
An Extended Local Hierarchical Classifier for
Prediction of Protein and Gene Functions

Luiz H. C. Merschmann1 and Alex A. Freitas2

1 Federal University of Ouro Preto, Computer Science Department, Brazil
luizhenrique@iceb.ufop.br

2 University of Kent, School of Computing, UK
a.a.freitas@kent.ac.uk

Abstract. Gene function prediction and protein function prediction are
complex classification problems where the functional classes are struc-
tured according to a predefined hierarchy. To solve these problems, we
propose an extended local hierarchical Naive Bayes classifier, where a
binary classifier is built for each class in the hierarchy. The extension
to conventional local approaches is that each classifier considers both
the parent and child classes of the current class. We have evaluated the
proposed approach on eight protein function and ten gene function hier-
archical classification datasets. The proposed approach achieved some-
what better predictive accuracies than a global hierarchical Naive Bayes
classifier.

Keywords: Hierarchical Classification, naive Bayes, Bioiformatics, Protein Func-
tion Prediction.

1 Introduction

Classification is a well-known data mining task, where the algorithm builds, from
the training set, a classifier that is used to predict the class labels of instances
in the test set. A very active research area in bioinformatics consists of using
classification methods to predict protein and gene functions. Although several
sequencing genome projects have generated the full genome sequence of many
organisms in the last decades, the functions of many proteins and genes still
remain unknown. This is because, in general, determining the functions of genes
and proteins is much more difficult and time-consuming than finding out their
sequences.

A popular approach for biologists to infer new protein/gene functions is to use
techniques that perform a similarity search in a protein/gene database containing
proteins/genes with known functions. Basically, these techniques compute the
similarity between the sequence of a protein/gene with unknown function and
the sequences of the proteins/genes in a database. Thus, the new protein/gene
is assigned to the class of its most similar protein(s)/gene(s) in the database [1].

Nevertheless, similarity-based protein/gene function prediction methods have
some limitations. First, it is known that proteins/genes with similar sequences

2

can have different functions [2]. Second, function prediction based only on se-
quence similarity does not consider many relevant biochemical properties of pro-
teins/genes [3].

Aiming at solving these limitations, several works have proposed approaches
that consist of inducing classification models from protein/gene data, where each
protein/gene is represented by a set of attributes, and the new proteins/genes
are classified by the induced model. This approach, which was adopted in this
work, give us the opportunity to use a variety of classification methods for the
protein/gene function prediction.

Most classification methods can deal only with flat classification problems,
where there are no hierarchical relationships among the classes. However, in
many problems the classes are naturally organized into hierarchies. Hierarchical
classification problems are particularly common in the prediction of protein and
gene functions, where the classes (functions) to be predicted are arranged in a
tree or DAG (Direct Acyclic Graph) structure.

The prediction of protein and gene functions is challenging, mainly because
there are usually hundreds or thousands of classes in the hierarchy and the class
distribution is usually highly skewed, i.e., different class labels occur with very
different frequencies. To simplify the problem, some works have just ignored the
hierarchical class structure and addressed this problem as a traditional flat clas-
sification problem [4–6]. However, such works lose valuable information about
parent-child class relationships, which is avoided by using a hierarchical classifi-
cation method. One such method is described in [7], where the authors evaluated
two hierarchical classification methods, based on a global and local version of
a hierarchical Naive Bayes classifier - with the global version obtaining better
predictive accuracy on eight protein function prediction datasets.

In this work, we propose an extended local hierarchical Naive Bayes classifier
that (unlike a conventional local approach) exploits parent-child relationships
between the classes in order to build a binary classifier for each class in the
hierarchy. Then, the results of these binary classifiers are combined to produce
the final classification for an instance. We evaluated our proposal on the same
eight protein datasets used in [7] and on other ten gene function datasets, and
compared it against the global-model approach proposed in [7].

The remaining of this paper is organized as follows. Section 2 presents an
overview on hierarchical classification. In Section 3, we describe the hierarchi-
cal classifier proposed in this work. Section 4 presents the experimental setup
and reports the results obtained in the comparative experiment. Finally, the
conclusion and directions for future work are described in Section 5.

2 Hierarchical Classification

Hierarchical classification methods can be analyzed according to different as-
pects. The first one regards the type of hierarchical structure (tree or DAG) the
method is able to deal with. This structure represents the relationships between
the classes of the problem to be solved. Basically, in a tree each class is associated

3

with at most one parent class, while in a DAG a child class can have multiple
parent classes.

The second aspect is how deep in the hierarchy the classification is done. A
method can either perform mandatory leaf node predictions, where each instance
must be assigned classes at leaf nodes in the class hierarchy; or non-mandatory
(optional) leaf node predictions, where the most specific class assigned to an
instance can be any (internal of leaf) class node in the hierarchy.

The third aspect refers to the number of different path labels in the hierarchy
a method can assign an instance to. A method can be able to predict, to each
instance, multiple paths of labels in the class hierarchy, or be restricted to predict
just a single path of labels.

The fourth aspect concerns how the hierarchical structure is handled by the
method. Three different approaches are presented in the literature: flat classifi-
cation, which ignores the class hierarchy and performs predictions considering
only the leaf node classes; local model approaches, when a set of local models
are employed; and global model approaches, when a single classification model
is built considering the class hierarchy as a whole during a single run of the
classification algorithm. Since flat classification is out of the scope of this work,
only local model approaches and global model approach are discussed next.

2.1 Local Classification Approach

In this approach, multiple classifiers are built, each one with a local view of the
problem. Note that the class hierarchy is taken into account through a local
perspective. Based on the different ways of using the local information, the clas-
sifiers can be grouped into three different categories [8]: local per node approach,
local per parent node approach and local per level approach.

The local per node approach creates one binary classifier for each class node
in the hierarchy (except the root node). Each classifier predicts whether or not
an instance belongs to its corresponding class. The dashed rectangles in Fig-
ure 1(a) represent the classifiers. Note that this approach allows an instance to
be assigned to classes in distinct branches in the hierarchy, which can lead to
a class-membership inconsistency. To avoid that, several inconsistency removal
methods are available [9–11].

In the local per parent node approach, a multi-class classifier is trained for
each parent node in the hierarchy aiming at distinguishing between its child
nodes. This approach is often used with a top-down prediction strategy when
classifying new test instances. To illustrate this strategy, consider the hierarchy
in Figure 1(b), where each dashed rectangle represents a classifier used to predict
one of the child class nodes related to that classification node. Suppose a new
test instance is assigned the class 1 by the root node classifier. Then, at the first
hierarchy level, the classifier related to class node 1 will assign to this instance
one of the child classes (1.1 or 1.2) of that node, and so on, until the instance is
classified at the deepest appropriated level.

Finally, the local per level approach consists of training a multi-class classifier
for each level of the class hierarchy. This is the hierarchical approach least used

4

Fig. 1. Types of hierarchical classification approaches.

in the literature [12]. Its major disadvantage is to be prone to class-membership
inconsistency. For example, using the class hierarchy shown in Figure 1(c), three
classifiers would be trained, one for each hierarchy level (represented by dashed
rectangles). Then, given a instance to be classified, it is possible to have the
following predictions: class 1 at level 1, class 2.1 at level 2 and class 1.1.2 at level
3. Clearly, the predicted class 2.1 is not consistent with the classes 1 and 1.1.2.
Hence, this kind of approach requires a post-processing procedure to correct
inconsistent predictions.

2.2 Global Classification Approach

Instead of creating a set of classifiers, the global approach involves the training
of a single classifier taking into account the class hierarchy as a whole. Then,
given a new instance to be classified, the induced classifier is able to assign it a
class from any level of the hierarchy.

While the local approach with the top-down class prediction strategy has
the disadvantage of propagating a classification mistake at a given level of the
hierarchy through all its deeper levels, the global approach avoids that drawback
by performing the classification in a single step using a single classifier.

It is worth noting that the global approach lacks the modular nature of the
local approach, i.e., the characteristic of dividing the training phase in different
processes, each of them considering part of the class hierarchy. Therefore, the
single classifier built by the global approach tends to be more complex than
each individual classifier produced by local approaches. However, this modular
nature of the local approach does not imply that they will have better predictive
accuracy than global approaches.

5

In this work we propose an extended local hierarchical Naive Bayes classifier
based on the local per node approach (as described in the next section) and
compare it against a global classification approach.

3 The Proposed Hierarchical Classifier

The proposed classifier deals with hierarchical classification problems where the
classes to be predicted are disposed in a tree-based structure, in the scenarios
of mandatory leaf node prediction and prediction of a single path in the class
hierarchy. The main goal is to exploit parent-child relationships between the
classes when building a binary classifier for each class in the hierarchy. Then,
the predictions made by the set of binary classifiers are combined in order to
produce a consistent prediction.

The proposed classifier, named Extended Local Hierarchical Naive Bayes
(ELHNB), is based on the local per node approach, creating one binary classifier
for each node of the class hierarchy. The training of each classifier considers not
only the local information related to each classification node as usual, but also
information about the relationships between each class node and its parent and
child nodes – where the latter type of information is the proposed extension. Note
that, since our method is based on Naive Bayes, we make the assumption of class
conditional independence, that is, the attributes are conditionally independent
of one another given the class attribute.

Let D = {d1d1d1, . . . , dtdtdt} be a set of training instances. Each instance dj,
j = 1, . . . , t, is represented by its attribute vector XjXjXj = {xj

1, x
j
2, . . . , x

j
n} and

is associated with a binary class vector CjCjCj = {cj1, c
j
2, . . . , c

j
m}, where n is the

number of predictor attributes and m is the number of classes in the hierarchy.
Each cji is assigned the value 1 if the instance dj is associated with the class Ci,
and 0 otherwise.

We train a Naive Bayes classifier to predict the class label vector CCC =
{c1, c2, . . . , cm} for a new instance XXX = {x1, x2, . . . , xn}, i.e., to learn a pre-
dictor f : XXX 7→ [c1, c2, . . . , cm]. The proposed approach has two phases. The
first one is a local classification phase, where we train a binary classifier for each
class. Each binary classifier performs a probabilistic classification for each class
Ci, i.e., it computes P (Ci = 1|XXX) and P (Ci = 0|XXX). In the second phase we use
the probabilities P (Ci|XXX) calculated in the first phase to generate a consistent
class vector prediction for the instance XXX.

Recall that the classes are structured into a tree. Given a class Ci, the set
of nodes formed by its parent and child nodes, termed neighbors of Ci, is repre-
sented by NiNiNi. The labels of the nodes (classes) contained in NiNiNi are coded through
a vector YiYiYi = {y1, y2, . . . , yk} ∈ {0, 1}ki , where ki is the number of neighbors
of Ci. In the local classification phase, for each Ci, we compute P (Ci = ci),
ci ∈ {0, 1}, taking into account the relationships between the class Ci and its
parent and child nodes in the hierarchy. It can be determined by computing the

6

following marginal probability:

P (Ci = ci) =
∑

YiYiYi∈{0,1}ki

P (Ci = ci|YiYiYi)× P (YiYiYi) (1)

Thus, P (Ci = ci|XXX) is obtained conditioning Equation 1 on instance XXX as
follows:

P (Ci = ci|XXX) =
∑

YiYiYi∈{0,1}ki

P (Ci = ci|XXX,YiYiYi)× P (YiYiYi|XXX) (2)

Applying Bayes’ theorem on each term of the product in Equation 2:

P (Ci = ci|XXX,YiYiYi) =
P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)∑

ci∈{0,1} P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)
(3)

and

P (YiYiYi|XXX) =
P (XXX|YiYiYi)× P (YiYiYi)∑

YiYiYi∈{0,1}ki P (XXX|YiYiYi)× P (YiYiYi)
(4)

Substituting Equations 3 and 4 into Equation 2, we have:

P (Ci = ci|XXX) =
∑

YiYiYi∈{0,1}
ki

 P (XXX|Ci = ci,YiYiYi) × P (Ci = ci|YiYiYi)∑
ci∈{0,1}

P (XXX|Ci = ci,YiYiYi) × P (Ci = ci|YiYiYi)
×

P (XXX|YiYiYi) × P (YiYiYi)∑
YiYiYi∈{0,1}

ki
P (XXX|YiYiYi) × P (YiYiYi)

(5)

As
∑

YiYiYi∈{0,1}ki P (XXX|YiYiYi)× P (YiYiYi) = P (XXX), we can rewrite Equation 5 as:

P (Ci = ci|XXX) =
∑

YiYiYi∈{0,1}
ki

(
P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)∑

ci∈{0,1}
P (XXX|Ci = ci,YiYiYi)× P (Ci = ci|YiYiYi)

×
P (XXX|YiYiYi)× P (YiYiYi)

P (XXX)

)
(6)

Given that P (XXX) is constant for all YiYiYi vector configurations, rearranging
Equation 6 we get:

P (Ci = ci|XXX) =

∑
YiYiYi∈{0,1}k

(
P (XXX|Ci=ci,YiYiYi)×P (Ci=ci|YiYiYi)×P (XXX|YiYiYi)×P (YiYiYi)∑

ci∈{0,1}
P (XXX|Ci=ci,YiYiYi)×P (Ci=ci|YiYiYi)

)
P (XXX)

(7)

In Equation 7, aiming at reducing the number of parameters in evaluating
P (XXX|Ci = ci,YiYiYi) and P (XXX|YiYiYi), we use the Naive Bayes assumption that there
are no dependence relationships among the attributes given the class. Then,
these probabilities are computed as P (XXX|Ci = ci,YiYiYi) =

∏n
k=1 P (xk|Ci = ci,YiYiYi)

and P (XXX|YiYiYi) =
∏n

k=1 P (xk|YiYiYi).
In the second phase, named global classification phase, we enforce hierarchical

consistency of class labels using the probabilities P (Ci = ci|XXX) computed in the
first phase. In order to obtain a consistent classification, for each possible path
p in the hierarchy from Root node to node i, we compute the geometric average
of probabilities P (Ci = 1|XXX) along the path as follows:

GAp = |Lp|

√ ∏
Ci∈Lp

P (Ci = 1|XXX), (8)

7

where Lp is the set of classes in the path p.
As final solution, the instance XXX is assigned to the class vector CCC where

the classes Ci contained in the path with the highest GA are set to 1 and the
remaining to 0.

4 Computational Experiments

4.1 Baseline Method

Since we are proposing an extended local hierarchical Naive Bayes classifier, we
use as a baseline method the global hierarchical Naive Bayes classifier proposed
in [7], which achieved promising predictive performance when evaluated on eight
protein datasets and outperformed a conventional local per parent node hierar-
chical classifier. In this conventional local hierarchical classifier, during the train-
ing phase, for each non-leaf node, a Naive Bayes multi-class classifier is trained to
discriminate among the child class nodes of the classifier’s corresponding node.
Next, to implement the test phase, the top-down class prediction strategy is
adopted.

The hierarchical classifier in [7] is an extension of the flat classification algo-
rithm Naive Bayes to deal with hierarchical classification problems.

Given a new instance X = {x1, x2, . . . , xn} to be classified, where each xk

refers to the value of attribute Ak, the flat Naive Bayes classifier simply assigns
to it the class Ci associated with the maximum value of the posterior probability
calculated as P (Ci|X) ∝

∏n
k=1 P (xk|Ci)× P (Ci).

To explain how the hierarchical Naive Bayes [7] works, consider a tree-based
hierarchy containing these class nodes: C1, C2, C1.1, C1.2, C2.1 and C2.2. To
classify a new instance, the prior probabilities P (C1), P (C2), P (C1.1), P (C1.2),
P (C2.1) and P (C2.2), and the likelihoods P (xk|C1), P (xk|C2), P (xk|C1.1),
P (xk|C1.2), P (xk|C2.1) and P (xk|C2.2) are computed taking into account the
class hierarchy, as follows. More precisely, to compute the prior probabilities
and likelihoods during the training phase, the method takes into account that
any instance which belongs to class Ci also belongs to all its ancestor classes. For
example, if a training instance belongs to class C1.2, that instance will be taken
into account to compute the prior probabilities of both that class (C1.2) and its
ancestor classes (in this case, C1). In addition, the attribute values of a training
instance will be taken into account to compute the likelihoods associated with
that instance’s class and all its ancestor classes. These modification make the
global hierarchical Naive Bayes able to predict classes at any level of the class
hierarchy. For more details about this method, see [7].

4.2 Datasets

Experiments were conducted by running both the proposed and the baseline
methods on 18 bioinformatics datasets, where eight are protein function and
ten are gene function hierarchical classification datasets. As these datasets were
obtained from different sources, we organized them into two groups.

8

Group A contains eight protein function datasets, referring to two different
protein families: Enzymes and G-Protein-Coupled Receptors (GPCRs). Enzymes
are proteins that catalyze chemical reactions [13] while GPCRs are transmem-
brane proteins that are the targets of many medical drugs [14]. We used four
enzyme datasets (whose names start with EC – Enzyme Commission) and four
GPCR datasets, where the predictor attributes correspond to protein properties
and the classes to be predicted are hierarchical protein functions. Most predictor
attributes are binary, indicating whether or not a protein signature (or motif) is
present in a protein, but there are also two numeric attributes: the amino acid
sequence length and molecular weight. The names of the datasets are also related
to the type of motifs used: Interpro Entries, FingerPrints, Prosite Patterns and
Pfam. These datasets3 have also been used in previous hierarchical classification
works [15], [16] and [7].

Group B contains ten gene function datasets, referring to the yeast genome.
The predictor attributes include five types of bioinformatics data: secondary
structure, phenotype, homology, sequence statistics, and expression. The classes
to be predicted are taken from FunCat4, a scheme for classifying the function
of gene products developed by MIPS [17]. These datasets5, initially presented
in [18] and after updated and used in [19] were multi-label data, i.e., each instance
was associated with one or more class paths in the hierarchy. Since in this work
we are dealing with a single path label scenario, these datasets were converted
into single label data by randomly choosing one class path for each instance.

Before running the classification algorithms, all datasets were preprocessed
as follows: (a) All numeric attributes were converted into discrete ones by using
an unsupervised discretization algorithm based on equal frequency binning (us-
ing 20 bins); (b) Every class with fewer than 10 instances was merged with its
parent class. This process was repeated until every class in the hierarchy had at
least 10 instances. If during this process the most specific class of an instance
became the Root class, then that instance was removed; (c) Since in this work
we are dealing with a mandatory leaf node prediction problem, after the pre-
vious step (b), we removed from the datasets all instances whose most specific
class was not a leaf class node. Table 1 presents the main characteristics of the
datasets after these pre-processing steps. This table shows, for each dataset, its
number of attributes, number of instances and number of classes at each hierar-
chy level (1st/2nd/3rd/. . .). The pre-processed datasets used in our experiments
are available at: http://www.decom.ufop.br/luiz/resources/.

4.3 Predictive Accuracy Evaluation Metrics

In order to evaluate the predictive accuracy of the hierarchical classifiers, we used
the hierarchical F-measure, which is an adaptation of the flat F-measure tailored
for hierarchical classification problems [20]. The hierarchical F-measure is com-
puted as hF = 2×hP×hR

hP+hR , where hP and hR stand for hierarchical Precision

3 https://sites.google.com/site/carlossillajr/resources
4 http://mips.helmholtz-muenchen.de/proj/funcatDB/
5 http://dtai.cs.kuleuven.be/clus/hmcdatasets/

9

Table 1. Characteristics of the Datasets

Group Datasets # Attributes # Instances # Classes/Level

GPCR-Pfam 75 6,524 12/52/79/49
GPCR-Prosite 129 5,728 9/50/79/49
GPCR-Prints 283 4,880 8/46/76/49

A GPCR-Interpro 450 6,935 12/54/82/50
EC-Prints 382 11,048 6/45/92/208
EC-Prosite 585 11,328 6/42/89/187
EC-Pfam 708 11,057 6/41/96/190
EC-Interpro 1,216 11,101 6/41/96/187

CellCycle 78 2,486 16/47/69/32/8
Church 28 2,499 16/49/67/34/6
Derisi 64 2,497 16/48/70/31/7
Eisen 80 1,641 16/43/55/23/2

B Expr 552 2,554 16/49/68/28/5
Gasch1 174 2,595 16/48/71/32/7
Gash2 53 2,631 17/49/68/34/6
Phenotype 70 1,023 15/43/40/15/1
Sequence 479 2,689 17/48/65/29/5
SPO 81 2,463 16/48/68/31/8

and hierarchical Recall, respectively. Considering that Pi is the set composed by
the most specific class predicted for a test instance i and all its ancestor classes
and Ti is the set composed by the true most specific class for a test instance
i and all its ancestor classes, the hP and hR were defined in [20] as follows:

hP =
∑

i |Pi
⋂

Ti|∑
i |Pi| and hR =

∑
i |Pi

⋂
Ti|∑

i |Ti| .

Although these measures are recommended to evaluate hierarchical classifi-
cation scenarios [8], there is a situation where their application faces a problem.
Basically, hierarchical precision and hierarchical recall are measures related to
the concepts of specialization and generalization errors, respectively. To illus-
trate these concepts, let us consider the following examples. Let C1 be the most
specific predicted class for an instance whose true most specific known class is
C1.3. In this case we have a generalization error, since the most specific class
predicted is more generic than the true most specific known class for that in-
stance. This generalization error is captured by the hierarchical recall measure,
which for this example is hR = 1/2. Observe that in this case the hierarchical
precision assumes the maximum value, i.e, hP = 1. On the other hand, if C1.3

is the most specific predicted class for an instance whose true known class is
C1, we have a specialization error, as the predicted class is more specific than
the true known class for that instance. Now, the hierarchical precision measure
indicates this error (hP = 1/2), whilst the hierarchical recall measure assumes
the maximum value hR = 1.

At first glance, hierarchical precision and hierarchical recall measures seem
to penalize specialization and generalization errors appropriately. However, con-

10

sidering an over-specialization as an error (penalized by hP) can be unfair in
some kinds of applications, given that, if the true most specific known class for
an instance is a more generic class like C1, this does not mean that the prediction
of the more specific class C1.3 is an error. This may just mean that at present
the more specific class of that instance is unknown, only its more generic class is
currently known. Indeed, this kind of situation is relatively common in protein
and gene function prediction, where more specific functional classes are often
unknown and will be discovered later, with continuing advances in biological
experiments that determine gene and protein functions.

Hence, we modified the definition of hP in order not to penalize over-
specialized predictions. It is important to mention that even in mandatory leaf
node prediction problems (the scenario considered here) over-specialized predic-
tions can be made, since we can have leaf node classes at different levels in the
hierarchy. Then, the adapted hP measure used in this work (which was used to
measure the predictive accuracy of both hierarchical classification methods in

our experiments) is defined as hP =
∑

i |Pi
⋂

Ti|∑
i min(|Pi|,|Ti|) , where min(|Pi|, |Ti|) is the

minimum value between |Pi| and |Ti|.

4.4 Computational Results

As mentioned earlier, the Extended Local Hierarchical Naive Bayes classifier
(ELHNB) was compared with the global-model Naive Bayes approach (GMNB)
proposed in [7] on 18 bioinformatics datasets.

The performance of the hierarchical classifiers was measured by using the
10-fold cross validation [21] and the hierarchical F-measure (described in Sec-
tion 4.3). The same ten folds in each dataset were used to evaluate the classifiers.
In addition, for each dataset, in order to determine if there is a statistically sig-
nificant difference between the hierarchical F-measure of the two hierarchical
classifiers being compared, we used the Wilcoxon’s Signed-Rank Test (two-sided
test) as recommended by [22].

The results comparing the baseline GMNB with the proposed ELHNB are
shown in Table 2. For each dataset, the third and fourth columns present the
hierarchical F-measure values (hF) obtained by 10-fold cross validation (with the
standard error in parentheses). The largest hierarchical F-measure value (hF)
between those obtained by the two methods is in bold font. The last column
presents the name of the method that achieved the best hF value when there is
a statistically significant difference between the hF values of the two classifiers,
or the symbol (–) to indicate that the difference between the hF values was not
statistically significant.

In the eight datasets of Group A, the proposed ELHNB obtained significantly
better results than GMNB for four datasets. In the remaining four datasets
there was no statistically significant difference between the hF values of the two
classifiers. In Group B, ELHNB outperformed GMNB in one dataset and GMNB
outperformed ELHNB in another one. In the remaining datasets of this group,
the difference of hF values between the classifiers was not statistically significant.

11

Table 2. Results of Comparative Experiment

GMNB ELHNB Result of Statistical
Group Data Sets hF(std. error) hF(std. error) Test (α = 0.05α = 0.05α = 0.05)

GPCR-Pfam 62.48 (0.31) 62.99 (0.32) –
GPCR-Prosite 61.58 (0.54) 61.44 (0.44) –
GPCR-Prints 79.66 (0.56) 79.96 (0.51) –

A GPCR-Interpro 80.44 (0.31) 80.64 (0.36) –
EC-Prints 93.97 (0.24) 94.99 (0.15) ELHNB
EC-Prosite 94.46 (0.08) 96.84 (0.06) ELHNB
EC-Pfam 94.81 (0.14) 95.42 (0.14) ELHNB
EC-Interpro 95.71 (0.12) 96.33 (0.15) ELHNB

CellCycle 12.45 (0.54) 12.83 (0.57) –
Church 10.65 (0.46) 10.61 (0.44) –
Derisi 10.42 (0.31) 10.88 (0.58) –
Eisen 15.52 (0.87) 16.52 (0.81) ELHNB

B Expr 14.09 (0.73) 14.63 (0.5) –
Gasch1 15.31 (0.55) 14.20 (0.46) GMNB
Gash2 15.70 (0.51) 15.42 (0.38) –
Phenotype 8.08 (0.37) 7.22 (0.48) –
Sequence 16.20 (0.79) 15.80 (0.76) –
SPO 10.18 (0.52) 9.66 (0.59) –

Overall, the proposed ELHNB reached results statistically equivalent or bet-
ter than GMNB in 17 out of 18 datasets.

5 Conclusion

In this work, we proposed an extended local hierarchical Naive Bayes classifier
based on a local per node approach, where a binary classifier is built for each
class node in the hierarchy by exploiting the relationships between that class
node and its parent and child nodes. The term “extended” is used to indicate
that the proposed classifier extends the conventional local hierarchical approach
by training each classifier with classes predicted for that classifier’s neighbor
(parent and child) nodes.

Different scenarios can be considered when dealing with hierarchical classi-
fication problems. In this paper we dealt with mandatory leaf node prediction
problems, where the algorithm has to predict one of the leaf class nodes for each
test instance. In addition, we focused on problems in which the classes to be
predicted are disposed in a tree-based hierarchy and each data instance has a
class label associated with a single path in this class hierarchy.

The evaluation of the proposed classifier was conducted on 18 bioinformatics
datasets, where eight are protein function and ten are gene function hierarchical
classification datasets.

12

Given the Bayesian nature of the proposed classifier, aiming at comparing
it against a method of the same broad type, we used as a baseline method
the global-model Naive Bayes approach proposed in [7]. In our experiments the
proposed ELHNB classifier achieved predictive performance (measured by hier-
archical F-measure) significantly better than the baseline GMNB method in 5
datasets, was significantly worse in only 1 dataset, and statistically equivalent
in the remaining ones. Therefore, we conclude that the proposed extended local
hierarchical Naive Bayes classifier has shown good predictive performance in the
bioinformatics datasets used in this work, being somewhat more accurate than
a global hierarchical classifier.

As future work, we intend to evaluate the ELHNB method in other hierarchi-
cal scenarios and compare it against other hierarchical classification approaches.

Acknowledgements

The first author is financially supported by CNPq - a Brazilian research-support
agency (processes number 202120/2011-2 and 307711/2010-2). The authors also
would like to thank the anonymous reviewers for their helpful comments.

References

1. Sleator, R.D., Walsh, P.: An overview of in silico protein function prediction.
Archives of Microbiology 192(3) (2010) 151–155

2. Gerlt, J.A., Babbitt, P.C.: Can sequence determine function? 1 (2000)
3. Syed, U., Yona, G.: Using a mixture of probabilistic decision trees for direct

prediction of protein function. In: Proceedings of the seventh annual international
conference on Research in computational molecular biology. RECOMB ’03, New
York, NY, USA, ACM (2003) 289–300

4. Pavlidis, P., Cai, J., Weston, J., Noble, W.S.: Learning gene functional classi-
fications from multiple data types. Journal of Computational Biology 9 (2002)
401–411

5. Suhai, S., Glatting, K.H., Eils, R., Schubert, F., Moormann, J., König, R.,
Vinayagam, A.: Applying support vector machines for gene ontology based gene
function prediction. BMC Bioinformatics 5 (2004)

6. Jung, J., Thon, M.R.: Automatic annotation of protein functional class from sparse
and imbalanced data sets. In: Proc. of the First International Conference on Data
Mining and Bioinformatics. (2006) 65–77

7. Silla Jr., C.N., Freitas, A.A.: A global-model naive bayes approach to the hierarchi-
cal prediction of protein functions. In: Proc. of the 2009 Ninth IEEE International
Conference on Data Mining, IEEE Computer Society (2009) 992–997

8. Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery 22(1-2) (2011) 31–72

9. Wu, F., 0002, J.Z., Honavar, V.: Learning classifiers using hierarchically struc-
tured class taxonomies. In: Proc. of the International Symposium on Abstraction,
Reformulation and Approximation. (2005) 313–320

10. Barutcuoglu, Z., DeCoro, C.: Hierarchical shape classification using bayesian ag-
gregation. In: Proc. of the IEEE International Conference on Shape Modeling and
Applications 2006. SMI ’06 (2006) 44

13

11. Valentini, G.: True path rule hierarchical ensembles for genome-wide gene function
prediction. IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics 8(3) (2011) 832–847

12. Silla Jr., C.N.: Novel Approaches for Hierarchical Classification with Case Studies
in Protein Function Prediction. PhD thesis, University of Kent (2011)

13. Grisham, C.M., Garrett, R.H.: Biochemistry. Saunders College Publishers,
Philadelphia (1999)

14. Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., Babu,
M.M.: Molecular signatures of g-protein-coupled receptors. Nature 494 (2013)
185–194

15. Costa, E.P., Lorena, A.C., Carvalho, A.C.P.L.F., Freitas, A.A., Holden, N.: Com-
paring several approaches for hierarchical classification of proteins with decision
trees. In: Proc. of the 2nd Brazilian Conference on Advances in Bioinformatics and
Computational Biology, Lecture Notes in Bioinformatics 4643. BSB’07, Angra dos
Reis, Brazil, Springer-Verlag (2007) 126–137

16. Holden, N., Freitas, A.A.: Improving the performance of hierarchical classification
with swarm intelligence. In: Proc. of the 6th European Conference on Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics. (2008) 48–60

17. Mewes, H.W., Heumann, K., Kaps, A., Mayer, K.F.X., Pfeiffer, F., Stocker, S.,
Frishman, D.: Mips: a database for genomes and protein sequences. Nucleic Acids
Research 27(1) (1999) 44–48

18. Clare, A., King, R.D.: Predicting gene function in saccharomyces cerevisiae. In:
Proc. of the European Conference on Computational Biology. (2003) 42–49

19. Vens, C., Struyf, J., Schietgat, L., Džeroski, S., Blockeel, H.: Decision trees for
hierarchical multi-label classification. Machine Learning 73(2) (2008) 185–214

20. Kiritchenko, S., Matwin, S., Famili, A.F.: Functional annotation of genes using
hierarchical text categorization. In: Proc. of the BioLINK SIG: Linking Literature,
Information and Knowledge for Biology. (2005)

21. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. 3rd edn.
Morgan Kaufmann Publishers, USA (2011)

22. Japkowicz, N., Shah, M.: Evaluating Learning Algorithms: A Classification Per-
spective. Cambridge University Press, New York, USA (2011)

