2005; Barutcuoglu et al, 2006; Blockeel et al, 2006; Rousu et al, 2006; Alves et al, 2008;

Guan et al, 2008; Costa et al, 2008; Vens et al, 2008; Otero et al, 2009).

in�ammatory

response to

antigenic

stimulus

organ or tissue

speci!c immune

response

immune

response to

tumor cell

adaptative

immune

response

humoral

immune

response

innate

immune

response

immune

e"ector

process

somatic

diversi!cation

of immune

receptors

antigen

processing and

presentation

leukocyte

activation

leukocyte

migration

immune

response

immune

system

development

tolerance

induction

activation of

immune

 response

leukocyte

homeostasis

Immune system process

biological process

Fig. 9 Illustration of the top level structure of the immune system processes in the Gene
Ontology (Ashburner et al, 2000)

31

8.3 Music Genre Classification

In organizing and retrieving music information, the genre plays an important concept,

as there are studies that show that genre is one of the most used concepts to search for

music in music information systems (Downie and Cunningham, 2002; Lee and Downie,

2004). As with other applications, having the genres organized into a class hierarchy

helps users to browse and retrieve this information. So far most of the work in this

area is only concerned with music genres as a flat classification problem, although

many researchers acknowledge the possibility of using class hierarchies in their future

works. Some of the works that have used class hierarchies in this application domain are:

(Burred and Lerch, 2003; McKay and Fujinaga, 2004; Li and Ogihara, 2005; Brecheisen

et al, 2006a; Barbedo and Lopes, 2007; DeCoro et al, 2007; Silla Jr. and Freitas, 2009b).

The idea of using the hierarchy for browsing and retrieval has been explored so far in two

existing tools for organizing music collections: Zhang (2003) demonstrates an end-user

system based on the use of hierarchies to organize music collections; and Brecheisen

et al (2006b) allows the system to have user feed-back in order to re-organize the

pre-existing class hierarchy as the users see fit. Figure 10 illustrates the audio class

hierarchy used in (Burred and Lerch, 2003).

Chamber Music

with Piano

Solo

Music

Classical Non-Classical

String

Quartet

Orchestral

Music

Pop
Rap/

Hip-Hop

Hard

Rock

Techno/

Dance

Other Chamber

Ensembles

Symphonic

Music

Orchestra

with Choir

Orchestra

with Violin

Chamber

Music
Rock

Jazz/

Blues

Electronic

/ Pop

Male

Speech

Female

Speech

Speech with

Background

Speech Music Background

Audio

Soft

Rock

Fig. 10 The Audio Class Hierarchy Used in (Burred and Lerch, 2003)

8.4 Other Applications

Although the existing literature has used hierarchical classification methods to deal

with the types of applications described in the previous sections, of course the use of

those methods is not limited to those applications. In this section, we briefly review

some projects that use hierarchical classification approaches to deal with different types

of applications.

In Dekel et al (2004b) the authors use a large margin classifier in the task of hier-

archical phoneme classification. This task consists of classifying the phonetic identity

of a (typically short) speech utterance (Dekel et al, 2004b). In this context the class hi-

erarchy plays the role of making the misclassifications less severe. Figure 11 illustrates

the phonetic hierarchy for American English.

In (Barutcuoglu and DeCoro, 2006) the authors use their Bayesian Network aggre-

gation with k-NN base classifiers in the task of 3D shape classification. The motivation

to use hierarchical approaches to this problem is that in 3D shape classification sce-

narios classes are arranged in a hierarchy from most general to most specific shapes.

32

b
d

g

p
k

t

jh
ch

n
m

ng

r
w

l
y

s
z

f
v

sh
z

f
v

Voiced Unvoiced Voiced Unvoiced

hh, hvFricatives Plosives A!ricates

Obstruent

iy
ih,ix

eh
ey

ae

Front

aa
ao

er,axr

aw
ay ah,ax,

ax-h

Center

oy
ow

uh
uw,ux

Back

Vowels

Silences Sonorants

Nasals Liquids

Root

Fig. 11 The phonetic tree of American English (Dekel et al, 2004b)

Moreover, a common problem in shape analysis involves assigning semantic meaning

to geometry by using a pre-existing class hierarchy. In their experiments they used the

Princeton Shape Benchmark (Shilane et al, 2004), which has a 4 level depth hierarchy

and 198 leaf classes. Figure 12 illustrates the sub-tree Animals of the hierarchy. Other

works that deal with hierarchical image classification are (Dimitrovski et al, 2008) and

(Binder et al, 2009).

Flying

Creature

Butter y Bee Ant

InsectSpider

Arthropod SnakeQuadruped

ApatosaurusRabbit Pig Dog Human TrexBird

WalkingArms outFlying Bird
Standing

Bird
Duck

Biped

Animal

Fig. 12 The Animal Branch of the Princeton Shape Database (Shilane et al, 2004) used by
Barutcuoglu and DeCoro (2006).

In (Xiao et al, 2007) the authors build a class hierarchy for the task of hierarchical

classification of emotional speech. The database used in this paper is Berlin emotional

speech database (Burkhardt et al, 2005). They create a 3 level depth hierarchy to

distinguish between 6 leaf classes (which are types of emotion): anger, boredom, fear,

gladness, sadness and neutral. They use a local classifier per parent node approach

with a Multi Layer Perceptron (MLP) Neural Network with sequential forward feature

selection. Figure 13 illustrates their class hierarchy.

A summary of the literature cited above according to their application domain and

type of hierarchical classification approach used is presented in Table 7.

33

Non-ActiveActive

GladnessAnger Median Passive

BoredoomSadness

Speech

NeutralFear

Fig. 13 The Hierarchy used for Mood Classification based on Speech in the Berlin Dataset
(Burkhardt et al, 2005) used by Xiao et al (2007).

Table 7 Summary of the existing literature on hierarchical classification according to the type
of application domain and the type of hierarchical classification approach.

Type of Appli-
cation

Hierarchical
Classification
Approach (Θ)

List of Works

Text
Categorization

LCN D´ Alessio et al (2000); Sun and Lim (2001); Mladenic
and Grobelnik (2003); Sun et al (2003, 2004); Wu et al
(2005); Cesa-Bianchi et al (2006b,a); Esuli et al (2008);
Jin et al (2008); Punera and Ghosh (2008); Xue et al
(2008); Bennett and Nguyen (2009)

LCPN Koller and Sahami (1997); Chakrabarti et al (1998);
McCallum et al (1998); Weigend et al (1999); D´
Alessio et al (2000); Dumais and Chen (2000); Ruiz
and Srinivasan (2002); Tikk and Biró (2003); Tikk et al
(2003, 2007); Kriegel et al (2004); Gauch et al (2009)

GC Labrou and Finin (1999); Wang et al (1999, 2001);
Dekel et al (2004a); Cai and Hofmann (2004, 2007);
Rousu et al (2005, 2006); Kiritchenko et al (2005,
2006); Peng and Choi (2005); Seeger (2008); Qiu et al
(2009)

Protein Function
Prediction

LCN Wu et al (2005); Barutcuoglu et al (2006); Guan
et al (2008); Valentini (2009); Valentini and Re (2009);
Cesa-Bianchi and Valentini (2009)

LCPN Holden and Freitas (2005, 2006, 2008, 2009); Secker
et al (2007, 2010); Costa et al (2008); Kriegel et al
(2004)

LCL Clare and King (2003)
GC Clare and King (2003); Blockeel et al (2006); Alves

et al (2008); Rousu et al (2006); Vens et al (2008);
Astikainen et al (2008); Otero et al (2009); Silla Jr. and
Freitas (2009a); Aleksovski et al (2009); Wang et al
(2009)

Music Genre
Classification

LCN DeCoro et al (2007)
LCPN Burred and Lerch (2003); McKay and Fujinaga (2004);

Li and Ogihara (2005); Brecheisen et al (2006a);
Silla Jr. and Freitas (2009b)

Image
Classification

LCN Barutcuoglu and DeCoro (2006); Binder et al (2009)
GC Dimitrovski et al (2008)

Emotional
Speech Classi-
fication

LCPN Xiao et al (2007)

Phoneme Clas-
sification

GC Dekel et al (2004a,b)

34

9 Concluding Remarks

In this paper we surveyed the literature on hierarchical classification problems and

methods, which is scattered across different application domains. Based on the ex-

isting literature we proposed a new unifying framework for hierarchical classification,

including a taxonomy of hierarchical classification methods, in order to clarify the simi-

larities and differences between a number of these types of problems and methods. The

new proposed unifying framework can be used by the hierarchical classification commu-

nity to clearly describe the characteristics of their proposed methods and the problems

they are working on, and to facilitate the comparison of their proposed methods with

other methods proposed in the literature.

One of the main contributions of the proposed taxonomy is to identify the “top-

down” approach as an approach concerning mainly the testing phase of a classification

algorithm, being therefore an approach to a large extent independent of the particular

local approach used for training. By contrast, in the literature the term “top-down”

approach is used to refer to both the testing and training phases, and without distin-

guishing the type of local classifier approach used in the training phase of the system.

We also performed an analysis of the advantages and disadvantages of each type of

method identified in the new taxonomy.

We also investigated what kind of class structures are most often used (tree or

DAG) as well as how to evaluate the different hierarchical classification systems. We

have observed that most of the research so far has been concerned with tree-structured

class hierarchies, probably due to the fact that trees are considerably simpler structures

than DAGs. However, some DAG-structured class hierarchies are very useful – a major

example is the Gene Ontology, which has become very important in biology. Hence,

there is a clear need for more research on hierarchical classification methods for DAG-

structured class hierarchies.

We also analyzed the results reported in a number of works in order to verify if there

is a type of hierarchical classification approach which is better than others, and it seems

that any hierarchical classification approach (local or global) is overall better than the

flat classification approach, when solving a hierarchical classification problem. Only in

rare cases the authors obtained similar results for hierarchical and flat classification

approaches, but in these cases they have used a flat classification evaluation measure,

which does not take the different types of hierarchical classification errors into account.

Finally, we also briefly reviewed several types of applications of hierarchical clas-

sification methods, ranging from text categorization to bioinformatics to music genre

classification and other application domains. We hope that this review of applications

will stimulate further research on the important topic of hierarchical classification.

Concerning future research directions, in addition to the aforementioned need for

more research involving DAG-structured class hierarchies, there is also a need for larger-

scale comparisons of different hierarchical classification methods. Fortunately, a set of

datasets for large-scale hierarchical classification in bioinformatics has been recently

made freely available at http://www.cs.kuleuven.be/∼dtai/clus/hmcdatasets/, which

provides the hierarchical classification community with a useful set of benchmarking

datasets.

Also, how to efficiently perform feature selection in hierarchical classification re-

mains a topic deserving more attention. One issue that most authors agree on is that,

intuitively, different features are better at discriminating between classes at different

levels of the class hierarchy (Koller and Sahami, 1997; Mladenic and Grobelnik, 2003;

35

Ceci and Malerba, 2007; Esuli et al, 2008; Secker et al, 2010). In (Esuli et al, 2008)

the authors mention that both feature selection and the selection of negative training

examples should be performed “locally”, paying attention to the topology of the classi-

fication scheme. For global classification approaches, however, how to perform feature

selection remains an open question.

Other research directions include the use of relational learning, semi-supervised

learning (Ceci, 2008) and other more sophisticated types of machine learning in hier-

archical classification scenarios.

Acknowledgements The first author is financially supported by CAPES – a Brazilian research-
support agency (process number 4871-06-5). We also thank the anonymous reviewers for their
insightful feedback on the earlier version of this manuscript.

References

Aleksovski D, Kocev D, Dzeroski S (2009) Evaluation of distance measures for hierar-

chical multilabel classification in functional genomics. In: Proc. of the 1st Workshop

on Learning from Multi-Label Data (MLD) held in conjunction with ECML/PKDD,

pp 5–16

Altun Y, Hofmann T (2003) Large margin methods for label sequence learning. In:

Proc. of the 8th European Conf. on Speech Communication and Technology (Eu-

roSpeech)

Alves RT, Delgado MR, Freitas AA (2008) Multi-label hierarchical classification of

protein functions with artificial immune systems. In: Advances in Bioinformatics

and Computational Biology, Springer, Lecture Notes in Bioinformatics, vol 5167, pp

1–12

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolin-

ski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis

S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene on-

tology consortium. gene ontology: tool for the unification of biology. Nature Genetics

25:25–29

Astikainen K, Holmand L, Pitkanen E, Szedmak S, Rousu J (2008) Towards structured

output prediction of enzyme function. BMC Proceedings 2(Suppl 4)

Barbedo JGA, Lopes A (2007) Automatic genre classification of musical signals.

EURASIP Journal on Advances in Signal Processing 2007:12

Barret AJ (1997) Nomenclature committee of the international union of biochemistry

and molecular biology (nc-iubmb). enzyme nomenclature. recommendations 1992.

supplement 4: corrections and additions (1997). European journal of biochemistry

250(1):1–6

Barutcuoglu Z, DeCoro C (2006) Hierarchical shape classification using bayesian ag-

gregation. In: Proc. of the IEEE Conf. on Shape Modeling and Applications

Barutcuoglu Z, Schapire RE, Troyanskaya OG (2006) Hierarchical multi-label predic-

tion of gene function. Systems Biology 22:830–836

Bennett PN, Nguyen N (2009) Refined experts: improving classification in large tax-

onomies. In: Proc. of the 32nd Int. ACM SIGIR conf. on Research and development

in information retrieval, pp 11–18

Binder A, Kawanabe M, Brefeld U (2009) Efficient classification of images with tax-

onomies. In: Proc. of the 9th Asian Conf. on Computer Vision

36

Blockeel H, Bruynooghe M, Dzeroski S, Ramon J, Struyf J (2002) Hierarchical multi-

classification. In: Proceedings of the First SIGKDD Workshop on MultiRelational

Data Mining (MRDM-2002), pp 21–35

Blockeel H, Schietgat L, Struyf J, so Dz̃eroski S, Clare A (2006) Decision trees for hier-

archical multilabel classification: A case study in functional genomics. In: Knowledge

Discovery in Databases: PKDD 2006, Springer, Lecture Notes in Computer Science,

vol 4213, pp 18–29

Brecheisen S, Kriegel HP, Kunath P, Pryakhin A (2006a) Hierarchical genre classifica-

tion for large music collections. In: Proc. of the IEEE 7th Int. Conf. on Multimedia

& Expo, pp 1385–1388

Brecheisen S, Kriegel HP, Kunath P, Pryakhin A, Vorberger F (2006b) MUSCLE: Music

classification engine with user feedback. In: Springer (ed) Proc. of the 10th Int. Conf.

on Extending Database Technology, no. 3896 in Lecture Notes in Computer Science,

pp 1164–1167

Burkhardt F, Paeschke A, Rolfes M, Sendlmeier WF, Weiss B (2005) A database of

german emotional speech. In: Proc. of the 9th European Conf. on Speech Commu-

nication and Technology, pp 1517–1520

Burred JJ, Lerch A (2003) A hierarchical approach to automatic musical genre classi-

fication. In: Proc. of the 6th Int. Conf. on Digital Audio Effects, pp 8–11

Cai L, Hofmann T (2004) Hierarchical document categorization with support vector

machines. In: Proc. of the 13th ACM Int. Conf. on Information and knowledge

management, pp 78–87

Cai L, Hofmann T (2007) Exploiting known taxonomies in learning overlapping con-

cepts. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, pp 714–719

Ceci M (2008) Hierarchical text categorization in a transductive setting. In: Proc. of

the IEEE Int. Conf. of Data Mining Workshops, pp 184–191

Ceci M, Malerba D (2007) Classifying web documents in a hierarchy of categories: A

comprehensive study. Journal of Intelligent Information Systems 28(1):1–41

Cesa-Bianchi N, Valentini G (2009) Hierarchical cost-sensitive algorithms for genome-

wide gene function prediction. In: Third International Workshop on Machine Learn-

ing in Systems Biology

Cesa-Bianchi N, Gentile C, Zaniboni L (2006a) Hierarchical classification: combining

Bayes with SVM. In: Proc. of the 23rd Int. Conf. on Machine learning, pp 177–184

Cesa-Bianchi N, Gentile C, Zaniboni L (2006b) Incremental algorithms for hierarchical

classification. The Journal of Machine Learning Research 7:31–54

Chakrabarti S, Dom B, Agrawal R, Raghavan P (1998) Scalable feature selection, classi-

fication and signature generation for organizing large text databases into hierarchical

topic taxonomies. The VLDB Journal 7:163–178

Chen Y, Crawford MM, Ghosh J (2004) Integrating support vector machines in a

hierarchical output space decomposition framework. In: Proc. of the IEEE Int. Symp.

on Geoscience and Remote Sensing, vol 2, pp 949–952

Clare A (2004) Machine learning and data mining for yeast functional genomics. PhD

thesis, University of Wales Aberystwyth

Clare A, King RD (2003) Predicting gene function in saccharomyces cerevisiae. Bioin-

formatics 19:ii42–ii49, suppl. 2

Costa E, Lorena A, Carvalho A, Freitas A (2007a) A review of performance evaluation

measures for hierarchical classifiers. In: Evaluation Methods for Machine Learning

II: papers from the 2007 AAAI Workshop, AAAI Press, pp 1–6

37

Costa E, Lorena A, Carvalho A, Freitas AA, Holden N (2007b) Comparing several ap-

proaches for hierarchical classification of proteins with decision trees. In: Advances

in Bioinformatics and Computational Biology, Springer, Lecture Notes in Bioinfor-

matics, vol 4643, pp 126–137

Costa EP, Lorena AC, de Carvalho A, Freitas AA (2008) Top-down hierarchical ensem-

bles of classifiers for predicting g-protein-coupled-receptor functions. In: Advances

in Bioinformatics and Computational Biology, Springer, Lecture Notes in Bioinfor-

matics, vol 5167, pp 35–46

D´ Alessio S, Murray K, Schiaffino R, Kershenbaum A (2000) The effect of using

hierarchical classifiers in text categorization. In: Proc. of the 6th Int. Conf. Recherche

d´ Information Assistee par Ordinateur, pp 302–313

DeCoro C, Barutcuoglu Z, Fiebrink R (2007) Bayesian aggregation for hierarchical

genre classification. In: Proc. of the 8th Int. Conf. on Music Information Retrieval,

Vienna, Austria, pp 77–80

Dekel O, Keshet J, Singer Y (2004a) Large margin hierarchical classification. In: Proc.

of the 21th Int. Conf. on Machine learning

Dekel O, Keshet J, Yoram Singer Y (2004b) An online algorithm for hierarchical

phoneme classification. In: Proc. of the 1st Machine Learning for Multimodal In-

teraction Workshop, Lecture Notes in Computer Science, vol 3361, pp 146–158

Dimitrovski I, Kocev D, Loskovska S, Dzeroski S (2008) Hierarchical annotation of

medical images. In: Proc. of the 11th Int. Multiconference Information Society, vol A,

pp 174–177

Downie JS, Cunningham SJ (2002) Toward a theory of music information retrieval

queries: System design implications. In: Proc. of the 3rd Int. Conf. on Music Infor-

mation Retrieval, pp 299–300

Dumais ST, Chen H (2000) Hierarchical classification of Web content. In: Belkin NJ,

Ingwersen P, Leong MK (eds) Proc. of the 23rd ACM Int. Conf. on Research and

Development in Information Retrieval, pp 256–263

Eisner R, Poulin B, Szafron D, Lu P, Greiner R (2005) Improving protein function

prediction using the hierarchical structure of the gene ontology. In: Proc. of the

IEEE Symp. on Computational Intelligence in Bioinformatics and Computational

Biology, pp 1–10

Esuli A, Fagni T, Sebastiani F (2008) Boosting multi-label hierarchical text catego-

rization. Information Retrieval 11(4):287–313

Fagni T, Sebastiani F (2007) On the selection of negative examples for hierarchical

text categorization. In: Proc. of the 3rd Language Technology Conference, pp 24–28

Freitas AA, de Carvalho ACPLF (2007) Research and Trends in Data Mining Tech-

nologies and Applications, Idea Group, chap A Tutorial on Hierarchical Classification

with Applications in Bioinformatics, pp 175–208

Freitas COA, Oliveira LS, Aires SBK, Bortolozzi F (2008) Metaclasses and zoning

mechanism applied to handwriting recognition. Journal of Universal Computer Sci-

ence 14(2):211–223

Garćıa S, Herrera F (2008) An extension on “statistical comparisons of classifiers over

multiple data sets” for all pairwise comparisons. Journal of Machine Learning Re-

search 9:2677–2694

Gauch S, Chandramouli A, Ranganathan S (2009) Training a hierarchical classifier

using inter document relationships. Journal of the American Society for Information

Science and Technology 60(1):47–58

Gerlt JA, Babbitt PC (2000) Can sequence determine function? Genome Biology 1(5)

38

Guan Y, Myers CL, Hess DC, Barutcuoglu Z, Caudy AA, Troyanskaya OG (2008)

Predicting gene function in a hierarchical context with an ensemble of classifiers.

Genome Biology 2008 9(Suppl 1: S3)

Hao PY, Chiang JH, Tu YK (2007) Hierarchically SVM classification based on support

vector clustering method and its application to document categorization. Expert

Systems with Applications 33:627–635

Hayete B, Bienkowska J (2005) Gotrees: Predicting go associations from protein domain

composition using decision trees. In: Proc. of the Pacific Symp. on Biocomputing,

pp 127–138

Holden N, Freitas AA (2005) A hybrid particle swarm/ant colony algorithm for the

classification of hierarchical biological data. In: Proc. of the 2nd IEEE Swarm Intel-

ligence Symposium, pp 100–107

Holden N, Freitas AA (2006) Hierarchical classification of g-protein-coupled receptors

with a pso/aco algorithm. In: Proc. of the 3rd IEEE Swarm Intelligence Symposium,

pp 77–84

Holden N, Freitas AA (2008) Improving the performance of hierarchical classification

with swarm intelligence. In: Proc. 6th European Conf. on Evolutionary Computation,

Machine Learning and Data Mining in Bioinformatics (EvoBio), Springer, Lecture

Notes in Computer Science, vol 4973, pp 48–60

Holden N, Freitas AA (2009) Hierarchical classification of protein function with ensem-

bles of rules and particle swarm optimisation. Soft Computing Journal 13:259–272

Jin B, Muller B, Zhai C, Lu X (2008) Multi-label literature classification based on the

gene ontology graph. BMC Bioinformatics 9(525)

Kiritchenko S, Matwin S, Famili AF (2005) Functional annotation of genes using hi-

erarchical text categorization. In: Proc. of the ACL Workshop on Linking Biological

Literature, Ontologies and Databases: Mining Biological Semantics

Kiritchenko S, Matwin S, Nock R, Famili AF (2006) Learning and evaluation in the

presence of class hierarchies: Application to text categorization. In: Proc. of the 19th

Canadian Conf. on Artificial Intelligence, Lecture Notes in Artificial Intelligence, vol

4013, pp 395–406

Koerich AL, Kalva PR (2005) Unconstrained handwritten character recognition using

metaclasses of characters. In: Proc. of the IEEE Int. Conf. on Image Processing,

vol 2, pp 542–545

Koller D, Sahami M (1997) Hierarchically classifying documents using very few words.

In: Proc. of the 14th Int. Conf. on Machine Learning, pp 170–178

Kriegel HP, Kroger P, Pryakhin A, Schubert M (2004) Using support vector machines

for classifying large sets of multi-represented objects. In: Proc. of the SIAM Int.

Conf. on Data Mining, pp 102–114

Kumar S, Ghosh J, Crawford MM (2002) Hierarchical fusion of multiple classifiers for

hyperspectral data analysis. Pattern Analysis & Applications 5:210–220

Labrou Y, Finin T (1999) Yahoo! as an ontology – using yahoo! categories to describe

documents. In: Proc. of the ACM Conf. on Information and Knowledge Management,

pp 180–187

Lee JH, Downie JS (2004) Survey of music information needs, uses, and seeking be-

haviours: preliminary findings. In: Proceedings of the Fifth International Conference

on Music Information Retrieval, Barcelona, Spain, pp 441–446

Li T, Ogihara M (2005) Music genre classification with taxonomy. In: Proc. of the

IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp 197–200

39

Li T, Zhu S, Ogihara M (2007) Hierarchical document classification using automatically

generated hierarchy. Journal of Intelligent Information Systems 29(2):211–230

Liu TY, Yang Y, Wan H, Zeng HJ, Chen Z, Ma WY (2005) Support vector ma-

chines classification with a very large-scale taxonomy. ACM SIGKDD Explorations

Newsletter 7(1):36–43

Lorena AC, Carvalho ACPLF (2004) Comparing techniques for multiclass classification

using binary svm predictors. In: Proc. of the IV Mexican Int. Conf. on Artificial

Intelligence, Lecture Notes in Artificial Intelligence, vol 2972, pp 272–281

McCallum A, Rosenfeld R, Mitchell TM, Ng AY (1998) Improving text classification by

shrinkage in a hierarchy of classes. In: Proc. of the Int. Conf. on Machine Learning,

pp 359–367

McKay C, Fujinaga I (2004) Automatic genre classification using large high-level mu-

sical feature sets. In: Proc. of the Int. Conf. on Music Information Retrieval, pp

525–530

Mladenic D, Grobelnik M (2003) Feature selection on hierarchy of web documents.

Decision Support Systems 35:45–87

Otero FEB, Freitas AA, Johnson CG (2009) A hierarchical classification ant colony

algorithm for predicting gene ontology terms. In: Pizzuti C, Ritchie M, Giacobini M

(eds) Proc. of the 7th European Conference on Evolutionary Computation, Machine

Learning and Data Mining in Bioinformatics (EvoBio), Springer, Lecture Notes in

Computer Science, vol 5483, pp 68–79

Peng X, Choi B (2005) Document classifications based on word semantic hierarchies.

In: Proc. of the Int. Conf. on Artificial Intelligence and Applications, pp 362–367

Punera K, Ghosh J (2008) Enhanced hierarchical classification via isotonic smoothing.

In: Proc. of the 17th Int. Conf. on World Wide Web, pp 151–160

Punera K, Rajan S, Ghosh J (2005) Automatically learning document taxonomies for

hierarchical classification. In: Proc. of the Int. World Wide Web Conference, pp 1010

–1011

Qiu X, Gao W, Huang X (2009) Hierarchical multi-class text categorization with global

margin maximization. In: Proc. of the Joint Conf. of the 47th Annual Meeting of the

ACL and the 4th Int. Joint Conf. on Natural Language Processing of the AFNLP,

Association for Computational Linguistics, pp 165–168

Rocchio JJ (1971) The SMART Retrieval System: Experiments in Automatic Docu-

ment Processing, Prentice Hall, chap Relevance feedback in information retrieval, pp

313–323

Rousu J, Saunders C, Szedmak S, Shawe-Taylor J (2005) Learning hierarchical multi-

category text classification models. In: Proc. of the 22nd Int. Conf. on Machine

Learning, pp 744–751

Rousu J, Saunders C, Szedmak S, Shawe-Taylor J (2006) Kernel-based learning of

hierarchical multilabel classification models. Journal of Machine Learning Research

7:1601–1626

Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U,

Mannhaupt G, Munsterkotter M, Mewes HW (2004) The funcat, a functional anno-

tation scheme for systematic classification of proteins from whole genomes. Nucleic

Acids Research 32(18):5539–5545

Ruiz ME, Srinivasan P (2002) Hierarchical text categorization using neural networks.

Information Retrieval 5:87–118

Sasaki M, Kita K (1998) Rule-based text categorization using hierarchical categories.

In: Proc. of IEEE Int. Conf. on Systems, Man, and Cybernetics, pp 2827–2830

40

Secker A, Davies M, Freitas A, Timmis J, Mendao M, Flower D (2007) An experimen-

tal comparison of classification algorithms for the hierarchical prediction of protein

function. Expert Update (the BCS-SGAI Magazine) 9(3):17–22

Secker A, Davies M, Freitas AA, Clark E, Timmis J, Flower DR (2010) Hierarchical

classification of g-protein-coupled-receptors with data-driven selection of attributes

and classifiers. International Journal of Data Mining and Bioinformatics 4(2):191–

210

Seeger MW (2008) Cross-validation optimization for large scale structured classification

kernel methods. The Journal of Machine Learning Research 9:1147–1178

Shilane P, Kazhdan M, Min P, Funkhouser T (2004) The princeton shape benchmark.

In: Proc. of the Shape Modeling International

Silla Jr CN, Freitas AA (2009a) A global-model naive bayes approach to the hierarchical

prediction of protein functions. In: Proc. of the 9th IEEE Int. Conf. on Data Mining,

pp 992–997

Silla Jr CN, Freitas AA (2009b) Novel top-down approaches for hierarchical classifica-

tion and their application to automatic music genre classification. In: Proc. of the

IEEE Int. Conf. on Systems, Man, and Cybernetics, pp 3599–3604

Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for

classification tasks. Information Processing and Management 45:427–437

Sun A, Lim EP (2001) Hierarchical text classification and evaluation. In: Proc. of the

IEEE Int. Conf. on Data Mining, pp 521–528

Sun A, Lim EP, Ng WK (2003) Performance measurement framework for hierarchi-

cal text classification. Journal of the American Society for Information Science and

Technology 54(11):1014–1028

Sun A, Lim EP, Ng WK, Srivastava J (2004) Blocking reduction strategies in hierar-

chical text classification. IEEE Transactions on Knowledge and Data Engineering

16(10):1305–1308

Tikk D, Biró G (2003) Experiment with a hierarchical text categorization method on

the wipo-alpha patent collection. In: Proc. of the 4th Int. Symp. on Uncertainty

Modeling and Analysis, pp 104–109

Tikk D, Yang JD, Bang SL (2003) Hierarchical text categorization using fuzzy rela-

tional thesaurus. Kybernetika 39(5):583–600

Tikk D, Biró G, Yang JD (2004) A hierarchical text categorization approach and its

application to frt expansion. Australian Journal of Intelligent Information Processing

Systems 8(3):123–131

Tikk D, Biró G, Torcsvári A (2007) Emerging Technologies of Text Mining: Tech-

niques and Applications, Idea Group, chap A hierarchical online classifier for patent

categorization, pp 244–267

Tsochantaridis I, Joachims T, Hofmann T, Altun Y (2005) Large margin methods

for structured and interdependent output variables. Journal of Machine Learning

Research 6:1453–1484

Tsoumakas G, Katakis I (2007) Multi label classification: An overview. International

Journal of Data Warehouse and Mining 3(3):1–13

Valentini G (2009) True path rule hierarchical ensembles. In: Kittler J, Benediktsson

J, Roli F (eds) Proc. of the Eighth Int. Workshop on Multiple Classifier Systems,

Springer, Lecture Notes in Computer Science, vol 5519, pp 232–241

Valentini G, Re M (2009) Weighted true path rule: a multilabel hierarchical algorithm

for gene function prediction,. In: Proc. of the 1st Workshop on Learning from Multi-

Label Data (MLD) held in conjunction with ECML/PKDD, pp 132–145

41

Vens C, Struyf J, Schietgat L, so Dz̃eroski S, Blockeel H (2008) Decision trees for

hierarchical multi-label classification. Machine Learning 73(2):185–214

Wang J, Shen X, Pan W (2009) Large margin hierarchical classification with multiple

paths. Journal of American Statistical Association To appear

Wang K, Zhou S, Liew SC (1999) Building hierarchical classifiers using class proxim-

ity. In: In Proc. of the 25th Conf. on Very Large Data Base, Morgan Kaufmann

Publishers, pp 363–374

Wang K, Zhou S, He Y (2001) Hierarchical classification of real life documents. In:

Proc. of the 1st SIAM Int. Conf. on Data Mining, Chicago, US

Weigend AS, Wiener ED, Pedersen JO (1999) Exploiting hierarchy in text categoriza-

tion. Information Retrieval 1:193–216

Wu F, Zhang J, Honavar V (2005) Learning classifiers using hierarchically structured

class taxonomies. In: Proc. of the Symp. on Abstraction, Reformulation, and Ap-

proximation, Springer, 313-320, vol 3607

Xiao Z, Dellandréa E, Dou W, Chen L (2007) Hierarchical Classification of Emo-

tional Speech. Tech. Rep. RR-LIRIS-2007-006, LIRIS UMR 5205 CNRS/INSA de

Lyon/Universit Claude Bernard Lyon 1/Universit Lumire Lyon 2/Ecole Centrale de

Lyon, URL http://liris.cnrs.fr/publis/?id=2742

Xue GR, Xing D, Yang Q, Yu Y (2008) Deep classification in large-scale text hierar-

chies. In: Proc. of the 31st annual int. ACM SIGIR conf. on Research and develop-

ment in information retrieval, pp 619–626

Zhang T (2003) Semi-automatic approach for music classification. In: Proc. of the SPIE

Conf. on Internet Multimedia Management Systems, pp 81–91

