
Evaluating a New Genetic Algorithm for Automated 

Machine Learning in Positive-Unlabelled Learning  

Jack D. Saunders1[0000-0002-0801-2909] and Alex A. Freitas1[0000-0001-9825-4700] 

1 School of Computing, University of Kent, Canterbury, CT2 7NF, UK  

jds39@kent.ac.uk, A.A.Freitas@kent.ac.uk 

Abstract. Positive-Unlabelled (PU) learning is a growing area of machine learn-

ing that aims to learn classifiers from data consisting of a set of labelled positive 

instances and a set of unlabelled instances, where the latter can be either positive 

or negative instances, but their label is unknown. There are many PU-learning 

algorithms, so an exhaustive search to find the best algorithm for a given dataset 

is computationally unfeasible. We recently proposed GA-Auto-PU, the first Ge-

netic Algorithm-based Automated Machine Learning system for PU learning, 

and reported its preliminary results. This work presents an improved version of 

this system with an extended search space to include spy-based techniques, and 

provides an extensive evaluation of the new and previous versions of this system. 

Keywords: Positive-Unlabelled Learning, classification, Automated Machine 

Learning (Auto-ML), Genetic Algorithm 

1. Introduction 

Positive-Unlabelled (PU) learning is a field of machine learning that aims to learn clas-

sifiers from positive and unlabelled data [1]. This differs from binary classification due 

to the absence of a distinct and accurate negative set. The two instance sets present in 

PU learning are the labelled positive set, consisting of positive instances that have been 

labelled as positive, and the unlabelled set, consisting of instances which can be in 

reality positive or negative, but whose label is unknown. Thus, the challenge is to learn 

a classifier that can predict the probability of an instance belonging to the positive class, 

despite the mixture of negative and positive instances in the unlabelled set. When learn-

ing such a classifier, a PU learning algorithm is ‘aware’ of the difference between the 

concepts of unlabelled and negative instances. This allows a PU learning algorithm to 

try to infer which unlabelled instances are negative and which unlabelled instances are 

positive. By contrast, a traditional classification algorithm given PU data is ‘not aware’ 

of the difference between unlabelled and negative instances; the algorithm simply dis-

criminates between two classes: labelled positive vs. unlabelled, so the learned classi-

fier simply predicts the probability of an instance being labelled [2].  

PU learning naturally occurs in many application domains, such as bioinformatics 

[2], text-mining [3], pharmacology [4], etc. [1], due to the impracticality of obtaining 

fully labelled data. E.g., consider datasets where the class variable represents the pres-

ence or absence of a disease. Instances with the positive class label (disease) are in 



2 

general reliable, indicating that the patient was diagnosed earlier. However, the data 

often also includes patients who did not undergo detailed medical examination yet, es-

sentially ‘lack of evidence for the positive class’, instead of ‘evidence for the negative 

class’ (not having the disease). Hence, if those patients are labelled with the negative 

class (as it is usually the case), this leads to unreliable negative-class labels. PU learning 

avoids this by treating all those patients as ‘unlabelled’, to reflect their unreliability. 

Many PU learning algorithms have been proposed (see [1] for a comprehensive re-

view). Hence, finding the optimal PU learning algorithm for specific classification tasks 

can prove unfeasibly time consuming and computationally expensive, should one use 

an exhaustive search. Furthermore, algorithm predictive performance is largely depend-

ent on the input data [1]. Therefore, the PU learning area could benefit greatly from an 

Automated Machine Learning (Auto-ML) system, which selects the best algorithm for 

a given input dataset, among a pre-defined set of candidate algorithms [5], [6].  

Our previous short paper [7] recently proposed GA-Auto-PU, the first Genetic Al-

gorithm (GA)-based Auto-ML system for PU learning, and reported its preliminary re-

sults. This work presents an improved version of this system with an extended search 

space and provides a much more extensive evaluation of the new and previous versions 

of this system, comparing their predictive performance to two popular PU learning 

methods on three distributions of PU data across 20 datasets, i.e., 60 PU learning prob-

lems in total; whilst only 20 PU learning problems were used in [7].  

2       Background 

2.1   Positive-Unlabelled (PU) Learning 

PU learning is a field of machine learning that aims to learn models from datasets that 

consist of only positive-class and unlabelled instances [1]. PU learning shares the goal 

of binary classification – accurately predicting the class of an unseen instance by learn-

ing to distinguish between two classes. However, as a standard binary classifier requires 

a training set with two class labels, such a classifier built using PU data would have to 

treat all unlabelled instances as a separate class, and so will predict the probability of 

an instance being labelled (Pr(𝑠 = 1)) instead of the probability of an instance belonging 

to the positive class (Pr(𝑦 = 1)) [2] – where s is a variable taking 1 or 0 to indicate 

whether or not an instance is labelled, and y is the true label of an instance, taking 

values 1 or 0 to denote the positive or negative class, respectively. In contrast, PU learn-

ing models are trained to predict Pr(𝑦 = 1) using PU data and have been shown theo-

retically to improve upon standard binary classifiers when applied to PU datasets [8]. 

Within the PU learning literature, it is commonly assumed (implicitly or explicitly) 

that the data adheres to the selected completely at random assumption [2], stating that 

for the given data, 𝐏𝐫(𝒔 = 𝟏) = 𝐏𝐫(𝒔 = 𝟏|𝒙), where 𝐏𝐫(𝒔 = 𝟏) is the probability of 

an instance being labelled, and x represents a feature vector. I.e., the labelled examples 

are selected from the positive distribution irrespective of their features and the labelled 

set is an independent and identically distributed sample from the positive distribution.  



3 

There are several approaches to PU learning, including the two-step approach, bi-

ased learning, and incorporation of the class prior [1]. The two-step approach is by far 

the most popular and is the focus of our proposed Auto-ML system.  

The first step of this approach identifies a set of reliable negative (RN) instances 

among the unlabelled set; i.e., a set of instances substantially different from the labelled 

positive instances and likely not unlabelled positives. The second step builds a classifier 

to distinguish the labelled positives from the RN set. These two steps use only the train-

ing set [9]. Provided that the RN set is an accurate representation of the negative class, 

this model will predict 𝐏𝐫(𝒚 = 𝟏) rather than 𝐏𝐫(𝒔 = 𝟏).  

This approach makes two assumptions [1]: (a) data separability, i.e., it is assumed 

that there is a natural separation between the positive and negative classes; and (b) data 

smoothness, i.e., it is assumed that instances that are similar to each other have a similar 

probability of belonging to the positive class. 

An example of a two-step technique is the “Deep Forest PU” (DF-PU) method [10]. 

It involves training a state-of-the-art deep forest classifier on a random sample of 20% 

of the unlabelled instances (treated as the negative class) and all positive instances. The 

bottom 1% of instances with the lowest probability of belonging to the positive class 

are added to the RN set. This process is repeated 5 times. A classifier is then trained to 

distinguish the RN set and the positive set. Our system is compared against DF-PU as 

a recent state-of-the-art PU learning method. 

We also compare our system against a well-known method: S-EM [9]. S-EM uses 

a spy-based approach, hiding some of the labelled positive instances in the unlabelled 

set and using them to determine the threshold under which an instance is considered 

RN. It uses the Expectation Maximisation algorithm [12] and determines the RN thresh-

old as the predicted probability of being positive under which l% of spy instances fall.  

Whilst the literature generally refers to two individual steps for two-step methods, 

this work uses slightly different terminology. We refer to the steps as phases and rec-

ognise that “Step 1” often consists of two distinct phases. Hence, when discussing two-

step methods, this work references Phase I-A, which extracts an initial RN set; Phase 

I-B, an optional step using the initial RN set to further extract RN instances from the 

unlabelled set; and Phase II, “Step 2” in the usual description, which builds a classifier 

using the positive and RN sets. This notation is advantageous as it recognises that “Step 

1” often consists of two distinct phases, and the use of “phase” rather than “step” allows 

us to reference the individual steps of each phase without confusion. 

2.2     Automated Machine Learning (Auto-ML) 

Auto-ML is an emerging field of machine learning (ML) that looks to limit the human 

involvement in ML applications [5], reducing the demand for domain experts and al-

lowing those without extensive ML knowledge to operate complex ML pipelines [6]. 

As algorithm performance is largely dependent on input data [13], Auto-ML is a useful 

tool as it searches for the best algorithm specific to the target ML task. 

Reference [14] proposed the Tree-based Pipeline Optimisation Tool (TPOT), an 

Auto-ML system using genetic programming (GP). The GP uses tree-based encoding 



4 

such that the individuals in the population are ML pipelines. The functions are pipeline 

operators and hyperparameters, e.g., specifying the number of trees in a random forest 

or the number of features selected by filter feature selection methods. The original ver-

sion of TPOT uses a multi-objective optimization approach, where each individual is 

evaluated by both the classification accuracy and the complexity of the pipeline pro-

duced, based on the Non-dominated Sorting Genetic Algorithm II [15], drawing on the 

well-known concept of Pareto dominance [16], [17]. A drawback of the original version 

is that it can produce individuals that represent invalid pipelines, with a large computa-

tional cost in terms of evaluation [18]. This issue has been addressed by other EA-based 

Auto-ML systems, such as the Resilient Classification Pipeline Evolution system 

(RECIPE). Like TPOT, RECIPE, proposed by [18], is a genetic programming system 

that evolves ML pipelines. However, RECIPE uses a grammar to ensure that all gener-

ated individuals are valid, so that it does not waste resources on invalid individuals. 

Furthermore, RECIPE evaluates a larger search space than TPOT which, whilst making 

for a more complex search space, allows for a greater variety of solutions [18].  

The systems described in this section are for standard binary classification and are 

not suitable for PU learning. Hence, we have not compared our system against any of 

these. Instead, we have compared against the two PU methods outlined in Section 2.1.  

3    The GA-Auto-PU System 

The next three Subsections define individual representation and genetic operators used 

by the GA. These subsections are based on the description of GA-Auto-PU in [7], with 

two main differences. First, the current GA version uses an extended search space of 

PU learning methods which includes two spy-based methods, not used in [7]. This in-

volves an extended individual representation and a new procedure for handling in-

stances used as “spies” (Pseudocode 3, described later). Second, in [7] the GA used a 

lexicographic multi-objective fitness function for optimising F-measure with higher 

priority and recall as lower priority (these measures are defined below). In contrast, in 

this current paper the GA uses a simpler fitness function, optimising the F-measure 

only. This simplification was made because further experiments (performed after the 

writing of [7]) have shown that the simpler fitness function (F-measure only) produces 

results qualitatively similar to the more complex lexicographic fitness function, hence 

the former is now used in this work. The F-measure is defined as follows:  

F-Measure = 2 ×
Precision×Recall

Precision+Recall
         Precision =

TP

TP+FP
       Recall =

TP

TP+FN
 

TP is true positive count, FP is false positive count, and FN is false negative count. 

3.1     Individual Representation 

An individual of the GA represents a candidate solution, i.e., a two-step PU learning 

method and its hyperparameter configuration. In both versions of the system, each two-

step technique is composed of three components: phase I-A, phase I-B, and phase II. 

Phase I-A of the original system [7] consists of three parameters: iteration_count_1A, 



5 

threshold_1A, classifier_1A. The new proposed version of the system introduces three 

new parameters for phase I-A: spy_flag, spy_rate, and spy_tolerance.  

The iteration count determines the number of subsets to split the unlabelled set into 

when learning a classifier to distinguish between the positive and the unlabelled set. 

E.g., if the iteration count is 5, each subset will contain 20% of the unlabelled data. This 

helps to handle the imbalance present in many PU learning datasets. The threshold de-

termines the predicted probability of belonging to the positive class that an instance 

must fall under to be considered a reliable negative (RN) instance. In the literature, the 

iteration count and threshold are either set heuristically [9] or arbitrarily [10]. The pre-

vious version of the system did not generate PU learning methods with heuristic initial-

isation, but this has been added with the inclusion of spy-based methods. The classifier 

is the classifier used to predict the RN instances. Spy_flag is a Boolean value used to 

indicate whether or not to use a spy-based method in Phase I-A. Spy_rate determines 

the percentage of positive instances to use as spies. Spy_tolerance determines what per-

centage of spies can remain in the unlabelled set when the threshold is calculated.   

Phase I-B consist of three parameters: threshold_1B, classifier_1B, and 

phase_1B_flag. The threshold and the classifier are analogous to those used in phase I-

A. The phase_1B_flag parameter indicates whether to skip phase I-B or not. Phase I-B 

is not always utilised in PU learning techniques, and therefore the system will also gen-

erate individuals that are able to skip this phase. Phase II simply consists of a single 

parameter: classifier_2. This classifier will be trained to distinguish the positive set and 

the RN set. The list of the 10 genes encoded into an individual is shown in Figure 1. 

 

iteration_       thresh.   classifier     spy_     spy_      spy_    thresh.   classifier   flag     classifier 

count_1A       _1A        _1A          flag      rate      toler.      _1B         _1B       _1B       _1B 

                                    

Fig. 1. Individual representation of the GA 

The genes Classifier_1A, Classifier_1B, and Classifier_2 can take the same set of 

values, representing 18 different candidate classification algorithms: Gaussian naïve 

Bayes, Random forest, Decision tree, Multilayer perceptron, Support vector machine, 

Stochastic gradient descent classifier,  Logistic regression, K-nearest neighbour, Deep 

forest, AdaBoost, Gradient boosting classifier, Linear discriminant analysis, Extra tree 

classifier, Extra trees classifier (an ensemble of Extra trees), Bagging classifier, Ber-

noulli naïve Bayes, Gaussian process classifier, and Histogram-based gradient boosting 

classification tree. These values are henceforth referred to as “Candidate_classifiers”.  

The candidate values of each gene in the individual representation (defining the 

search space of PU learning algorithms and their configuration) are as follows:  

• Iteration_count_1A: { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } 

• Threshold_1A: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

• Classifier_1A: { Candidate_classifiers } 

• Spy_flag: { True, False } 

• Spy_rate: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 } 



6 

• Spy_tolerance: { 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 } 

• Threshold_1B: { 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 } 

• Classifier_1B: { Candidate_classifiers} 

• Phase_1B_flag: { True, False }  

• Classifier_2: { Candidate_classifiers } 

The size of the search space of the GA is thus calculated as follows:  

10 × 10 × 18 × 2 × 7 × 11 × 10 × 18 × 2 × 18
= 1,796,256,000 possible candidate solutions. 

PU learning solutions that do not identify any RN instances get a fitness of 0.  

3.2    Outline of the underlying Genetic Algorithm (GA)  

Pseudocode 1 outlines the procedure that the GA follows to evolve a PU learning algo-

rithm. Initially, a Population of Population_size individuals is generated (step 1). The 

configuration (genome) of the individual is checked against a list of previously assessed 

configurations, and if it has not already been assessed, the Fitness of Individual is cal-

culated (step 2.a.i) as described in Section 3.3, including Pseudocodes 2, 3, 4 and 5. If 

the configuration has already been assessed, the fitness values of the previous assess-

ment are assigned to the individual (step 2.a.ii). Once all individuals have been evalu-

ated, the fittest Individual is saved for the following generation (step 2.b). A new pop-

ulation is created from Population after undergoing tournament selection (step 2.c), and 

New_pop then undergoes crossover (step 2.d) and mutation (step 2.e). Finally, Popula-

tion is set as New_pop and Fittest_individual (step 2.f). This process of fitness calcula-

tion, selection, crossover, mutation, and elitism is repeated #generations times. The 

fitness of an individual is assigned as the F-measure achieved over the 5 folds of the 

internal cross-validation (applied to the training set).  

 

Pseudocode 1 Outline of the GA Procedure 

1. Population = Generate population(); 

2. Repeat #generations times:  

a. For each Individual in Population: 

i. If Individual configuration has not already been assessed, then Assess fit-

ness(Individual, Training set); // see Pseudocodes 2, 3, 4, 5 

ii. Else Individual Fitness value is assigned as the output of the previous as-

sessment; 

b. Fittest_individual = Get fittest individual(Population);  

c. New_pop = 100 individuals selected from Population using tournament selec-

tion; 

d. Individuals in New_pop undergo crossover; 

e. Individuals in New_pop undergo mutation; 

f. Population = New_pop ∪ Fittest_individual;  

 

Both versions of the system utilize standard uniform crossover and mutation (re-

placing a gene’s value by a randomly sampled candidate value) as search operators. 



7 

3.3     Fitness Evaluation 

Recall that each individual encodes three classification algorithms, which are used in 

phases I-A, I-B and II of the PU learning system. Fitness evaluation involves applying 

these algorithms (with the possible exception of the algorithm for the optional Phase I-

B) to the training set. To describe the fitness evaluation process, we use this notation: 

RN: The set of reliable negative instances.  

P: The set of labelled positive instances. 

U: The set of unlabelled instances. 

P+RN: The combined set of labelled positive and reliable negative instances. 

P(y=1): The probability of an instance being positive, as calculated by the classifier.  

Pseudocode 2 Assess Fitness (Individual, Training set)   

1. Split Training set into 5 Learning and Validation sets; 

2. For each Learning set and corresponding Validation set: 

a. P = all labelled positive instances in Learning set; 

b. U = all unlabelled instances in Learning set; 

c. If spy_flag then RN, U = Phase I-A-Spies(P, U) // call Pseudocode 3, else 

RN, U = Phase I-A(P, U);  // call Pseudocode 4 

d. If Phase_1B_flag then RN, U = Phase I-B(P+RN, U);  // call Pseudocode 5 

e. Train Classifier_2 to distinguish P and RN;  

f. Classify Validation set;  

3. Individual’s Fitness Value = F-measure over the 5 Validation sets; 

Pseudocode 3 Phase I-A-Spies(P, U) 

1. RN = { }; 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Spies = spy_rate% instances, randomly selected from P; 

b. Spy_set = Set ∪ Spies 

c. Run EM(Classifier_1A, P, Spy_set); 

d. Classify all instances in Spy_set; 

e. Set threshold to a value such that spy_tolerance% spies have P(y=1) less than 

threshold; 

f. For each unlabelled Instance in Spy_set: 

i. If P(y=1) < threshold then RN = RN ∪ Instance, U = U – Instance; 

4. Return RN, U; 

 

The fitness of each individual is computed as specified in Pseudocode 2. The Train-

ing set is split into 5 folds for internal cross-validation, creating 5 pairs of Learning and 

Validation sets (step 1). For each pair of Learning and Validation sets, all labelled pos-

itive instances are added to P (step 2.a) and all unlabelled instances are added to U (step 

2.b). The RN set is determined with either the phase I-A-Spies(P, U) or phase I-A(P, 

U) algorithm, depending on the spy_flag parameter, which returns a refined U set (step 

2.c, executing Pseudocode 3/4). If the flag for running phase I-B is set to true, RN and 

U sets are further defined with the phase I-B(P+RN, U) algorithm (step 2.d, executing 



8 

Pseudocode 5). Classifier_2 is then trained to distinguish P and RN (step 2.e), and then 

used to classify the Validation set (step 2.f). The Fitness Value of the Individual is 

assigned as the F-measure over the 5 Validation set classifications (step 3).  

Pseudocode 3 describes Phase I-A of the two-phase PU learning method, executed 

when spy_flag is True. The RN set is initialised empty (step 1). The set U of unlabelled 

instances is split into Iteration_count_1A subsets (step 2). For each Set in the list of 

subsets, Spies is initialised with spy_rate% of instances of P, randomly selected (step 

3.a) and Set and Spies are combined to form Spy_set (step 3.b). Next, the Expectation 

Maximisation (EM) algorithm is run [9], tuning Classifier_1A on P and Spy_set (step 

3.c). All instances in Spy_set are classified and the threshold is set so that spy_toler-

ance% of spies have P(y=1) less than threshold (step 3.d-e). For each unlabelled In-

stance in Spy_set (excluding the spies), if P(y=1) is less than threshold, they are added 

to RN and removed from U (step 3.f). The resulting RN and U sets are then returned. 

Pseudocode 4 Phase I-A(P, U) 

1. RN = { }; 

2. Sets = split U into Iteration_count_1A subsets; 

3. For every Set in Sets: 

a. Train Classifier_1A on P and Set; 

b. Classify all unlabelled instances in Set; 

c. For each unlabelled Instance in Set: 

i. If P(y=1) < Threshold_1A then RN = RN ∪ Instance, U = U – Instance; 

4. Return RN, U; 

Pseudocode 5 Phase I-B(P+RN, U) 

1. Train Classifier_1B on P+RN; 

2. Classify U; 

3. For each Instance in U: 

a. If P(y=1) < Threshold_1B  

    then RN = RN ∪ Instance,  U = U – Instance  

4. Return RN, U; 

 

Phase I-A of the two-phase PU learning method, executed when Spy_flag is False, 

is described in Pseudocode 4. The RN set is initialised as an empty set (step 1). The set 

U of unlabelled instances is split into Iteration_count_1A subsets (step 2). For each Set 

in the list of subsets, Classifier_1A is trained to distinguish P and Set (step 3.a) and 

used to classify all unlabelled instances in Set (instances previously treated as the neg-

ative set during training) (step 3.b). For each unlabelled Instance, if the instance’s cal-

culated P(y=1) is less than Threshold_1A then Instance is added to RN and removed 

from U (step 3.c.i). The resulting RN and U sets are then returned.  

Phase I-B of the two-phase learning method is described in Pseudocode 5. Classi-

fier_1B is trained to distinguish the positive and reliable negative instances in P+RN 

(step 1) and the resulting classifier is then used to classify U (step 2). For each Instance 



9 

in U, if the Instance’s calculated P(y=1) is less than Threshold_1B, Instance is added 

to RN and removed from U (step 3). The resulting RN and U sets are returned (step 4). 

4       Datasets and Experimental Methodology 

Experiments were conducted with a stratified 5-fold cross-validation procedure. Each 

dataset is split into 5 folds of about the same size with about the same class distribution, 

and then the methods are run 5 times. Each time, a different fold is used as the test set, 

and the other 4 folds are used as the training set. For each training set, we run the Auto-

ML systems to evolve the best individual configuration. Then, a PU learning classifier 

is built from the training set with the configuration defined by that best individual. The 

classifier is then used to predict all instances in the test set. Precision, recall, and F-

measure are calculated. This process is repeated for the 5 pairs of training and test sets 

in the 5-fold cross-validation, and the reported results are the average over the 5 test set 

results. Each method is evaluated using the same procedure, with the same 5 folds.  

We compare the predictive performance of the two versions of the Auto-ML system, 

GA-Auto-PU [7] (called GA-1) and GA-Auto-PU with the extended search space (GA-

2), and two well-established PU learning methods: DF-PU [10] and S-EM [9]. Perfor-

mance is measured mainly by the F-measure, the most used measure in PU learning 

[11], but we also report a summary of precision and recall results, for completeness. 

The two versions of the GA used the following hyperparameter settings. #Genera-

tions (number of generations) set to 50. Population_size (number of individuals in the 

population) set to 101 (100 individuals generated using crossover, 1 saved with elitism). 

Crossover_prob, the probability that two individuals will undergo crossover, set to 0.9, 

Gene_crossover_prob, the probability that a specific gene will be swapped when the 

individuals undergo uniform crossover, set to 0.5. Mutation_prob, the probability that 

an individual’s gene will undergo mutation, set to 0.1. Tournament_size set to 2. Code 

for both versions of the GA can be found at https://github.com/jds39/GA-Auto-PU.  

Regarding statistical analysis, for each performance measure (F-measure, recall, and 

precision), we compare the performance of the new GA-2 against GA-1 and the above 

two PU learning methods using the non-parametric Wilcoxon Signed-Rank test [19]. 

As this involves testing multiple hypotheses per measure, we use the well-known Holm 

correction [20] for multiple hypotheses. This procedure involves ranking the p-values 

from the smallest to largest (i.e., from most to least significant), and adjusting the sig-

nificance level 𝛼 according to the p-values’ ranking. We set 𝛼 = 0.05 as usual, so the 

first p-value (𝑝
1
) is statistically significant if 𝑝

1
< 0.017. If this condition is not satis-

fied, the procedure stops and 𝑝1, 𝑝2 and 𝑝3 are deemed non-significant. If 𝑝
1
 is deemed 

significant, we then evaluate 𝑝2, which is deemed significant if 𝑝2 < 0.025. If  𝑝2 is 

deemed significant, we then evaluate 𝑝3, which is deemed significant if 𝑝3 < 0.05. 

Table 1 shows the characteristics of each dataset. These datasets are binary datasets 

that are engineered to PU datasets by hiding 𝛿% of the positive class instances in the 

negative set, thus creating an unlabelled set – a common practice in PU learning [11]. 

Note that the Positive-class % column shows the percentage of positive class instances 

before some are hidden in the unlabelled set. 𝛿 takes the values 20%, 40%, and 60%, 

as it is important to test on a wide range of distributions [11].  



10 

Table 1. Dataset characteristics. 

Dataset 

No.  

instances 

No.  

features 

Positive-class 

% 

Alzheimer’s [21] 354 9 10.73% 

Autism [22] 288 15 48.26% 

Breast cancer Coimbra [22] 116 9 55.17% 

Breast cancer Wisconsin [22] 569 30 37.26% 

Breast cancer mutations [23]   1416 53 32.42% 

Cervical cancer [22] 668 30 2.54% 

Cirrhosis [24] 277 17 25.72% 

Dermatology [22] 359 34 13.41% 

Pima Indians Diabetes [22] 769 8 34.90% 

Early Stage Diabetes [25] 521 17 61.54% 

Heart Disease [22] 304 13 54.46% 

Heart Failure [26] 300 12 32.11% 

Hepatitis C [22] 590 13 9.51% 

Kidney Disease [22] 159 24 27.22% 

Liver Disease [22] 580 11 71.50% 

Maternal Risk [22] 1014 6 26.82% 

Parkinsons [22] 196 22 75.38% 

Parkinsons Biomarkers [27] 131 29 23.08% 

Spine [22] 311 6 48.39% 

Stroke [28] 3427 15 5.25% 

5       Computational Results 

Table 2 shows the F-measure values achieved by all methods across the datasets for 𝛿 

= 20%. GA-2 achieved the highest number of wins with 10.5, followed by GA-1 with 

7.5. GA-2 outperformed DF-PU and S-EM with statistical significance (p=0.00002, 

Holm’s adjusted α=0.017 for DF-PU; p=0.0008, Holm’s adjusted α=0.025 for S-EM), 

but there was no significant difference between GA-2 and GA-1 (p=0.7841, α=0.05).  

This trend continued for 𝛿 = 40%, as shown by Table 3. GA-2 achieved the highest 

number of wins with 8, followed by GA-1 with 5. GA-2 significantly outperformed 

DF-PU (p=0.0003, adjusted α=0.017) and S-EM (p=0.0073, adjusted α=0.025), but 

there was no significant difference between GA-2 and GA-1 (p=0.7562, α=0.05). 

For 𝛿 = 60%, shown in Table 4, GA-1 and S-EM performed best with 6 wins each, 

followed by GA-2 with 5 and DF-PU with 3. GA-2 significantly outperformed DF-PU 

(p=0.0023, adjusted α=0.017), but there was no significant difference between GA-2 

and GA-1 or S-EM (p=0.4980, adjusted α=0.025 GA-1; p=0.5706, α=0.05 S-EM). In 

total, across all Tables, GA-2 performed best with 23.5 wins, followed by GA-1 with 

18.5, S-EM with 10.5, and DF-PU with 7.5.  

Table 5 summarises the Precision and Recall values achieved by each method, show-

ing the number of wins (out of 20 datasets) of each method and whether GA-2 per-

formed statistically significantly better or worse than another method, for each measure 

and for each 𝛿 = 20%, 40%, 60% (the full results per dataset are not shown due to lack 



11 

of space). In terms of recall, DF-PU performed best overall, with GA-2 performing 

worst. GA-2 performed significantly worse than DF-PU for all 3 𝛿 values. However, 

DF-PU generally predicted almost all instances as positive, thus achieving near 100% 

recall, but near 0% precision. Such classification is unhelpful, representing a bad trade-

off between precision and recall, which led to the inferior results for DF-PU regarding 

F-measure, as shown earlier. GA-2 performed best in terms of Precision, significantly 

outperforming both DF-PU and S-EM for the 3 𝛿 values. 

Table 2. F-measure values achieved by the four methods for 𝛿 = 20%. 

Dataset GA-1 GA-2 DF-PU S-EM 

Alzheimer’s 0.529 0.548 0.195 0.321 

Autism 0.960 0.982 0.648 0.820 

Breast cancer Coi. 0.705 0.711 0.697 0.711 

Breast cancer Wis. 0.954 0.956 0.543 0.898 

Breast cancer mut. 0.893 0.896 0.489 0.892 

Cervical cancer 0.828 0.867 0.061 0.054 

Cirrhosis 0.573 0.446 0.405 0.436 

Dermatology 0.860 0.901 0.228 0.718 

Pima I. Diabetes 0.677 0.642 0.516 0.534 

Early Diabetes 0.958 0.978 0.761 0.792 

Heart Disease 0.843 0.836 0.705 0.811 

Heart Failure 0.770 0.751 0.487 0.529 

Hepatitis C 0.953 0.944 0.176 0.695 

Kidney disease 0.976 0.925 0.428 1.000 

Liver disease 0.834 0.831 0.834 0.816 

Maternal health 0.476 0.862 0.403 0.454 

Parkinson’s 0.860 0.935 0.856 0.815 

Parkinson’s Biom. 0.476 0.282 0.354 0.333 

Spine 0.652 0.923 0.652 0.820 

Stroke 0.474 0.241 0.086 0.102 

Total wins 7.5 10.5 0.5 1.5 

Table 3. F-measure values achieved by the four methods for 𝛿 = 40%. 

Dataset GA-1 GA-2 DF-PU S-EM 

Alzheimer’s 0.551 0.576 0.194 0.370 

Autism 0.927 0.940 0.648 0.841 

Breast cancer Coi. 0.687 0.671 0.711 0.704 

Breast cancer Wis. 0.932 0.936 0.543 0.903 

Breast cancer mut. 0.868 0.739 0.489 0.893 

Cervical cancer 0.903 0.839 0.042 0.053 

Cirrhosis 0.464 0.397 0.401 0.442 

Dermatology 0.780 0.896 0.229 0.718 

Pima I. Diabetes 0.649 0.646 0.516 0.526 

Early Diabetes 0.895 0.887 0.756 0.859 

Heart Disease 0.801 0.780 0.705 0.828 

Heart Failure 0.652 0.670 0.486 0.508 

Hepatitis C 0.771 0.863 0.171 0.708 

Kidney disease 0.988 0.951 0.428 1.000 

Liver disease 0.803 0.817 0.832 0.587 

Maternal health 0.812 0.813 0.395 0.434 

Parkinson’s 0.836 0.843 0.860 0.748 

Parkinson’s Biom. 0.265 0.259 0.354 0.261 

Spine 0.907 0.917 0.652 0.839 

Stroke 0.255 0.239 0.094 0.102 

Total wins 5 8 4 3 

 



12 

The performance of GA-2 did come at a computational cost, compared with DF-PU 

and S-EM. Whilst DF-PU and S-EM took about 4.9 minutes and 1.5 minutes on average 

per dataset respectively, GA-2 took about 3.7 hours. As such, GA-2 was 45x slower 

than DF-PU, and 150x slower than S-EM. All experiments were run on a 48 core GPU 

with 256GB of memory.  

Table 4. F-measure values achieved by the four methods for 𝛿 = 60%. 

Dataset GA-1 GA-2 DF-PU S-EM 

Alzheimer’s 0.456 0.529 0.1711 0.3727 

Autism 0.910 0.927 0.6447 0.8351 

Breast cancer Coi. 0.510 0.553 0.6966 0.6988 

Breast cancer Wis. 0.906 0.866 0.5392 0.9038 

Breast cancer mut. 0.854 0.872 0.4853 0.8922 

Cervical cancer 0.714 0.350 0.0444 0.0459 

Cirrhosis 0.443 0.204 0.4046 0.4589 

Dermatology 0.828 0.692 0.2194 0.7188 

Pima I. Diabetes 0.606 0.634 0.5145 0.5442 

Early Diabetes 0.930 0.894 0.7589 0.7925 

Heart Disease 0.785 0.786 0.7024 0.8290 

Heart Failure 0.674 0.671 0.4815 0.5571 

Hepatitis C 0.588 0.610 0.1596 0.6087 

Kidney disease 0.754 0.806 0.4279 0.9512 

Liver disease 0.804 0.748 0.8338 0.7880 

Maternal health 0.735 0.738 0.3895 0.4380 

Parkinson’s 0.818 0.792 0.8596 0.7619 

Parkinson’s Biom. 0.233 0.280 0.3671 0.3310 

Spine 0.818 0.761 0.6522 0.8300 

Stroke 0.255 0.243 0.0937 0.1022 

Total wins 6 5 3 6 

Table 5. Summary of Recall and Precision results across all datasets. 

 Number of wins regarding Recall Statistical significance results 

(> means better, < means worse) δ GA-1 GA-2 DF-PU S-EM 

20% 3.83 0 10.33 5.83 GA-2 < DF-PU (p=0.00001) 

40% 0 0 14.5 5.5 GA-2 < DF-PU (p=0.00002) 

GA-2 < S-EM (p=0.0136) 

60% 0 0 14 6 GA-2 < DF-PU (p=0.000002)  

GA-2 < S-EM (p=0.00001) 

δ Number of wins regarding Precision Statistical significance results 

20% 7.83 10.83 0 1.33 GA-2 > DF-PU (p=0.00001) 

GA-2> S-EM (p=0.0003) 

40% 7.33 11.33 0 1.33 GA-2 > DF-PU (p=0.001) 

GA-2 > S-EM (p=0.001) 

60% 9.33 10.33 0 0.33 GA-2 > DF-PU (p=0.00001)  

GA-2 > S-EM (p=0.0001) 

6       Conclusions 

We recently proposed GA-Auto-PU, the first GA-based automated machine learning 

method for PU learning [7]. In this work we presented an improved version of the sys-

tem which features an extended search space, incorporating spy-based heuristic meth-

ods into the genes of the individuals, which allows the creation of more sophisticated 



13 

PU learning algorithms. This new version of GA-Auto-PU was extensively compared 

against two established and well-performing PU learning methods, as well against the 

previous version of the system, across three distributions of engineered PU learning 

data in 20 datasets (representing in total 60 different PU learning problems). The new 

version of the system outperformed the previous version in general, and the new version 

outperformed the PU learning baselines with statistical significance in regard to F-

measure, the most used performance measure in PU learning [11]. An analysis of the 

results for recall and precision (used to compute the F-measure) showed that the new 

system significantly outperforms the two baseline methods regarding precision, but it 

is significantly outperformed by the two baselines in most cases regarding recall.  

Future work will look to explore other search and optimisation methods, such as 

Bayesian Optimisation, as well as expanding the GA’s search space to include other 

types of PU learning methods. 

References  

1. Bekker, J. and Davis, J., 2020. Learning from positive and unlabeled data: A survey. Ma-

chine Learning, 109(4), 719-760.  

2. Elkan, C. and Noto, K., 2008, August. Learning classifiers from only positive and unlabeled 

data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 213-220.  

3. Li, X. and Liu, B., 2003. Learning to classify texts using positive and unlabeled data. In 

Proceedings of the 18th International Joint Conf. on Artificial Intelligence. 3, 587-592. 

4. Zheng, Y., Peng, H., Zhang, X., Zhao, Z., Gao, X. and Li, J., 2019. DDI-PULearn: a posi-

tive-unlabeled learning method for large-scale prediction of drug-drug interactions. BMC 

Bioinformatics, 20(19), 1-12.  

5. Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y.F., Tu, W.W., Yang, Q. and Yu, Y., 2018. 

Taking human out of learning applications: A survey on automated machine learning. arXiv 

preprint arXiv:1810.13306. 

6. He, X., Zhao, K. and Chu, X., 2021. AutoML: A Survey of the State-of-the-Art. Knowledge-

Based Systems, 212, article 106622.  

7. Saunders, J.D. and Freitas, A.A., 2022. GA-Auto-PU: A Genetic Algorithm-based Auto-

mated Machine Learning System for Positive-Unlabeled Learning. In Proceedings of the 

GECCO’22 Companion (Genetic and Evolutionary Computation Conf.), 288-291. ACM.  

8. Niu, G. du Plessis, M., Sakai, T., Ma, Y., and Sugiyama, M. 2016. Theoretical comparisons 

of positive-unlabeled learning against positive-negative learning. In Proceedings of the 30th 

International Conf. on Neural Information Processing Systems (NIPS'16), 1207–1215. 

9. Liu, B., Dai, Y., Li, X., Lee, W.S. and Yu, P.S., 2003. Building text classifiers using positive 

and unlabeled examples. In Proceedings of the Third IEEE International Conference on 

Data Mining, 179-186. 

10. Zeng, X., Zhong, Y., Lin, W. and Zou, Q., 2020. Predicting disease-associated circular 

RNAs using deep forests combined with positive-unlabeled learning methods. Briefings in 

Bioinformatics, 21(4), 1425-1436.  

11. Saunders, J.D. and Freitas, A.A, 2022. Evaluating the Predictive Performance of Positive-

Unlabelled Classifiers: a brief critical review and practical recommendations for improve-

ment. arXiv preprint arXiv:2206.02423. 

12. Dempster, A., Laird, N.M., & Rubin, D., 1977. Maximum likelihood from incomplete data 

via the EM algorithm. Journal of the Royal Statistical Society B, 39, 1-38.  



14 

13. Brazdil, P., Carrier, C.G., Soares, C. and Vilalta, R., 2008. Metalearning: Applications to 

data mining. Springer Science & Business Media.  

14. Olson, R.S., Bartley, N., Urbanowicz, R.J. and Moore, J.H., 2016, July. Evaluation of a tree-

based pipeline optimization tool for automating data science. In Proceedings of the Genetic 

and Evolutionary Computation Conference (GECCO 2016),  485-492. 

15. Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T.A.M.T., 2002. A fast and elitist multi-

objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 

6(2), 182-197. 

16. Deb, K. Multi-objective Optimization Using Evolutionary Algorithms. Chichester: John 

Wiley & Sons, 2001. 

17. Freitas, A.A., 2004. A critical review of multi-objective optimization in data mining: a po-

sition paper. ACM SIGKDD Explorations Newsletter, 6(2), 77-86.  

18. de Sá, A.G., Pinto, W.J.G., Oliveira, L.O.V. and Pappa, G.L., 2017. RECIPE: a grammar-

based framework for automatically evolving classification pipelines. In Proceedings of the 

European Conference on Genetic Programming, 246-261.  

19. Wilcoxon, F., Katti, S.K. and Wilcox, R.A., 1963. Critical values and probability levels for 

the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected Tables in Mathe-

matical Statistics, 1, 171-259. 

20. Demšar, J., 2006. Statistical comparisons of classifiers over multiple data sets. The Journal 

of Machine Learning Research, 7, 1-30. 

21. Marcus, D.S., Fotenos, A.F., Csernansky, J.G., Morris, J.C. and Buckner, R.L., 2010. Open 

access series of imaging studies: longitudinal MRI data in nondemented and demented older 

adults. Journal of Cognitive Neuroscience, 22(12), 2677-2684. 

22. Asuncion, A. and Newman, D., 2007. UCI machine learning repository. 

23. Pereira, B., Chin, S.F., Rueda, O.M., Vollan, H.K.M., Provenzano, E., Bardwell, H.A., 

Pugh, M., Jones, L., Russell, R., Sammut, S.J. and Tsui, D.W., 2016. The somatic mutation 

profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature 

Communications, 7(1), 1-16.  

24. Fleming, T.R. and Harrington, D.P., 1991. Counting Processes and Survival Analysis. New 

York: John Wiley and Sons Inc.  

25. Islam, M.F., Ferdousi, R., Rahman, S. and Bushra, H.Y., 2020. Likelihood prediction of 

diabetes at early stage using data mining techniques. In Computer Vision and Machine In-

telligence in Medical Image Analysis, 113-125.  

26. Chicco, D. and Jurman, G., 2020. Machine learning can predict survival of patients with 

heart failure from serum creatinine and ejection fraction alone. BMC Medical Informatics 

and Decision Making, 20(1), 1-16.  

27. Hlavnička, J., Čmejla, R., Tykalová, T., Šonka, K., Růžička, E. and Rusz, J., 2017. Auto-

mated analysis of connected speech reveals early biomarkers of Parkinson’s disease in pa-

tients with rapid eye movement sleep behaviour disorder. Scientific Reports, 7(1), 1-13.  

28. Emon, M.U., Keya, M.S., Meghla, T.I., Rahman, M.M., Al Mamun, M.S. and Kaiser, M.S., 

2020. Performance Analysis of Machine Learning Approaches in Stroke Prediction. In 2020 

4th International Conference on Electronics, Communication and Aerospace Technology 

(ICECA), 1464-1469.  


